TY - JOUR A1 - Gottlieb, Cassian A1 - Millar, Steven A1 - Grothe, S. A1 - Wilsch, Gerd T1 - 2D evaluation of spectral LIBS data derived from heterogeneous materials using cluster algorithm JF - Spectrochimica Acta Part B N2 - Laser-induced Breakdown Spectroscopy (LIBS) is capable of providing spatially resolved element maps in regard to the chemical composition of the sample. The evaluation of heterogeneous materials is often a challenging task, especially in the case of phase boundaries. In order to determine information about a certain phase of a material, the need for a method that offers an objective evaluation is necessary. This paper will introduce a cluster algorithm in the case of heterogeneous building materials (concrete) to separate the spectral information of non-relevant aggregates and cement matrix. In civil engineering, the information about the quantitative ingress of harmful species like Cl−, Na+ and SO2−4 is of great interest in the evaluation of the remaining lifetime of structures (Millar et al., 2015; Wilsch et al., 2005). These species trigger different damage processes such as the alkali-silica reaction (ASR) or the chloride-induced corrosion of the reinforcement. Therefore, a discrimination between the different phases, mainly cement matrix and aggregates, is highly important (Weritz et al., 2006). For the 2D evaluation, the expectation-maximizationalgorithm (EM algorithm; Ester and Sander, 2000) has been tested for the application presented in this work. The method has been introduced and different figures of merit have been presented according to recommendations given in Haddad et al. (2014). Advantages of this method will be highlighted. After phase separation, non-relevant information can be excluded and only the wanted phase displayed. Using a set of samples with known and unknown composition, the EM-clustering method has been validated regarding to Gustavo González and Ángeles Herrador (2007). KW - LIBS KW - Concrete KW - EM-clustering KW - Heterogeneity PY - 2017 DO - https://doi.org/10.1016/j.sab.2017.06.005 SN - 0584-8547 VL - 2017 IS - 134 SP - 58 EP - 68 PB - Elsevier B.V. AN - OPUS4-40644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miccoli, Lorenzo A1 - Gerrard, C. A1 - Perrone, C. A1 - Gardei, André A1 - Ziegert, C. T1 - A collaborative engineering and archaeology project to investigate decay in historic rammed earth structures: The case of the Medieval preceptory in Ambel JF - International Journal of Architectural Heritage N2 - This study assesses the structural vulnerability of part of a later medieval earthen building at Ambel (near Zaragoza, Spain), once a preceptory or monastic house belonging to the Military Orders. An inspection of its morphology and materials coupled with the results of an extensive campaign of static monitoring reveals marked structural inhomogeneities, the product of more than a thousand years of construction, failure, and repair from the 10th century to the present day. Building materials are inappropriately juxtaposed, there are discontinuities between construction phases and fundamental concerns remain over the long-term stability of the structure. The current condition of the structure is mainly influenced by structural discontinuities introduced at the time of construction, the unintended consequences of repair and modification and the material decay that has affected the base of the rammed earth walls. The overall findings of the static monitoring show that there is no related damage, variations in crack widths are related to the building seasonal cycle. While static analysis is an essential prerequisite before a suitable maintenance program can be fully defined, this study argues that no evaluation of the structural behavior of any historic building can afford to ignore its archaeological “biography” of modification and repair. KW - Archaeology KW - Historical earthen building KW - Materials characterization KW - Rammed earth KW - Static monitoring PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-396274 DO - https://doi.org/10.1080/15583058.2016.1277283 VL - 11 IS - 5 SP - 636 EP - 655 PB - Taylor & Francis Group AN - OPUS4-39627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hentrich, D. A1 - Taabache, Soraya A1 - Brezesinski, G. A1 - Lange, Nele A1 - Unger, Wolfgang A1 - Kübel, C. A1 - Bertin, Annabelle A1 - Taubert, A. T1 - A dendritic amphiphile for efficient control of biomimetic calcium phosphate mineralization JF - Macromolecular Bioscience N2 - The phase behavior of a dendritic amphiphile containing a Newkome-type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air–liquid interface. The amphiphile forms stable monomolecular films at the air–liquid interface on different subphases. Furthermore, the mineralization of calcium Phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and Phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High-resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano-needles aggregate into larger flake-like objects. KW - Dendritic amphiphile KW - Calcium phosphate KW - Biomineralization PY - 2017 DO - https://doi.org/10.1002/mabi.201600524 SN - 1616-5187 SN - 1616-5195 VL - 17 IS - 8 SP - Article 1600524, 1 EP - 14 AN - OPUS4-41825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ho, Y.T. A1 - Adriani, G A1 - Beyer, Sebastian A1 - Nhan, P.-T. A1 - Kamm, R. D. A1 - Kah, J.C.Y. T1 - A facile method to probe the vascular permeability of nanoparticles in nanomedicine applications JF - Nature Scientific Reports N2 - The effectiveness of nanoparticles (NP) in nanomedicine depends on their ability to extravasate from vasculature towards the target tissue. This is determined by their permeability across the endothelial barrier. Unfortunately, a quantitative study of the diffusion permeability coefficients (Pd) of NPs is difficult with in vivo models. Here, we utilize a relevant model of vascular-tissue interface with tunable endothelial permeability in vitro based on microfluidics. Human umbilical vein endothelial cells (HUVECs) grown in microfluidic devices were treated with Angiopoietin 1 and cyclic adenosine monophosphate (cAMP) to vary the Pd of the HUVECs monolayer towards fluorescent polystyrene NPs (pNPs) of different sizes, which was determined from image analysis of their fluorescence intensity when diffusing across the monolayer. Using 70 kDa dextran as a probe, untreated HUVECs yielded a Pd that approximated tumor vasculature while HUVECs treated with 25 μg/mL cAMP had Pd that approximated healthy vasculature in vivo. As the size of pNPs increased, its Pd decreased in tumor vasculature, but remained largely unchanged in healthy vasculature, demonstrating a trend similar to tumor selectivity for smaller NPs. This microfluidic model of vascular-tissue interface can be used in any laboratory to perform quantitative assessment of the tumor selectivity of nanomedicine-based systems. KW - Nanoparticle PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-397053 DO - https://doi.org/10.1038/s41598-017-00750-3 SN - 2045-2322 VL - 7 IS - 1 SP - Article 707, 1 EP - 13 PB - Macmillan AN - OPUS4-39705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy T1 - A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration JF - International Journal of Fatigue N2 - Using continuum damage mechanics (CDM) for lifetime prediction requires numerical integration of evolving damage until the onset of failure. The primary challenge for the simulation of structural fatigue failure is caused by the enormous computational costs due to cycle-by-cycle temporal integration throughout the whole loading history, which is in the order of 103–107 cycles. As a consequence, most approaches circumvent this problem and use empirical methods such as Wöhler curves. They are well suited for approximating the lifetime, but they are not capable to capture a realistic degradation of the material including redistribution of stresses. The main objective of the paper is to provide a technique for finite element (FE) simulations of structures under fatigue loading while reducing computational costs. A Fourier transformation-based temporal integration (FTTI) scheme is proposed, which adapts the conventional FE method for modeling the viscoplastic deterioration in a structure subjected to cyclic loading. The response fields are represented by a Fourier series which assumes a temporal scale separation: a microchronological (short time) scale arises from the oscillatory loading and a macrochronological (long time) scale is due to the slow material relaxation resulting from yielding and damage evolution. The original dynamic boundary value problem (BVP) is approximated by the stationary BVP on the microchronological scale. Alternation of the displacement field on the macrochronological scale is correlated with evolution of the history variables by means of a high order adaptive cycle jump method. Performance and significant acceleration of the FE simulations is demonstrated at different loading scenarios for a constitutive damage model where the progressive damage accumulation is driven by viscoplastic yielding. KW - Fatigue KW - Accelerated time integration KW - Continuum damage mechanics KW - Fourier series PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2017.03.015 SN - 0142-1123 SN - 1879-3452 VL - 100 IS - 1 SP - 215 EP - 228 PB - Elsevier Ltd. AN - OPUS4-39616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daly, M. A1 - Burnett, T. L. A1 - Pickering, E. J. A1 - Tuck, O. C. G. A1 - Léonard, Fabien A1 - Kelley, R. A1 - Withers, P. J. A1 - Sherry, A. H. T1 - A multi-scale correlative investigation of ductile fracture JF - Acta Materialia N2 - The use of novel multi-scale correlative methods, which involve the coordinated characterisation of matter across a range of length scales, are becoming of increasing value to materials scientists. Here, we describe for the first time how a multi-scale correlative approach can be used to investigate the nature of ductile fracture in metals. Specimens of a nuclear pressure vessel steel, SA508 Grade 3, are examined following ductile fracture using medium and high-resolution 3D X-ray computed tomography (CT) analyses, and a site-specific analysis using a dual beam plasma focused ion beam scanning electron microscope (PFIB-SEM). The methods are employed sequentially to characterise damage by void nucleation and growth in one volume of interest, allowing for the imaging of voids that ranged in size from less than 100 nm to over 100 mm. This enables the examination of voids initiated at carbide particles to be detected, as well as the large voids initiated at inclusions. We demonstrate that this multi-scale correlative approach is a powerful tool, which not only enhances our understanding of ductile failure through detailed characterisation of microstructure, but also provides quantitative information about the size, volume fractions and spatial distributions of voids that can be used to inform models of failure. It isfound that the vast majority of large voids nucleated at MnS inclusions, and that the volume of a void varied according to the volume of its initiating inclusion raised to the power 3/2. The most severe voiding was concentrated within 500 mm of the fracture surface, but measurable damage was found to extend to a depth of at least 3 mm. Microvoids associated with carbides (carbide-initiated voids) were found to be concentrated around larger inclusion-initiated voids at depths of at least 400 mm. Methods for quantifying X-ray CT void data are discussed, and a procedure for using this data to calibrate parameters in the Gurson-Tvergaard Needleman (GTN) model for ductile failure is also introduced. KW - Gurson model KW - SA508 KW - Correlative tomography KW - Void nucleation & growth KW - X-ray computed tomography PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-414547 UR - http://www.sciencedirect.com/science/article/pii/S1359645417302203?via%3Dihub DO - https://doi.org/10.1016/j.actamat.2017.03.028 VL - 130 SP - 56 EP - 68 PB - Elsevier AN - OPUS4-41454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, K. A1 - Liu, H. A1 - Kraft, Marco A1 - Shikha, S. A1 - Zheng, X. A1 - Agren, H. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Zhang, Y. T1 - A protected excitation-energy reservoir for efficient upconversion luminescence JF - Nanoscale N2 - Lanthanide-doped upconversion nanoparticles (UCNPs) are of great interest for biomedical applications. Currently, the applicability of UCNP bionanotechnology is hampered by the generally low luminescence intensity of UCNPs and inefficient energy Transfer from UCNPs to surface-bound chromophores used e.g. for photodynamic therapy or analyte sensing. In this work, we address the low-Efficiency issue by developing versatile core-Shell nanostructures, where high-concentration sensitizers and activators are confined in the core and Shell Region of representative hexagonal NaYF2:Yb,Er UCNPs. After Doping concentration optimization, the sensitizer-rich core is able to harvest/accumulate more excitation energy and generate almost one order of Magnitude higher luminescence intesity than conventional homogeneously doped nanostructures. At the same time, the activator Ions located in the Shell enable a ~6 times more efficient resonant energy Transfer from UCNPs to surface-bound acceptor dye molecules due to the short distance between donor-acceptor pairs. Our work provides new insights into the rational design of UCNPs and will greatly encrease the General applicability of upconversion nanotechnologies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method KW - Energy transfer KW - Shell KW - Particle architecture PY - 2017 DO - https://doi.org/10.1039/c7nr06900f SN - 2040-3372 SN - 2040-3364 VL - 10 IS - 1 SP - 250 EP - 259 PB - The Royal Society of Chemistry AN - OPUS4-43893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, C. A1 - Schwibbert, Karin A1 - Achazi, K. A1 - Landsberger, Petra A1 - Gorbushina, Anna A1 - Haag, R. T1 - Active antibacterial and antifouling surface coating via a facile one-step enzymatic cross-linking JF - Biomacromolecules N2 - Prevention of microbial contamination of surfaces is one of the biggest challenges for biomedical applications. Establishing a stable, easily produced, highly antibacterial surface coating offers an efficient solution but remains a technical difficulty. Here, we report on a new approach to create an in situ hydrogel film-coating on glass surfaces made by enzymatic cross-linking under physiological conditions. The cross-linking is catalyzed by horseradish peroxidase (HRP)/glucose oxidase (GOD)-coupled cascade reactions in the presence of glucose and results in 3D dendritic polyglycerol (dPG) scaffolds bound to the surface of glass. These scaffolds continuously release H2O2 as long as glucose is present in the system. The resultant polymeric coating is highly stable, bacterial-repellent, and functions under physiological conditions. Challenged with high loads of bacteria (OD540 = 1.0), this novel hydrogel and glucose-amended coating reduced the cell viability of Pseudomonas putida (Gram-negative) by 100% and Staphylococcus aureus (Gram-positive) by ≥40%, respectively. Moreover, glucose-stimulated production of H2O2 by the coating system was sufficient to kill both test bacteria (at low titers) with >99.99% Efficiency within 24 h. In the presence of glucose, this platform produces a coating with high effectiveness against bacterial adhesion and survival that can be envisioned for the applications in the glucose-associated medical/oral devices. KW - Antifouling KW - Surface coating KW - Biofilm KW - Bacterial adhesion PY - 2017 DO - https://doi.org/10.1021/acs.biomac.6b01527 SN - 1525-7797 SN - 1526-4602 VL - 18 IS - 1 SP - 210 EP - 216 AN - OPUS4-39003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homberg, U. A1 - Baum, D. A1 - Prohaska, S. A1 - Günster, Jens A1 - Krauss-Schüler, Stefanie T1 - Adapting trabecular structures for 3D printing: an image processing approach based on μCT data JF - Biomedical Physics and Engineering Express N2 - Materials with a trabecular structure notably Combine advantages such as lightweight, reasonable strength, and permeability for fl uids. This combination of advantages is especially interesting for tissue engineering in trauma surgery and orthopedics. Bone-substituting scaffolds for instance are designed with a trabecular structure in order to allow cell migration for bone ingrowth and vascularization. An emerging and recently very popular technology to produce such complex, porous structures is 3D printing. However, several technological aspects regarding the scaffold architecture, the printable resolution, and the feature size have to be considered when fabricating scaffolds for bone tissue replacement and regeneration. Here, we present a strategy to assess and prepare realistic trabecular structures for 3D printing using image analysis with the aim of preserving the structural elements. We discuss critical conditions of the printing system and present a 3-stage approach to adapt a trabecular structure from μ CT data while incorporating knowledge about the printing system. In the first stage, an image-based extraction of solid and void structures is performed, which results in voxel- and graph-based representations of the extracted structures. These representations not only allow us to quantify geometrical properties such as pore size or strut geometry and length. But, since the graph represents the geometry and the topology of the initial structure, it can be used in the second stage to modify and adjust feature size, volume and sample size in an easy and consistent way. In the final reconstruction stage, the graph is then converted into a voxel representation preserving the topology of the initial structure. This stage generates a model with respect to the printing conditions to ensure a stable and controlled voxel placement during the printing process. KW - Additive manufacturing, 3D printing KW - Trabecular structures KW - Image-based analysis PY - 2017 DO - https://doi.org/10.1088/2057-1976/aa7611 SN - 2057-1976 VL - 3 IS - 3 SP - Article 035027, 1 EP - 14 PB - IOP Publishing Ltd AN - OPUS4-40744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Colombo, P. A1 - Schmidt, J. A1 - Franchin, G. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Additive manufacturing techniques for fabricating complex ceramic components from preceramic polymers JF - American Ceramic Society Bulletin N2 - Capsule summary THE MATERIALS Manufacturers can use preceramic polymers to produce ceramic components in a range of compositions using a variety of additive manufacturing technologies. Preceramic polymers even can overcome some of the problems that are intrinsic to additive manufacturing in general. THE APPLICATION Modifying the composition, molecular architecture, and molecular weight of preceramic polymers allows adaptation of these materials to specific processing requirements of individual additive manufacturing technologies. THE OPPORTUNITY Further development of new additive manufacturing technologies, in addition to improvement of existing technologies, will enable manufacturing of advanced ceramic components with enhanced mechanical characteristics and new functional properties. KW - Additive manufacturing KW - Preceramic polymers PY - 2017 VL - 96 IS - 3 SP - 16 EP - 23 AN - OPUS4-40747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pasternak, H. A1 - Launert, B. A1 - Kannengießer, Thomas A1 - Rhode, Michael T1 - Advanced residual stress assessment of plate girders through welding simulation JF - Procedia Engineering / Modern Building Materials, Structures and Techniques N2 - This article provides an impression on potentials in applying nowadays welding simulation tools in construction design. This is carried out exemplary on plate girders from two structural steel grades. The calculated residual stresses are compared with measurements by sectioning method. It has been repeatedly stated that present Eurocode models fail to approximate the residual stresses. Especially for high strength steel (HSS) only limited information is available on realistic occurring residual stresses in typical I-girders. The investigations are aimed to give further guidance on these values. A few proposals on advanced models are discussed. T2 - MBST 2016 - Modern Building Materials, Structures and Techniques CY - Vilnius, Litunia DA - 26.05.2016 KW - Residual stresses KW - Plate girders KW - I-shape sections KW - High-strength steel KW - Welding simulation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392177 UR - http://www.sciencedirect.com/science/article/pii/S1877705817305192 DO - https://doi.org/10.1016/j.proeng.2017.02.013 SN - 1877-7058 IS - 172 SP - 23 EP - 30 PB - Elsevier CY - Amsterdam, Niederlande AN - OPUS4-39217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giebson, C. A1 - Voland, K. A1 - Ludwig, H.-M. A1 - Meng, Birgit T1 - Alkali-silica reaction performance testing of concrete considering external alkalis and preexisting microcrack JF - Structural Concrete N2 - In concrete elements, simultaneously subjected to cyclic loadings and external alkalis, the risk for damage caused by or under participation of an alkali-silica reaction (ASR) is particularly high. This is of particular concern for concrete pavements due to the increasing heavy vehicle traffic and the application of sodium chloride (NaCl) de-icer during winter. Since 2004, the climate simulation concrete prism test (CS-CPT) has been used successfully to evaluate job mixtures for pavements by considering the impact of alkali-containing de-icers. However, the role of mechanical predamage on ASR is largely unclear. In a joint research project, the CS-CPT has been used to investigate the influence of preexisting microcracks on ASR. It was evident that an ASR initiated earlier in the predamaged concrete prisms due to the more rapid ingress of NaCl solution through the microcracks. KW - Alkali-silica reaction KW - Climate simulation concrete prism test KW - External alkalis KW - Laser-induced breakdown spectroscopy KW - Microcracks KW - Pavement concrete PY - 2017 DO - https://doi.org/10.1002/suco.201600173 SN - 1464-4177 SN - 1751-7648 VL - 18 IS - 4 SP - 528 EP - 538 PB - Ernst & Sohn AN - OPUS4-42574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Artzt, Katia A1 - Haubrich, J. A1 - Klaus, M. A1 - Genzel, Ch. A1 - Requena, G. A1 - Bruno, Giovanni T1 - An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V JF - Materials N2 - Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM) under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment. KW - Selective laser melting KW - Additive manufacturing KW - Heat treatment KW - Ti-6Al-4V KW - Synchrotron X-ray diffraction KW - Residual stress PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395759 DO - https://doi.org/10.3390/ma10040348 SN - 1996-1944 VL - 10 IS - 4 SP - Article 348, 1 EP - 14 AN - OPUS4-39575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, Peng A1 - Ogle, Kevin A1 - Erning, Johann Wilhelm A1 - Hutchinson, Michael John A1 - Scully, John T1 - An in situ kinetic study of brass dezincification and corrosion JF - Electrochimica Acta N2 - The kinetics of the anodic dissolution of brass (CuZn42 and CuZn21Si3P) in synthetic tap water were investigated by atomic emission spectroelectrochemistry. Elemental Cu and Zn dissolution rates were measured in situ and in real time during galvanostatic dissolution. A complete mass/charge balance for the system yielded, as a function of applied current and a function of time, the quantity of Cu in the dezincification layer and the quantity of Cu and Zn in the oxide layer. In this way, a complete kinetic characterization of the fundamental chemical processes occurring during dezincification was realized for the first time. The oxide layer was composed primarily of Cu2O as indicated by grazing incidence XRD and Raman analysis. The soluble Cu oxidation product was determined to be Cu(II) by a mass/charge balance. Zn was oxidized to soluble Zn(II) leaving behind a trivial amount of solid Zn corrosion product on the surface. The kinetic analysis depicts a two-stage dissolution process of dezincification: a first stage of a rapid growth of the dezincified layer and a second stage where the growth of dezincified layer was much slower. The Cu2O layer grows continually during the exposure. KW - Dezincification KW - Spectroelectrochemistry KW - Brass PY - 2017 DO - https://doi.org/10.1016/j.electacta.2017.01.078 SN - 0013-4686 SN - 1873-3859 VL - 229 SP - 141 EP - 154 PB - Elsevier AN - OPUS4-39164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engl, T. A1 - Eberl, N. A1 - Gorse, C. A1 - Krüger, T. A1 - Schmidt, T. A1 - Plarre, Rüdiger A1 - Adler, C. A1 - Kaltenpoth, M. T1 - Ancient symbiosis confers desiccation resistance to stored grain pest beetles JF - Molecular Ecology N2 - Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and Wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on Symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities. KW - Bacteroidetes KW - Cuticle KW - Desiccation resistance KW - Grain pest beetles KW - Symbiosis PY - 2017 DO - https://doi.org/10.1111/mec.14418 SN - 1365-294X SN - 0962-1083 VL - 27 IS - 8 SP - 2095 EP - 2108 AN - OPUS4-44013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Graf, B. A1 - Gook, S. A1 - Rethmeier, Michael T1 - Application of D-optimum experimental designs in consideration of restrictions for laser metal deposition JF - Global Nuclear Safety N2 - The process of laser metal deposition can be applied in many ways. Mostly, it is relevant to coating, for repair welding and for additive manufacturing. To increase the effectiveness and the productiveness, a good process understanding is necessary. Statistical test planning is effectual and often used for this purpose. For financial and temporal reasons, a restriction of the test space is reasonable. In this case, it is recommended to use a D-optimal experimental design which is practically applied to extend existing test plans or if process Limits are known. This paper investigates the applicability of a D-optimum experimental design for the laser metal deposition. The results are compared to the current results of a full factorial test plan. Known restrictions are used for the limitation of the test space. Ti6Al4 is utilized as Substrate material and powder. Comparable results of the D-optimal experimental design and of the full factorial test plan can be demonstrated. However, 80 % of time can be saved by the experimental procedure. For this reason, the application of D-optimal experimental design for laser metal deposition is recommend. KW - Design of experiments KW - Repair welding KW - Additive manufacturing KW - Cladding parameter KW - Laser metal deposition KW - Laser cladding PY - 2017 SN - 2499-9733 SN - 2305-414Х VL - 3 IS - 24 SP - 46 EP - 60 AN - OPUS4-44344 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, David A1 - Antin, K.-N. A1 - Zscherpel, Uwe A1 - Vilaça, P. T1 - Application of different X-ray techniques to improve in-service carbon fiber reinforced rope inspection JF - Journal of Nondestructive Evaluation N2 - Carbon fiber reinforced polymer ropes are gaining in significance in the fields of civil engineering and hoisting applications. Thus, methods of non-destructive testing (NDT) need to be developed and evaluated with respect to new challenges and types of defects. Particularly important is the development of in-service testing solutions which allow the integration in global online monitoring systems. Conventional methods like electrical resistivity or strain measurements using optical fibers are already in use. This study investigates the possibility of using various X-ray techniques to increase the reliability and significance of NDT and their applicability to in-service testing. Conventional film radiography is the most common technique; however, even after image enhancement of the digitized film, this technique lacks contrast sensitivity and dynamic range compared to digital detector array (DDA) radiography. The DDA radiography is a highly sensitive method; yet, the limitation is that it delivers 2D images of 3D objects. By the use of co-planar translational laminography the detectability of planar defects is superior to 2D methods due to multiple projection angles. Apart from this, it can be used on-site due to a rather simple setup and robust equipment. In this work two photon counting detectors (PCD) with different sensor materials (Si and CdTe) were used. The results show that the resolution and defect recognition is lower in case of DDA radiography and laminography using PCDs compared to high-resolution computed tomography. However, the DDA radiography and laminography are sensitive enough to both fiber breakage and delaminations and can be significantly advantageous in terms of measurement time and adaptability for on-site monitoring. KW - X-ray imaging KW - Digital radiography KW - Co-planar translational laminography KW - Computed tomography KW - Photon counting detectors KW - Carbon fiber reinforced polymer KW - Rope PY - 2017 DO - https://doi.org/10.1007/s10921-017-0441-5 SN - 0195-9298 SN - 1573-4862 VL - 36 IS - 4 SP - Paper 62, 1 PB - Springer International Publishing AG CY - Cham, Switzerland AN - OPUS4-41781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martynenko, Irina A1 - Litvin, A.P. A1 - Purcell-Milton, F. A1 - Baranov, A. V. A1 - Fedorov, A.V. A1 - Gun´ko, Y.K. T1 - Application of semiconductor quantum dots in bioimaging and biosensing JF - Journal of Materials Chemistry B N2 - In this review we present new concepts and recent progress in the application of semiconductur quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing. We analyze the biologically relevant properties of QDs focusing on the following topics: QD surface treatment and stability labeling of cellular structures and receptors with QDs, incorporation of QDs in living cells, cytotoxicity of QDs and influence of the biolocical environment on the biological and optical properties of QDs. Initially, we consider utilization of QDs as agants in high-resolution bioimaging techniques that can provide information at the molecular levels. The deverse range of modern live-cell QD-based imaging techniques with resolution far beyond the diffraction limit of light is examined. In each technique, we discuss the pros and cons of QD use and deliberate how QDs can be further engineered to facilitate their application in the respective imaging techniques and to produce significant improvements in resolution. Then we review QD-based point-of-care bioassays, bioprobes, and biosensors designed in different formats ranging from analytic biochemistry assays and ELISA, to novel point-of-care smartphone integrated QD-based biotests. Here, a wide range of QD-based fluorescence bioassays with optical transduction, electrochemiluminescence and photoelectrochemical assays are discussedc. Finally, this review provides an analysis of the prospects of application of QDs in selected important Areas of biology. KW - Fluorescence KW - Semiconductor quantum dot KW - Imaging KW - Quantification KW - Nanoparticle KW - NIR KW - IR KW - Quantum yield KW - Method KW - Microscopy KW - Assay KW - Bioconjugate PY - 2017 DO - https://doi.org/10.1039/c7tb01425b VL - 5 IS - 33 SP - 6701 EP - 6727 PB - Royal Society of Chemistry AN - OPUS4-43027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. ED - Emri, Igor T1 - Approximate model for geometrical complex structures JF - Materials Today: Proceedings N2 - Many engineering structures are nowadays made of composite materials or metal foam. These modern engineering materials contain very complex inner geometry. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle. In this paper a numerical method is proposed to find an approximate substitute model for geometrical complex structures. T2 - 33rd Danubia Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Adjustment calculation KW - Finite element method KW - Substitute model KW - Complex structures PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S2214785317308593 DO - https://doi.org/10.1016/j.matpr.2017.06.084 SN - 2214-7853 VL - 4 IS - 5, Part 1 SP - 5995 EP - 6000 PB - Elsevier CY - Amsterdam, Netherlands AN - OPUS4-42794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Beier, T. A1 - Tchoffo Ngoula, D. T1 - Approximation of the crack driving force for cracks at notches under static and cyclic loading JF - Procedia Structural Integrity N2 - The work deals with the efficient calculation of the elastic-plastic crack driving force (J-integral for monotonic loading andΔJ-integral under cyclic loading) for short cracks at notches as essential parameter for the reliable static and fatigue assessment of notched structures. The J- or ΔJ-integral is calculated based on analytical solutions for stress intensity factors, estimated by means of well-known weight function solutions in the case of cracks under power-law stress distributions. A plasticity-correction function is applied to the stress intensity factors to obtain the final expression of the crack driving force. The comparison between analytical solutions and finite element calculations in case of cracks at the weld toe in welded joints shows good agreement. T2 - 2nd International Conference on Structural Integrity CY - Funchal, Madeira, Portugal DA - 04.09.2017 KW - Structural integrity KW - Fracture mechanics KW - Crack driving force KW - Notches PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-425577 DO - https://doi.org/10.1016/j.prostr.2017.07.111 SN - 2452-3216 VL - 5 SP - 875 EP - 882 PB - Elsevier B.V. AN - OPUS4-42557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ward, H. A1 - Burger, M. A1 - Chang, Y.-J. A1 - Fürstmann, P. A1 - Neugebauer, S. A1 - Radebach, A. A1 - Sproesser, G. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Uhlmann, E. A1 - Steckel, J. Ch. T1 - Assessing carbon dioxide emission reduction potentials of improved manufacturing processes using multiregional input output frameworks JF - Journal of Cleaner Production N2 - Evaluating innovative process technologies has become highly important within the last decades. As standard tools different Life Cycle Assessment methods have been established, which are continuously improved. While those are designed for evaluating single processes they run into difficulties when it comes to assessing environmental impacts of process innovations at macroeconomic level. In this paper we develop a multi-step evaluation framework building on multi regional inputeoutput data that allows estimating macroeconomic impacts of new process technologies, considering the network characteristics of the global economy. Our procedure is as follows: i) we measure differences in material usage of process alternatives, ii) we identify where the standard processes are located within economic networks and virtually replace those by innovative process technologies, iii) we account for changes within economic systems and evaluate impacts on emissions. Within this paper we exemplarily apply the methodology to two recently developed innovative technologies: longitudinal large diameter steel pipe welding and turning of high-temperature resistant materials. While we find the macroeconomic impacts of very specific process innovations to be small, its conclusions can significantly differ from traditional process based approaches. Furthermore, information gained from the methodology provides relevant additional insights for decision makers extending the picture gained from traditional process life cycle assessment. KW - Economic wide technology replacement KW - Sustainability assessment KW - Multi-regional inputeoutput data KW - Life-cycle assessment KW - Greenhouse gas mitigation KW - Process innovations PY - 2017 DO - https://doi.org/10.1016/j.jclepro.2016.02.062 SN - 0959-6526 SN - 1879-1786 VL - 163 SP - 154 EP - 165 PB - Elsevier Ltd. AN - OPUS4-41356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit T1 - Auswahl eines Kennwertes für den Vergleich des mechanischen Leistungsniveaus von Polyethylenformstoffen für Gefahrgutverpackungen T1 - Parameter selection for the comparison of the mechanical level of performance of polyethylene molding materials for packagings of dangerous goods JF - Materials Testing N2 - Zum Vergleich der Polyethylenformstoffe für eine Bauart von Gefahrgutverpackungen und IBC wurden die Materialkennwerte: Schmelze-Massefließrate MFR, Dichte D, Kerbschlag-zähigkeit acN bei -30 °C, Spannungsrissbeständigkeit (bestimmt mit dem Full Notch Creep Test) und Beständigkeit gegen oxidativen Abbau Ox (bestimmt durch den prozentualen Anstieg des MFR in Salpetersäure) in der DIN EN 15507 – Verpackung – Verpackungen zur Beförderung gefährlicher Güter – Vergleichende Werkstoffprüfung von Polyethylensorten ausgewählt. Das Ziel der Untersuchungen war die Auswahl eines Kennwertes für die Bestimmung des mechanischen Leistungsniveaus von Polyethylenformstoffen, da unter Druck Verpackungen beulen oder knicken. Zur Auswahl standen drei Prüfverfahren: a) Bestimmung der Biegesteifigkeit S nach DIN 53 350 (Prinzip von Ohlsen). b) Bestimmung der Biegefestigkeit σfM und Biegedehnung ɛfM nach DIN EN ISO 178 c) Bestimmung der Druckkraft Fmax und Verformung dL bei Fmax nach DIN EN ISO 604. Die Prüfmethode zur Bestimmung der Biegesteifigkeit nach DIN 53 350 eignet sich zum Vergleich des mechanischen Leistungsniveaus der Formstoffe. Zur Verbesserung der Reproduzierbarkeit der Ergebnisse sollte der Skalierungsbereich der Prüfapparatur erweitert wer-den, um genauere Messergebnisse zu erzielen. Der Dreipunktbiegeversuch nach DIN EN ISO 178 eignet sich bei verformungsfähigen Kunststoffen, wie dem Polyethylen, zur Bestimmung der Biegefestigkeit σfM. Dieser Ver-such besitzt den Nachteil, dass am Ort des maximalen Biegemoments in der Randschicht, wo auch die maximale Biegespannung erzeugt wird, zusätzlich der Biegestempel angreift. Die Messergebnisse haben gezeigt, dass die Druckprüfung nach DIN EN ISO 604 sich sehr gut zur Bewertung des mechanischen Verhaltens der Polyethylenformstoffe unter Druckbelastung (Stapeldruckprüfung der Verpackungen) eignet. KW - Gefahrgutverpackung KW - Polyethylen KW - Biegesteifigkeit KW - Biegefestigkeit KW - Druckkraft PY - 2017 DO - https://doi.org/10.3139/120.111025 SN - 0025-5300 VL - 59 IS - 5 SP - 466 EP - 471 PB - Carl Hanser Verlag GmbH & Co.KG CY - München AN - OPUS4-40145 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kropidlowski, K. A1 - Uhlmann, E. A1 - Woydt, Mathias T1 - Außen-Längs-Runddrehen mit Niobcarbid-Schneidstoff JF - WB Werkstoff + Betrieb N2 - Als Alternative zu Wolframcarbid wird zurzeit Niobcarbid beim Drehen unter extremen Bedingungen untersucht, vorerst ohne Beschichtungen und ohne Kühlschmierstoffe. Aufgrund seiner besonderen Eigenschaften zeigt Niobcarbid als Schneidstoff ein großes Potenzial. KW - Niobcarbid KW - Drehen KW - Schneidstoff PY - 2017 IS - 7-8 SP - 58 EP - 61 PB - Carl Hanser CY - München AN - OPUS4-41129 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Mousavi, M. ED - Thomasson, B. ED - Li, M. ED - Kraft, Marco ED - Würth, Christian ED - Andersson-Engels, S. T1 - Beam-profile-compensated quantum yield measurements of upconverting nanoparticles JF - Physical chemistry, chemical physics (PCCP) N2 - The quantum yield is a critically important parameter in the development of lanthanide-based upconverting nanoparticles (UCNPs) for use as novel contrast agents in biological imaging and optical reporters in assays. The present work focuses on the influence of the beam Profile in measuring the quantum yield (f) of nonscattering dispersions of nonlinear upconverting probes, by establishing a relation between f and excitation light power density from a rate equation analysis. A resulting 60% correction in the measured f due to the beam profile utilized for excitation underlines the significance of the beam profile in such measurements, and its impact when comparing results from different Setups and groups across the world. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brithtness KW - Quantification KW - Nanoparticle KW - Absolute fluoreometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method PY - 2017 DO - https://doi.org/10.1039/c7cp03785f SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 33 SP - 22016 EP - 22022 PB - Royal Society of Chemistry AN - OPUS4-42583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Tschiche, Harald Rune A1 - Moldenhauer, Daniel A1 - Resch-Genger, Ute T1 - Broad range ON/OFF pH sensors based on pKa tunable fluorescent BODIPYs JF - Sensors and Actuators B:Chemical N2 - A set of highly fluorescent, pH-responsive boron dipyrromethene dyes covering the pH range of 5-12 is presented for broad range pH measurements in mixed aqueous-organic median and polymer matrices. Readout in the intensity Domain with low cost and miniaturized Instrumentation utilizes reversible protonation induced switching ON of their initially completely quenched flourescence mediated by photoinduced electron Transfer. All dyes, rationally designed to reveal closely matching Absorption and Emission properties, are accessible via facile two-step reactions in Overall yields of up to 20%. By modifying the Substitution pattern of the meso-Aryl substiuent, the pKa values could be fine-tuned from 6 to 11. Integration of these molecules into polymeric films by a simple mixing procedure yielded reversible and longterm stable pH sensors for naked eye detection. KW - Fluorescence KW - Sensor KW - PH KW - Dye KW - BODIPY KW - Synthesis KW - Quantification KW - Film KW - Quantum yield KW - Lifetime KW - PET PY - 2017 DO - https://doi.org/10.1016/j.snb.2017.05.080 SN - 0925-4005 VL - 251 SP - 490 EP - 494 PB - Elsevier AN - OPUS4-41782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinsch, Stefan A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Ca- and Sr- tetrafluoroisophthalates: mechanochemical synthesis, characterization, and ab initio structure determination JF - DALTON TRANSACTIONS N2 - New fluorinated coordination polymers were prepared mechanochemically by milling the alkaline earth metal hydroxides MII(OH)2·xH2O (MII: Ca, Sr) with tetrafluoroisophthalic acid (H2mBDC-F4). The structures of [{Ca(mBDC-F4)(H2O)2}·H2O] and [{Sr(mBDC-F4)(H2O)2}·H2O] were determined based on ab initio calculations and their powder X-ray diffraction (PXRD) data. The compounds are isomorphous and crystallize in the orthorhombic space group P212121. The determined structures were validated by using extended X-ray absorption (EXAFS) data. The new materials were thoroughly characterized using elemental analysis, thermal analysis, magic angle spinning NMR, and attenuated total reflection-infrared spectroscopy. Further characterization methods such as BET, dynamic vapor sorption, and scanning electron microscopy imaging were also used. Our investigations indicate that mechanochemistry is an efficient method for preparing such materials. KW - Mechanochemistry KW - In situ KW - XRD KW - Coordination polymers PY - 2017 UR - http://pubs.rsc.org/-/content/articlehtml/2017/dt/c7dt00734e DO - https://doi.org/10.1039/c7dt00734e VL - 46 IS - 18 SP - 6003 EP - 6012 AN - OPUS4-41516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Myrach, Philipp A1 - Jonietz, Florian A1 - Meinel, Dietmar A1 - Suwala, Hubert A1 - Ziegler, Mathias T1 - Calibration of thermographic spot weld testing with X-ray computed tomography JF - Quantative InfraRed Thermography Journal N2 - The paper presents an attempt for the calibration of an active thermography method that is suitable for the non-destructive evaluation of spot welds. Nowadays, the quality of spot welds is commonly characterised by the application of random chisel tests, which are time consuming, expensive and destructive. Recently a non-destructive testing method by means of active thermography was proposed that relies on the fact that the mechanical connection formed by the spot weld also serves as a thermal bridge between the two steel sheets joined in the welding process. It is shown in this paper that this thermal bridge can be thermographically characterised by extracting a measure for the spot weld diameter and hence the quality of the spot weld. The determination of the absolute value of the diameter hereby relies on a calibration of the testing system, which is performed by means of X-ray computed tomography in this study. The experiments were carried out using different experimental approaches, namely transmission as well as reflection geometry wSetup in reflectionith laser illumination. A comprehensive evaluation of samples produced using different welding currents, hence different quality, was carried out in order to validate the thermographic results. KW - Thermography KW - Spot welds KW - Spot welding KW - Computed thomography KW - Non-destructive testing PY - 2017 DO - https://doi.org/10.1080/17686733.2017.1281554 SN - 1768-6733 SN - 2116-7176 VL - 14 IS - 1 SP - 122 EP - 131 PB - Taylor & Francis CY - London AN - OPUS4-40180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Luman A1 - de Greef, Nils A1 - Kalinka, Gerhard A1 - Van Bilzen, Bart A1 - Locquet, Jean-Pierre A1 - Verpoest, Ignaas A1 - Won Seo, Jin T1 - Carbon nanotube-grafted carbon fiber polymer composites: Damage characterization on the micro scale JF - Composites Part B N2 - Multiwall carbon nanotubes (CNTs) e carbon fibers (CFs)hybrid materials were produced by directly growing CNTs on CFs by means of chemical vapor deposition. For the latter, the oxidative dehydrogenation reaction of C2H2 and CO2 was applied, which allows growing CNTs without damaging the CF surface. Uni-directional nano-engineered carbon fiber reinforced composites (nFRCs) were fabricated by impregnating these hybrid materials with epoxy. The nFRCs subjected to single fiber push-out tests revealed a decrease of the interfacial shear strength (IFSS) of about 36% compared to the carbon fiber composites without CNTs. By means of transverse three-point bending tests performed on pre-notched composite beams inside a scanning electron microscope, the fracturing behavior parallel to the fibers was studied in-situ. The nFRCs showed significantly reduced fiber/matrix debonding while CNTs pull-out, CNTs bridging as well as matrix failure occurred. These results demonstrate that the presence of CNTs in nFRCs affects the stress distribution and consequently the damage Initiation as well as the damage propagation. The presence of CNTs suppresses the stress concentration at the fiber/Matrix interface and reduces the debonding of CFs from the matrix. However, our results indicate that the stress concentration shifts towards the CNTs' ends/matrix interface and causes promoted matrix failure leading to lower IFSS. KW - Carbon fibres nanotubes interface PY - 2017 DO - https://doi.org/10.1016/j.compositesb.2017.06.004 SN - 1359-8368 SN - 1879-1069 VL - 126 SP - 202 EP - 210 PB - Elsevier CY - Niederlande AN - OPUS4-42202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Vestergaard, M.C. A1 - Tamiya, E T1 - Carbon-based nanomaterials in biomass-based fuel-fed fuel cells JF - Sensors N2 - Environmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications. To realize the future of biofuel-fed fuel cells as a green energy conversion device, efforts have been devoted to the development of carbon-based nanomaterials with tunable electronic and surface characteristics to act as efficient metal-free electrocatalysts and/or as supporting matrix for metal-based electrocatalysts. We present here a mini review on the recent advances in carbon-based catalysts for each type of biofuel-fed/biofuel cells that directly/indirectly extract energy from biomass resources, and discuss the challenges and perspectives in this developing field KW - Carbon-based nanomaterials KW - Biofuel cells KW - Biomass KW - Carbon nanotubes KW - Graphene KW - Carbon nanodots PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428226 UR - http://www.mdpi.com/1424-8220/17/11/2587/htm DO - https://doi.org/10.3390/s17112587 SN - 1424-8220 VL - 17 IS - 11 SP - 2587, 1 EP - 2587, 21 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-42822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Häusler, Ines A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Palasse, L. A1 - Dirscherl, K. T1 - Characterization of porous, TiO2 nanoparticle films using on-axis TKD in SEM – a new nano-analysis tool for a large-scale application JF - Microscopy and Microanalysis N2 - A combined methodical approach is tested with respect to the characterization of the inner structure of porous TiO2 layers as typically used in modern dye sensitized solar cells (DSSC). Their performance is directly linked to the surface area of the pore network. The micrometer thick layer employed was manufactured by screen-printing of a starting TiO2 powder constituted of shape-controlled, bipyramidal anatase nanoparticles on FTO/glass substrates. The analytical methods exploited in our study are Focused Ion Beam (FIB) slicing followed by 3D reconstruction as well as the new approach transmission Kikuchi diffraction (TKD) technology in the scanning electron microscope (SEM). Size and shape distribution of the TiO2 NPs within the layer can be extracted. SEM in transmission mode and atomic force microscopy (AFM) have been used to verify the dimensional data obtained by the new combined methodical approach. Its analytical benefits but also the challenges and limitations are highlighted. KW - TiO2 KW - TKD KW - Particle size distribution KW - Nanoparticles KW - Porous film PY - 2017 UR - https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8A8B29335A2F4D0CB6922F6F5A19C5DC/S1431927617003397a.pdf/characterization_of_porous_tio2_nanoparticle_films_using_onaxis_tkd_in_sem_a_new_nanoanalysis_tool_for_a_largescale_application.pdf DO - https://doi.org/10.1017/S1431927617003397 VL - 23 IS - S1 (July) SP - 542 EP - 543 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-41924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Palasse, L. A1 - Häusler, Ines A1 - Dirscherl, K. A1 - Oswald, F. A1 - Narbey, S. A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan T1 - Characterization of the inner structure of porous TiO2 nanoparticle films in dye sensitive solar cells (DSSC) by focused ion beam (FIB) tomography and transmission Kikuchi diffraction (TKD) in the scanning electron microscope (SEM) JF - Materials Characterization N2 - A combined methodical approach is tested for the first time with respect to the characterization of the inner structure of porous TiO2 layers infiltrated with ruthenium molecular sensitizer as typically used in modern dye sensitized solar cells (DSSC). Their performance is directly linked to the surface area ‘offered’ by the pore Network to the dye. The micrometer thick layer employed was manufactured by screen-printing of a starting TiO2 powder constituted of shape-controlled, bipyramidal anatase nanoparticles (NPs) on FTO/glass substrates. The analytical methods exploited in our study are Focused Ion Beam (FIB) slicing followed by 3D reconstruction as well as the new approach transmission Kikuchi diffraction (TKD) technology in the scanning electron microscope (SEM). While the first method results in the visualization of the 3D pore network within the TiO2 layer, the second one can be successfully applied to analyze the crystal orientation of grains (i.e. NPs in our case) in nanometer resolution. Moreover, size and shape distribution of the TiO2 NPs within the layer can be extracted. SEM in transmission mode and atomic force microscopy (AFM) have been used to verify the dimensional data obtained by the new combined methodical approach. Its analytical benefits but also the challenges and limitations are highlighted. KW - Transmission Kikuchi diffraction KW - Focused ion beam tomography KW - Titanium dioxide KW - Nanoparticles KW - Porosity KW - Particle size KW - DSSC PY - 2017 DO - https://doi.org/10.1016/j.matchar.2017.06.030 SN - 1044-5803 SN - 1873-4189 VL - 131 SP - 39 EP - 48 PB - Elsevier AN - OPUS4-40875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meschut, G. A1 - Janzen, V. A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Frei, J. T1 - Charakterisierung des Bruch- und Festigkeits verhaltens von widerstandspunktgeschweißten Aluminiumverbindungen JF - Schweißen und Schneiden N2 - Die Reduktion des Fahrzeuggewichts ist ein wesentlicher Ansatz zur Ver-ringerung des Energie- und Ressourcenverbrauchs und damit zur Senkung der CO2-Emissionen im Automobilbau. In der Karosserieentwicklung kann der vermehrte Einsatz von Aluminiumwerkstoffen einen bedeutenden Beitrag dazu leisten. Im preissensitiven Umfeld des Karosseriebaus etabliert sich das bei Stahlanwendungen genutzte Widerstandspunktschweißen zunehmend auch für Aluminiumverbindungen. Verfahrensbedingte Herausforderungen, wie verkürzte Elektrodenstandzeiten und mangelnde Kenntnis über den Einfluss von Imperfektionen auf die Festigkeit, begrenzen dennoch die Weiterverbreitung des Verfahrens und stellen die Prozessrobustheit insgesamt in Frage. Im Rahmen des hier vorgestellten Forschungsvorhabens wurden das Auftreten verschiedener Brucharten experimentell untersucht und Prognosefunktionen zur Abschätzung der Tragfähigkeit von Widerstandspunktschweißverbindungen unter verschiedenen Belastungsfällen erstellt. Anschließend wurde der Einfluss von Oberflächenrissen und Rissen in der Schweißlinse auf die Scherzugfestigkeit sowohl experimentell als auch simulativ analysiert. KW - Aluminium KW - Widerstandspressschweißen KW - Rissbildung KW - Festigkeit KW - Werkstofffragen PY - 2017 UR - http://www.schweissenundschneiden.de/article/charakterisierung-des-bruch-und-festigkeitsverhaltens-von-widerstandspunktgeschweissten-aluminiumverbindungen/ VL - 69 IS - 3 SP - 126 EP - 133 PB - DVS Media GmbH AN - OPUS4-39577 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Böhning, Martin A1 - Krafft, Bernd A1 - Schartel, Bernhard T1 - Chlorbutylkautschuk/Multilayergraphen-Nanocomposites JF - GAK Gummi Fasern Kunststoffe N2 - In den letzten Jahren werden zunehmend Nanopartikel als Füllstoff für Polymere vorgeschlagen und auch erfolgreich in Elastomer-Nanocomposites eingesetzt. In dieser Arbeit wird Multilayergraphen (MLG) als Nanofüllstoff näher untersucht, der sich bereits bei geringen Konzentrationen als effizient erweist. MLG besteht aus nur etwa zehn Graphenlagen. Chlorbutylkautschuk (CIIR)/MLG-Nanocomposites mit verschiedenen MLG-Gehalten wurden mit Hilfe eines ultraschallunterstützen Mischverfahrens in Lösung hergestellt und auf einem Walzwerk weiterverarbeitet. Das Einmischen von MLG führt zu einer deutlichen Verbesserung der rheologischen und mechanischen Eigenschaften, des Vernetzungsverhaltens sowie der Barrierewirkung gegenüber Gasen. Bereits der Zusatz von 3 phr MLG zu CIIR führt zu einem mehr als zweifach höheren E-Modul und zu einer Reduktion der Permeabilität von O2 und CO2 um 30 %. Höhere Konzentrationen an Nanofüllstoff resultieren in einer weiteren Verbesserung der Eigenschaften der Nanocomposites. Weiterhin zeigten die CIIR/MLG-Nanocomposites auch eine geringere Entflammbarkeit. KW - Elastomere KW - Nanokomposite KW - Graphen KW - Chlorbutylkautschuk PY - 2017 SN - 0176-1625 VL - 70 IS - 5 SP - 311 EP - 322 PB - Dr. Gupta Verlag CY - Ratingen AN - OPUS4-40327 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalinka, Gerhard A1 - ElAbshihy, K. T1 - Circumventing boundary effects while characterizing epoxy/copper interphases using nanoindentation JF - Composite Interfaces N2 - Characterization of the size and mechanical properties of interphases is essential when designing multicomponent materials. When nanoindentation is used to investigate the size and mechanical properties of an interphase, a common challenge is that the indenter or the stress zone formed around it are often restricted by the reinforcement, making it difficult to distinguish the mechanical property variations caused by the interphase itself from those caused by the boundary effect. In this work, a testing system was developed that allows determining the indent affected zone and accounting for it in the interphase measurements of an epoxy/Cu system. Using finite element analysis, we confirmed the validity of the proposed system. Nanoindentation was used to investigate the Interphase between copper and two different epoxy systems; amine-cured and anhydride-cured. Nanoindentation results showed that a copper layer that is only 10 nm thick still exhibits a constriction effect on the indentations in its vicinity. The amine-cured epoxy did not show any sign of interphase existence using the introduced method. However, a soft interphase with a thickness of ~1.7 μm was measured on theanhydride-cured epoxy. Furthermore, we show that the proposed system can be used to determine the interphase thickness as well as its relative mechanical properties regardless of the indentation depth. This system can be further used for investigating other polymer/metal interphases to better understand the factors influencing them, thus helping engineer the interphase size and properties to enhance composite performance. KW - Interphase KW - Polymer-metal KW - Epoxy KW - Copper KW - Composites KW - Nanoindentation PY - 2017 DO - https://doi.org/10.1080/09276440.2017.1286878 SN - 0927-6440 SN - 1568-5543 VL - 24 IS - 9 SP - 833 EP - 848 PB - Taylor & Francis CY - UK AN - OPUS4-39128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg A1 - Altmann, Korinna A1 - Wettmarshausen, Sascha A1 - Hidde, Gundula T1 - Coating of carbon fibers with adhesion-promoting thin polymer layers using plasma polymerization or electrospray ionization technique—A comparison JF - Plasma Processes and Polymers N2 - Plasma polymers and electrospray-ionization (ESI) polymer layers are compared for most efficient adhesion promotion in carbon fiber-epoxy resin composites. The ultra-thin ESI layers (2–30 nm) of commercial poly(acrylic acid) and poly-(hydroxyethylmethacrylate) produce an significant increase of adhesion measured by single-fiber pull out tests. However, plasma Treatment has also advantages, such as simultaneous activation of the fiber substrate. Chemical structure and composition are rather far from the regular structure of commercial polymers as deposited by ESI processing. KW - Plasma polymers KW - Electrospray ionization polymers KW - Poly(acrylic acid) KW - Poly- (hydroxyethylmethacrylate) PY - 2017 DO - https://doi.org/10.1002/ppap.201600074 SN - 1612-8869 SN - 1612-8850 VL - 14 IS - 3 SP - e1600074-1 EP - 14 AN - OPUS4-40510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bochnig, M. S. A1 - Oh, M.-J. A1 - Nagel, T. A1 - Jost-Brinkmann, P.-G. A1 - Ziegler, Fred T1 - Comparison of the shock absorption capacities of different mouthguards JF - Dental Traumatologie N2 - In this in vitro study, the protective qualities of different mouthguard types were examined during small hard object collisions. The aim was to investigate inconclusive aspects of hard inserts, nylon nets, and air spaces as reinforcements in the anterior region and the protection qualities of ethylene vinyl acetate (EVA). Five different mouthguards with a labial thickness between 2 mm and 11 mm made of materials of varying stiffness were investigated. As a negative control, the same experiments were performed without a mouthguard. Different combinations of EVA and labial inserts ((polyethylene terephthalate glycol-modified [PETG]), nylon mesh, air space) were tested. Using a stainless steel pendulum device, blows of different energy (0.07-2.85 joules) were applied to the center of the crown of a pivoted tooth in a custom-built jaw model. A laser Doppler vibrometer measured the tooth deflection, while an acceleration sensor attached to the pendulum measured the braking accelerations. Tooth deflection was reduced up to 99.7% compared to no mouthguard, and the braking acceleration was reduced up to 72.2% by increasing the mouthguards' labial thickness in combination with labial inserts of different stiffness and a built-in air space between the front teeth and the mouthguard. The mouthguards made of soft materials (EVA with nylon mesh) showed slightly better protection qualities than the more rigid mouthguards of similar thickness (PETG; P<.05). However, with increasing impact energy, their protective capacities decreased to a greater extent than the stiffer mouthguards. The combination of increased labial thickness and labial inserts of varying stiffness and eventually an air space offers the best protection capacities for hard, small object collisions. KW - Shock absorbtion KW - Hard object collisions KW - Mouthguard PY - 2017 DO - https://doi.org/10.1111/edt.12324 SN - 1600-4469 VL - 33 IS - 3 SP - 205 EP - 213 PB - John Wiley & Sons, Ltd CY - Hoboken, NJ, USA AN - OPUS4-41098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nguyen, Thi Yen A1 - Roessler, Ernst A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets JF - Zeitschrift für Kristallographie - Crystalline Materials N2 - Theoretical and experimental studies indicate that crystal nucleation can take more complex pathways than expected on the ground of the classical nucleation theory. Among these pathways are the formation of pre-nucleation clusters and amorphous precursor phases. A direct in situ observation of the different pathways of nucleation from solution is challenging since the paths can be influenced by heterogeneous nucleation sites, such as container walls. Here, we provide insights into the crystallization process using the in situ combination of an acoustic levitator, Raman spectroscopy, and X-ray scattering. The contactless sample holder enables the observation of homogeneous crystallization processes and the detection of intermediates and final crystalline forms. We provide evidence for the existence of multiple pathways of nucleation based on the investigation of the crystallization of organic molecules from different solvents. Starting from a diluted solution, a supersaturation is reached during the experiment due to the evaporation of the solvent. The highly supersaturated solution reveals different pathways of crystallization. Depending on the degree of supersaturation either the thermodynamically stable or the metastable crystal form is observed. KW - Crystallization KW - In situ XRD KW - Polymorphism KW - Polyamorphism KW - Raman spectroscopy PY - 2017 DO - https://doi.org/10.1515/zkri-2016-1964 SN - 2194-4946 SN - 2196-7105 VL - 232 IS - 1-3 SP - 15 EP - 24 PB - De Gruyter CY - Berlin AN - OPUS4-39708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Silbernagl, Dorothee A1 - Toepel, J. A1 - Sturm, Heinz A1 - Broughton, William J. A1 - Sassaki, G. L. A1 - Gorbushina, Anna T1 - Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knufia petricola JF - Extremophiles N2 - Melanised cell walls and extracellular polymeric matrices protect rock-inhabiting microcolonial fungi from hostile environmental conditions. How extracellular polymeric substances (EPS) perform this protective role was investigated by following development of the model microcolonial black fungus Knufia petricola A95 grown as a sub-aerial biofilm. Extracellular substances were extracted with NaOH/formaldehyde and the structures of two excreted polymers studied by methylation as well as NMR analyses. The main polysaccharide (~ 80%) was pullulan, also known as α-1,4-; α-1,6-glucan, with different degrees of polymerisation. Αlpha-(1,4)-linked-Glcp and α-(1,6)-linked-Glcp were present in the molar ratios of 2:1. A branched galactofuromannan with an α-(1,2)-linked Manp main chain and a β-(1,6)-linked Galf side chain formed a minor fraction (~ 20%). To further understand the roles of EPS in the weathering of minerals and rocks, viscosity along with corrosive properties were studied using atomic force microscopy (AFM). The kinetic viscosity of extracellular K. petricola A95 polysaccharides (≈ 0.97 × 10-6 m2 s-1) ranged from the equivalent of 2% (w/v) to 5% glycerine, and could thus profoundly affect diffusion-dominated processes. The corrosive nature of rock-inhabiting fungal EPS was also demonstrated by its effects on the aluminium coating of the AFM cantilever and the silicon layer below. KW - Corrosion KW - EPS KW - Melanised microcolonial fungi (MCF) KW - Pullulan KW - Sub-aerial biofilms (SAB) KW - α-1,4- and α-1,6-glucans KW - AFM cantilever vibration KW - Nanoviscosity KW - Nanocorrosion of aluminium and silicon PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435910 DO - https://doi.org/10.1007/s00792-017-0984-5 SN - 1433-4909 SN - 1431-0651 VL - 22 IS - 2 SP - 165 EP - 175 PB - Springer CY - Berlin AN - OPUS4-43591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Panne, Ulrich A1 - Falkenhagen, Jana T1 - Critical conditions for liquid chromatography of statistical copolymers: Functionality type and composition distribution characterization by UP-LCCC/ESI-MS JF - Analytical Chemistry N2 - Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOFMS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), Gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD. KW - Polymer KW - Liquid chromatography at critical conditions KW - ESI-TOF-MS PY - 2017 DO - https://doi.org/10.1021/acs.analchem.6b04064 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 3 SP - 1778 EP - 1786 AN - OPUS4-39240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Kabelitz, Anke A1 - Zimathies, Annett A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Crystal structure and in situ investigation of a mechanochemical synthesized 3D zinc N-(phosphonomethyl)glycinate JF - Journal of Materials Science N2 - The mechanochemical synthesis of the zinc N-(phosphonomethyl)glycinate Zn(O₃PCH₂NH₂CH₂CO₂) H₂O is presented. The structure was solved from powder X-ray diffraction (PXRD) data. In the three-dimensional pillared structure, the Zn atoms are coordinated tetrahedrally. In situ investigations of the reaction process with synchrotron PXRD and Raman spectroscopy reveal a two-step process including the formation of an intermediate. KW - Mechanochemistry KW - Metal phosphonate KW - In situ PY - 2017 DO - https://doi.org/10.1007/s10853-017-1121-7 SN - 0022-2461 SN - 1573-4803 VL - 52 IS - 20 SP - 12013 EP - 12020 PB - Springer CY - New York AN - OPUS4-41490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matoga, D. A1 - Roztocki, K. A1 - Wilke, Manuel A1 - Emmerling, Franziska A1 - Oszajca, M. A1 - Fitta, M. A1 - Bałanda, M. T1 - Crystalline bilayers unzipped and rezipped: solid-state reaction cycle of a metal–organic framework with triple rearrangement of intralayer bonds JF - CrystEngComm N2 - We present a series of remarkable structural transformations for a family of layered metal–organic frameworks (MOFs) in a three-step solid-state reaction cycle. The cycle represents new dynamic behavior of 2D coordination polymers and involves the sequence of reactions: {[Mn2(ina)4(H2O)2]·2EtOH}n (JUK-1) → {(NH4)2[Mn(ina)2(NCS)2]}n·xH2O (JUK-2) → {[Mn2(ina)2(Hina)2(NCS)2]}n (JUK-3) → JUK-1 (Hina = isonicotinic acid), each accompanied by rearrangement of intralayer coordination bonds and each induced by a different external stimulus. In situ investigation of the first step of the cycle by combined synchrotron X-ray diffraction and Raman spectroscopy reveals direct mechanochemical unzipping of JUK-1 bilayers to respective JUK-2 layers with reaction rates dependent on the milling conditions. In contrast, the reverse zipping of JUK-2 layers involves two steps and proceeds through a new MOF (JUK-3) whose structure was elucidated by powder X-ray diffraction. Magnetic measurements confirm conversions of manganese nodes in the reaction cycle. The findings indicate the possibility of developing coordination-based assemblies with large structural responses for use in smart stimuli-responsive systems and sensor technologies. KW - Mechanochemistry KW - In situ KW - XRD KW - MOF PY - 2017 UR - http://pubs.rsc.org/is/content/articlehtml/2017/ce/c7ce00655a DO - https://doi.org/10.1039/C7CE00655A VL - 19 SP - 2987 EP - 2995 AN - OPUS4-41517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Kang, N. A1 - Wang, D.-Y. A1 - Wurm, Andreas A1 - Schick, C. A1 - Schönhals, Andreas T1 - Crystallization behavior of nanocomposites based on poly(L-lactide) and MgAl layered double hydroxides - Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller JF - Polymer N2 - Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller). Polymer nanocomposite based on poly(L-lactide) and MgAl layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA ist crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated. It was found, that RAFfiller increases linearly with the concentration of the nanofiller for this system. Furthermore, RAFcrystal is only slightly influenced by the presence of the nanofiller. KW - Polymer based nanocomposites PY - 2017 DO - https://doi.org/10.1016/j.polymer.2016.11.065 SN - 0032-3861 SN - 1873-2291 VL - 108 SP - 257 EP - 264 PB - Elesevier AN - OPUS4-39052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - Crystallometric and projective properties of Kikuchi diffraction patterns JF - Journal of Applied Crystallography N2 - Kikuchi diffraction patterns can provide fundamental information about the lattice metric of a crystalline phase. In order to improve the possible precision and accuracy of lattice parameter determination from the features observed in Kikuchi patterns, some useful fundamental relationships of geometric crystal-lography are reviewed, which hold true independently of the actual crystal symmetry. The Kikuchi band positions and intersections and the Kikuchi band widths are highly interrelated, which is illustrated by the fact that all lattice plane trace positions of the crystal are predetermined by the definition of only four traces. If, additionally, the projection centre of the gnomonic projection is known, the lattice parameter ratios and the angles between the basis vectors are fixed. A further definition of one specific Kikuchi band width is sufficient to set the absolute sizes of all lattice parameters and to predict the widths of all Kikuchi bands. The mathematical properties of the gnomonic projection turn out to be central to an improved interpretation of Kikuchi pattern data, emphasizing the importance of the exact knowledge of the projection centre. KW - EBSD KW - Crystallography KW - Kikuchi patterns KW - Projective geometry PY - 2017 DO - https://doi.org/10.1107/S1600576716017477 SN - 1600-5767 VL - 50 IS - Part 1 SP - 102 EP - 119 PB - International Union of Crystallography AN - OPUS4-39061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Trappe, Volker A1 - Sturm, Heinz A1 - Braun, Ulrike A1 - Dümichen, Erik T1 - Cure conversion of structural epoxies by cure state analysis and in situ cure kinetics using nondestructive NIR spectroscopy JF - Thermochimica Acta N2 - Non-isothermal heating rate kinetics was applied to two epoxy resin systems. In situ near-infrared (NIR) measurements were taken with a heatable NIR cell which allowed the cure to be monitored by characteristic absorption bands. An autocatalyzed reaction of the nth order was shown to describe the epoxy conversion curves. Differential Scanning Calorimetry (DSC) was used as a complementary method. The kinetic models developed by both NIR and DSC are in good accordance with experimental epoxy conversion in the in situ NIR setup for single and multiple cure temperature ramps. A linear calibration curve of the characteristic absorption bands of epoxy normalized to aromatic vibrations was introduced. The curing degree of structural epoxies that were cured according to an industrial temperature cure profile was determined by NIR using the calibration curve. The epoxy conversions of the structural components showed good agreement with the experimental in situ NIR. Several degrees of cure for structural specimens were evaluated by NIR and residual reaction enthalpy by DSC. We present the non-destructive NIR spectroscopy as an alternative to determine fast and non-destructive epoxy conversion, particularly suitable for high degrees of cure on structural components. KW - Epoxy resin KW - Curing kinetics KW - In situ near-infrared (NIR) spectroscopy KW - Differential scanning calorimetry (DSC) PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0040603117300205 DO - https://doi.org/10.1016/j.tca.2017.01.010 SN - 0040-6031 SN - 1872-762X VL - 650 SP - 8 EP - 17 PB - Elsevier B.V. AN - OPUS4-39123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Cyclic poly(l-lactide) via ring-expansion polymerization by means of dibutyltin 4-tert-butylcatecholate JF - Macromolecular Chemistry and Physics N2 - Five new catalysts are prepared from dibutyltin oxide and catechol (HCa), 2,3-dihydroxynaphthalene (NaCa), 4-tert-butyl catechol (BuCa), 4-cyano catechol (CyCa), and 4-benzoyl catechol (BzCa), but only BuCa gives useful results. When benzyl alcohol is used as an initiator, linear chains having benzyl ester end groups are formed in a slow polymerization process. In contrast to cyclic or noncyclic dibutyltin bisalkoxides, neat BuCa yields cyclic poly(l-lactide)s via a fast ring-expansion polymerization. Under certain conditions, a high-melting crystalline phase (Tm = 191 °C) is obtained. At 160 °C and short reaction times even-numbered cycles are slightly prevailing, but, surprisingly, at 120 °C, odd-numbered cycles are predominantly formed. These results definitely prove that a ring-expansion mechanism is operating. KW - Lactides KW - MALDI TOF MS KW - Morphology KW - Ring-opening polymerization KW - Tin catalysts PY - 2017 DO - https://doi.org/10.1002/macp.201700274 SN - 1521-3935 SN - 1022-1352 VL - 218 IS - 22 SP - 1700274, 1 EP - 1700274, 10 PB - Wiley VCH CY - Weinheim AN - OPUS4-43583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic poly(L-lactide)s via ring-expansion polymerizations catalysed by 2,2-dibutyl-2- stanna-1,3-dithiolane JF - Polymer Chemistry N2 - L-Lactides were polymerized in bulk at 120 or 160 °C with cyclic dibutyltin catalysts derived from 1,2-dimercaptoethane or 2-mercaptoethanol. Only linear chains having one benzyl ester and one OH-end group were obtained when benzyl alcohol was added. When L-lactides were polymerized with neat dibutyl-2-stanna-1,3-dithiolane, exclusively cyclic polylactides were formed even at 120 °C. The temperature, time and monomer/catalyst ratio (M/C) were varied. These results are best explained by a combination of ring-expansion polymerization and ring-extrusion of cyclic oligo- or polylactides with Elimination of the cyclic catalyst. Neither syntheses of linear polylactides nor of cyclic lactides involved racemization up to 20 h at 160 °C. KW - Ring-expansion polymerization KW - MALDI KW - Polylactides PY - 2017 DO - https://doi.org/10.1039/C6PY02166B SN - 1759-9954 SN - 1759-9962 VL - 8 IS - 9 SP - 1589 EP - 1596 PB - Royal Society of Chemistry AN - OPUS4-39748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic Polylactides via Simultaneous Ring-Opening Polymerization and Polycondensation Catalyzed by Dibutyltin Mercaptides JF - Journal of Polymer Science A - Polymer Chemistry N2 - L-Lactide is polymerized in bulk at 160 8C either with dibutyltin bis(benzylmercaptide) (SnSBzl), dibutyltin bis(benzothiazole 2-mercaptide) (SnMBT), or with dibutyltin bis(pentafluorothiophenolate) (SnSPF) as catalysts. SnSBzl yields linear polylactides having benzylthio-ester end groups in addition to cyclic polylactides, whereas SnMBT and SnSPF mainly or exclusively yield cyclic polylactides. This finding, together with model reactions, indicates that the SnS catalysts promote a combined ring-opening polymerization and polycondensation process including end-to-end cyclization. SnMBT caused slight racemization (3%–5%), when used at 160 8C. With SnSPF optically pure cyclic poly(L-lactide)s with high-molecular weights can be prepared at 160 8C. KW - Cyclopolymerization KW - Catalysts KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization PY - 2017 DO - https://doi.org/10.1002/pola.28762 VL - 55 IS - 22 SP - 3767 EP - 3775 PB - Wiley Periodicals AN - OPUS4-42600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. ED - Shaplov, A. T1 - Cyclization and dispersity of polyesters JF - Macomolecular Symposia N2 - Two classes of polyesters were prepared by irreversible polycondensations. The dependence of the dispersities on the experimental parameters such as synthetic method, chemical structure, molecular weight and initial monomer concentration was determined. At first it was demonstrated that it is essential for a correct calculation of Mn and Mw to include all oligomers down to the dimers in the evaluation of SEC curves. Furthermore, it was demonstrated for poly(e-caprolactone)s and polylactides that reversible polycondensations and ring-opening polymerizations with equilibration yield identical products. Finally, the dependence of the dispersity on various experimental Parameters was determined for equilibrated poly(e-caprolactone)s and polylactides. KW - Irreversible polycondensation KW - Polycaprolactone KW - Polylactide KW - Dispersity KW - MALDI-TOF MS PY - 2017 DO - https://doi.org/10.1002/masy.201600169 SN - 1022-1360 SN - 1521-3900 VL - 375 IS - 1 SP - Article 1600169, 1 EP - 6 PB - Wiley-VCH AN - OPUS4-42407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Hilgenberg, Kai T1 - Damage development and damage tolerance of structures manufactured by selective laser melting - a review JF - 3rd International symposium on fatigue design and material defects (FDMD 2017) N2 - The additive manufacturing technology of Selective Laser Melting (SLM) experiences a rapid development within an increasing marked of quite different application fields. The properties of SLM materials and structures are influenced by a number of tech-nological parameters such as the metal powder (particle size, homogeneity, cleanliness), the laser tool (power, beam diameter, pulse lengths), the scanning operation (speed, sequence and orientation of melting paths), parameters of the over-all equipment (design and preheating of the base plate, currents and turbulence in the protective gas atmosphere) and, last not least, the hatching strategy including the build-up direction of the structure with respect to the loading direction of the component. For the perspective use of SLM structures as load carrying, safety-relevant components the knowledge of their mechanical properties is necessary. It is essential to understand these in the context of the manufacturing-related features and at the back-ground of the basic characteristics of metallic materials: crystal lattice, microstructure and material defects. The paper provides an overview on factors which affect the mechanical parameters stiffness, strength, ductility, toughness, fatigue crack propagation and fatigue strength in the context of selective laser melting. T2 - FDMD 2017 CY - Lecco, Italy DA - 19.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-438511 DO - https://doi.org/10.1016/j.prostr.2017.11.071 SN - 2452-3216 VL - 7 SP - 141 EP - 148 PB - ScienceDirect CY - Lecco, Italy AN - OPUS4-43851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Heidari, M. A1 - von Klitzing, R. A1 - Napolitano, S. A1 - Sferrazza, M. A1 - Schönhals, Andreas T1 - Decoupling of dynamic and thermal glass transition in thin films of a PVME/PS blend JF - ACS Macro Letters N2 - The discussions on the nanoconfinement effect on the glass transition and glassy dynamics phenomena have yielded many open questions. Here, the thickness dependence of the thermal glass transition temperature of thin films of a PVME/PS blend is investigated by ellipsometry. Its thickness dependence was compared to that of the dynamic glass transition (measured by specific heat spectroscopy), and the deduced Vogel temperature (T0). While and T0 showed a monotonous increase, with decreasing the film thickness, the dynamic glass transition temperature () measured at a finite frequency showed a non-monotonous dependence that peaks at 30 nm. This was discussed by assuming different cooperativity length scales at these temperatures, which have different sensitivities to composition and thickness. This non-monotonous thickness dependence of disappears for frequencies characteristic for T0. Further analysis of the fragility parameter, showed a change in the glassy dynamics from strong to fragile, with decreasing film thickness. KW - Thin polymeric films KW - Ellipsometry KW - Specific heat spectroscopy PY - 2017 DO - https://doi.org/10.1021/acsmacrolett.7b00625 SN - 2161-1653 VL - 6 IS - 10 SP - 1156 EP - 1161 PB - ACS Publications AN - OPUS4-42266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Rehmer, Birgit A1 - Gower, M. A1 - Baker, G. A1 - Lodeiro, M. A1 - Aktas, A. A1 - Monte, C. A1 - Adibekyan, A. A1 - Gutschwager, B. T1 - Defect characterisation of tensile loaded CFRP and GFRP laminates used in energy applications by means of infrared thermography JF - Quantitative Inrared Thermography Journal (QIRT) N2 - The increased use of fibre reinforced plastic (FRP) composites for improved efficiency and reliability in energy related applications, e.g. wind and marine turbine blades, nacelles, oil and gas flexible risers, also increases the demand for innovative non-destructive testing technologies. In this contribution, results concerning the characterisation of CFRP and GFRP during and after quasi-static tensile loading are presented. It includes the measurement of optical properties in the infrared spectral range, tensile loading tests with the observation of the temperature distribution at one or both sides of the specimens using an infrared camera for the preparation and monitoring of intended natural defects, and active thermography inspections after tensile loading. It is shown that the defect preparation was successful. Thermographic monitoring during and active thermography testing after tensile loading enable the detection of the lateral extend of the generated defects. Differences between CFRP and GFRP materials are discussed. KW - Tensile loading KW - Fibre reinforced composites KW - Active and passive thermography KW - Emissivity PY - 2017 DO - https://doi.org/10.1080/17686733.2017.1334312 SN - 1768-6733 SN - 2116-7176 VL - 15 IS - 1 SP - 17 EP - 36 PB - Taylor and Francis CY - London AN - OPUS4-40968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Przondziono, R. A1 - Timothy, J. J. A1 - Weise, Frank A1 - Krütt, Enno A1 - Breitenbücher, R. A1 - Meschke, G. A1 - Hofmann, M. T1 - Degradation in concrete structures due to cyclic loading and its effect on transport processes - Experiments and modeling JF - Structural Concrete N2 - According to the objectives of the research group 1498, this paper deals with degradation effects in concrete structures that are caused by cyclic flexural loading. The goal is to determine their influence on the fluid transport processes within the material on the basis of experimental results and numerical simulations. The overall question was, to which extent the ingress of externally supplied alkalis and subsequently an alkali-silica reaction are affected by such modifications in the microstructure. Degradation in the concrete microstructure is characterized by ultrasonic wave measurements as well as by microscopic crack analysis. Furthermore, experiments on the penetration behavior of water into the investigated materials were performed. The penetration behavior into predamaged concrete microstructures was examined by the classical Karsten tube experiment, nuclear magnetic resonance method, and time domain reflectometry techniques. In order to create an appropriate model of the material's degradation on the water transport, the Darcy law was applied to describe the flow in partially saturated concrete. Material degradation is taken into account by an effective permeability that is dependent on the state of degradation. This effective permeability is obtained by the micromechanical homogenisation of the flow in an Representative Elementary Volume (REV) with distributed ellipsoidal microcracks embedded in a porous medium. The data gained in the microscopic crack analysis is used as input for the micromechanical model. Finite element simulations for unsaturated flow using the micromechanical model were compared with the experimental results showing good qualitative and quantitative agreement. KW - Alkali ingress KW - Alkali-silica reaction KW - Computational model for unsaturated flow KW - Cyclic loading KW - Degradation KW - Micromechanics model KW - Transport processes PY - 2017 DO - https://doi.org/10.1002/suco.201600180 SN - 1751-7648 SN - 1464-4177 VL - 18 IS - 4 SP - 519 EP - 527 PB - Ernst & Sohn AN - OPUS4-41008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Negendank, Detlef A1 - Lohse, Volkmar A1 - Kormunda, M. A1 - Esser, N. T1 - Dependence of the optical constants and the performance in the SPREE gas measurement on the thickness of doped tin oxide over coatings JF - Applied Surface Science N2 - In this study, thickness related changes of the optical properties of doped tin oxide were studied. Two different sets of samples were prepared. The first set was doped with iron or nickel on silicon substrate with thicknesses of 29–56 nm, the second was iron doped on gold/glass substrate with 1.6–6.3 nm. The optical constants were determined by using spectral ellipsometry (SE) followed by modelling of the dielectric function with an oscillator model using Gaussian peaks. The analysis of the optical constants shows a dependence of the refraction and the absorption on the thickness of the doped tin oxide coating. In addition to the tin oxide absorption in the UV, one additional absorption peak was found in the near-IR/red which is related to plasmonic effects due to the doping. This peak shifts from the near-IR to the red part of the visible spectrum and becomes stronger by reducing the thickness, probably due to the formation of metal nanoparticles in this layer. These results were found for two different sets of samples by using the same optical model. Afterwards the second sample set was tested in the Surface Plasmon Resonance Enhanced Ellipsometric (SPREE) gas measurement with CO gas. It was found that the thickness has significant influence on the sensitivity and thus the adsorption of the CO gas. By increasing the thickness from 1.6 nm to 5.1 nm, the sensing ability is enhanced due to a higher coverage of the surface with the over coating. This is explained by the high affinity of CO molecules to the incorporated Fe-nanoparticles in the tin oxide coating. By increasing the thickness further to 6.3 nm, the sensing ability drops because the layer disturbs the SPR sensing effect too much. T2 - 7th International Conference on Spectroscopic Ellipsometry (ICSE-7) DA - 06.06.2016 KW - Surface plasmon resonance KW - Spectroscopic ellipsometry KW - Doped tin oxide KW - Gas sensing KW - Plasmonic absorption PY - 2017 DO - https://doi.org/10.1016/j.apsusc.2016.11.188 SN - 0169-4332 VL - 421, Teil B SP - 480 EP - 486 PB - Elsevier B.V. AN - OPUS4-42692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilrich, T. A1 - Wilrich, Cordula T1 - Der Brand des Zinkklumpens im Restmülleimer JF - Betriebliche Prävention N2 - In dieser Veröffentlichung werden der Strafbefehl und das in der Revision erfolgte Urteil zu einem Unfall im Chemieunterricht diskutiert. Der Strafbefehl: Sie werden "beschuldigt, fahrlässig eine Räumlichkeit, die zeitweise dem Aufenthalt von Menschen dient, zu einer Zeit, in der Menschen sich dort aufzuhalten pflegen, in Brand gesetzt oder durch eine Brandlegung ganz oder teilweise zerstört, indem Sie, nachdem Sie in Ihrer Eigenschaft als Chemielehrer des X-Gymnasiums in Y am Morgen des vorgenannten Tages im Chemieunterricht Schülern ein Experiment vorgeführt hatten, bei dem Sie Zinkpulver mit Natronlauge reagieren ließen, gegen 9:20 Uhr die für das Experiment benutzten Gläser sowie den entstandenen Zinkklumpen im Chemievorbereitungsraum mit Säure neutralisierten sowie mit Wasser abspülten, den Zinkklumpen sodann jedoch einfach in einem Kunststoffmülleimer entsorgten, welcher sich dort entzündete, was zu einem Brand im Chemievorbereitungsraum führte, bei dem diverse Möbelstücke samt Laborutensilien durch das Feuer zerstört wurden, es zu lokalen Gebäudeschäden durch abgeplatzten Wand- und Deckenputz kam und die Räumlichkeiten großflächig durch Rauchgasniederschläge belastet wurden, was Sie als Chemielehrer aufgrund Ihrer besonderen Fachkenntnisse hätten vorhersehen können und müssen; die Kosten der notwendigen Sanierungsmaßnahmen betragen € 66.647,26". Sodann heißt es, dass "auf Antrag der Staatsanwaltschaft gegen Sie eine Geldstrafe von 50 Tagessätzen festgesetzt wird. Die Höhe eines Tagessatzes beträgt € 100,–, die Geldstrafe insgesamt mithin € 5.000,–". Das Urteil: Der Lehrer erhob gegen den Strafbefehl Einspruch und das Amtsgericht sprach ihn nach mündlicher Verhandlung mit Urteil vom 8. Juli 2015 frei. In der vorliegenden Veröffentlichung werden der Strafbefehl und das Urteil im Hinblick auf Pflichtwidrigkeit, Kausalität und Fahrlässigkeit diskutiert. Darüberhinaus wird besprochen, ob die zugrunde gelegte Arbeitsschutzvorschrift angemessen angewendet und vom Gericht korrekt interpretiert wurde. KW - Arbeitsschutz KW - Entsorgung gefährlicher Stoffe PY - 2017 DO - https://doi.org/10.37307/j.2365-7634.2017.04.10 SN - 2365-7626 IS - 4 SP - 176 EP - 178 PB - Erich Schmidt Verlag (ESV) CY - Berlin AN - OPUS4-39645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seidel, R. A1 - Kraffert, K. A1 - Kabelitz, Anke A1 - Pohl, M.N. A1 - Kraehnert, R. A1 - Emmerling, Franziska A1 - Winter, B. T1 - Detection of the electronic structure of iron-(III)-oxo oligomers forming in aqueous solutions JF - Physical Chemistry Chemical Physics N2 - The nature of the small iron-oxo oligomers in iron-(III) aqueous solutions has a determining effect on the chemical processes that govern the formation of nanoparticles in aqueous phase. Here we report on a liquid-Jet photoelectron-spectroscopy experiment for the investigation of the electronic structure of the occurring iron-oxo oligomers in FeCl3 aqueous solutions. The only iron species in the as-prepared 0.75 M solution are Fe3+ monomers. Addition of NaOH initiates Fe3+ hydrolysis which is followed by the formation of iron-oxo oligomers. At small enough NaOH concentrations, corresponding to approximately [OH]/[Fe] = 0.2–0.25 ratio, the iron oligomers can be stabilized for several hours without engaging in further aggregation. Here, we apply a combination of non-resonant as well as iron 2p and Oxygen 1s resonant photoelectron spectroscopy from a liquid microjet to detect the electronic structure of the occurring species. Specifically, the oxygen 1s partial electron yield X-ray absorption (PEY-XA) spectra are found to exhibit a peak well below the onset of liquid water and OH (aq) absorption. The iron 2p absorption gives rise to signal centered between the main absorption bands typical for aqueous Fe3+. Absorption bands in both PEY-XA spectra are found to correlate with an enhanced photoelectron Peak near 20 eV binding energy, which demonstrates the sensitivity of resonant photoelectron (RPE) spectroscopy to mixing between iron and ligand orbitals. These various signals from the iron-oxo oligomers exhibit Maximum intensity at [OH]/[Fe] = 0.25 ratio. For the same ratio, we observe changes in the pH as well as in complementary Raman spectra, which can be assigned to the Transition from monomeric to oligomeric species. At approximately [OH]/[Fe] = 0.3 we begin to observe particles larger than 1 nm in radius, detected by small-angle X-ray scattering. KW - Iron-oxo oligomers KW - XPS KW - Electronic structure PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-433468 DO - https://doi.org/10.1039/c7cp06945f SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 48 SP - 32226 EP - 32234 AN - OPUS4-43346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Scholz, Norman ED - Behnke, Thomas T1 - Determination of the critical micelle concentration of neutral and ionic surfactants with fluorometry, conductometry, and surface tension - a method comparison JF - Journal of Fluorescence N2 - Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key Parameter indicating the Formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence Parameters for Signal detection and ompared the results with conductometric and surface Tension measurements. Based upon These results, requirements, Advantages, and pitfalls of each methods are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface Tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant. KW - Fluorescence KW - Methods KW - Critical micelle concentration (CMC) KW - Conductometry KW - Fluorescence probe KW - Dye KW - Nile Red KW - Pitfalls KW - Method evaluation KW - Uncertainty PY - 2017 DO - https://doi.org/10.1007/s10895-018-2209-4 SN - 1053-0509 SN - 1573-4994 VL - 28 IS - 1 SP - 465 EP - 476 AN - OPUS4-43905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Jan P. A1 - Götschel, S. A1 - Maierhofer, Christiane A1 - Weiser, M. T1 - Determining the Material Parameters for the Reconstruction of Defects in Carbon Fiber Reinforced Polymers from Data Measured by Flash Thermography JF - AIP Conference Proceedings N2 - Flash thermography is a fast and reliable non-destructive testing method for the investigation of defects in carbon fiber reinforced polymer (CFRP) materials. In this paper numerical simulations of transient thermography data are presented, calculated for a quasi-isotropic flat bottom hole sample. They are compared to experimental data. These simulations are one important step towards the quantitative reconstruction of a flaw by assessing thermographic data. The applied numerical model is based on the finite-element method, extended by a semi-analytical treatment of the boundary of the sample, which is heated by the flash light. A crucial part for a reliable numerical model is the prior determination of the material parameters of the specimen as well as of the experimental parameters of the set-up. The material parameters in plane and in depth diffusivity are measured using laser line excitation. In addition, the absorption and heat transfer process of the first layers is investigated using an IR microscopic lens. The performance of the two distinct components of CFRP during heating – epoxy resin and carbon fibers – is examined. Finally, the material parameters are optimized by variation and comparison of the simulation results to the experimental data. The optimized parameters are compared to the measured ones and further methods to ensure precise material parameter measurements are discussed. T2 - 43rd Review of Progress in Quantitative Nondestructive Evaluation CY - Atlanta, GA, USA DA - 17.07.2016 KW - Aktive Thermografie KW - Thermische Diffusivität KW - Zerstörungsfreie Prüfung KW - Kohlenstofffaserverstärkter Kunststoff KW - CFK KW - Active thermography KW - Thermal diffusivity KW - Non-Destructive testing KW - Carbon fiber reinforced polymer KW - CFRP PY - 2017 SN - 978-0-7354-1474-7 DO - https://doi.org/10.1063/1.4974671 SN - 0094-243X VL - 1806 IS - 1 SP - UNSP 100006-1 EP - 11 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-39332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adel-Khattab, D. A1 - Giacomini, F. A1 - Gildenhaar, R. A1 - Berger, G. A1 - Gomes, Cynthia A1 - Linow, Ulf A1 - Hardt, M. A1 - Peleska, B. A1 - Günster, Jens A1 - Stiller, M. A1 - Houshmand, A. A1 - Ghaffar, K. A1 - Gamal, A. A1 - El-Mofty, M. A1 - Knabe, C. T1 - Development of a synthetic tissue engineered three- dimensional printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro JF - Journal of Tissue Engineering and Regenerative Medicine N2 - Over the last decade there have been increasing efforts to develop three-dimensional (3D) scaffolds for bone tissue Engineering from bioactive ceramics with 3D printing emerging as a promising technology. The overall objective of the present study was to generate a tissue engineered synthetic bone graft with homogenously distributed osteoblasts and mineralizing bone Matrix in vitro, thereby mimicking the advantageous properties of autogenous bone grafts and facilitating usage for reconstructing segmental discontinuity defects in vivo . To this end, 3D scaffolds were developed from a silica-containing calcium alkali orthophosphate, using, fi rst, a replica technique – the Schwartzwalder – Somers method – and, second, 3D printing, (i.e. rapid prototyping). The mechanical and physical scaffold properties and their potential to facilitate homogenous colonization by osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture were examined. Osteoblastic cells were dynamically cultured for 7 days on both scaffold types with two different concentrations of 1.5 and 3 × 10⁹ cells/l. The amount of cells and bone matrix formed and osteogenic marker expression were evaluated using hard tissue histology, immunohistochemical and histomorphometric analysis. 3D-printed scaffolds (RPS) exhibited more micropores, greater compressive strength and silica release. RPS seeded with 3 × 10⁹ cells/l displayed greatest cell and extracellular Matrix formation, mineralization and osteocalcin expression. In conclusion, RPS displayed superior mechanical and biological properties and facilitated generating a tissue engineered synthetic bone graft in vitro, which mimics the advantageous properties of autogenous bone grafts, by containing homogenously distributed terminally differentiated osteoblasts and mineralizing bone matrix and therefore is suitable for subsequent in vivo implantation for regenerating segmental discontinuity bone defects. KW - Bone tissue engineering KW - Calcium alkali orthophosphate KW - Rapid prototyping KW - Scaffold KW - Mandible PY - 2017 DO - https://doi.org/10.1002/term.2362 SN - 1932-6254 SN - 1932-7005 VL - 12 IS - 1 SP - 44 EP - 58 PB - Wiley Online Library AN - OPUS4-40745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Philipp A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Ziegert, C. T1 - Development of partial safety factors for earth block masonry JF - Materials and Structures N2 - The main aim of the research was the development of a first valid database for material parameters of earth block masonry (EBM) with particular regard to statistical characteristics. A solid database is needed for the determination of the materials partial safety factor. Therefore, compressive strength tests were carried out with two types of earth blocks and two types of prefabricated earth mortar. The evaluation has shown that the mean variation of the compressive strength was remarkably less than expected, which indicates high quality standards of the components earth block and mortar with regard to industrial production. Using the reliability method, a partial safety factor for EBM subjected to compression was determined on the basis of these test results. The findings have shown that a common calculation method for EBM based on partial safety factors following the valid masonry construction standard is feasible. KW - Partial safety factor KW - Earth block masonry (EBM) KW - Reliability KW - Compressive strength PY - 2017 DO - https://doi.org/10.1617/s11527-016-0902-9 SN - 1871-6873 SN - 1359-5997 VL - 50 IS - 1 SP - 1 EP - 14 PB - Springer AN - OPUS4-38937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asadujjaman, Asad A1 - Bertin, Annabelle A1 - Schönhals, Andreas T1 - Dielectric analysis of the upper critical solution temperature behaviour of a poly(acrylamide-coacrylonitrile) copolymer system in water JF - Soft Matter N2 - A copolymer consisting of acrylamide (AAm) and acrylonitrile (AN) in aqueous solution was investigated using broadband dielectric spectroscopy at frequencies between 10⁻¹ Hz and 10⁶ Hz in the temperature range from 2 °C to 60 °C. This system shows an UCST phase behavior. The phase transition and aggregation behavior is monitored by both the temperature and frequency dependence of the complex conductivity σ*(f, T), where the AN fraction and the concentration of the solution were varied. Additionally, the dielectric data are compared with the results obtained from dynamic light scattering measurements. The temperature dependence of the DC conductivity (σDC) of the copolymer solution is monitored and the phase transition temperature (PTT) of the poly(AAm-co-AN) copolymer is deduced from a change in the T-dependence of the DC conductivity. The change in σDC can be explained by decreased effective charge carrier mobility and a reduction of the effective charge number density at temperatures below the phase Transition temperature of the poly(AAm-co-AN) solution. A pronounced interfacial polarization effect on the frequency dependence of the real part of the conductivity (σ') is observed at temperatures below the phase Transition temperature. The charge carriers are blocked at the formed aggregates giving rise to this interfacial polarization. The dependence of the interfacial polarization on the acrylonitrile fraction in the copolymer and the concentration of the solution is studied in detail and conclusions concerning the internal structures of the copolymer aggregates are drawn. KW - Thermoresponsive polymres PY - 2017 DO - https://doi.org/10.1039/c6sm02684b SN - 1744-6848 SN - 1744-683X VL - 13 IS - 12 SP - 2384 EP - 2393 PB - Royl Society of Chemistry Publishing AN - OPUS4-39556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Chatzigiannakis, E. A1 - Beckmann, Jörg A1 - Wachtendorf, Volker A1 - von der Ehe, Kerstin A1 - Braun, Ulrike A1 - Jaunich, Matthias A1 - Schade, U. A1 - Wolff, Dietmar T1 - Discoloration Effects of High-Dose gamma-Irradiation and Long-Term Thermal Aging of (U) HMW-PE JF - International Journal of Polymer Science N2 - Two polyethylene types with ultra-high (UHMWPE) and high molecular weight (HMW-PE) used as neutron radiation shielding materials in casks for radioactive waste were irradiated with doses up to 600 kGy using a 60Co gammasource. Subsequently, thermal aging at 125∘C was applied for up to one year. Degradation effects in the materials were characterized using colorimetry, UV-Visspectroscopy, IR spectroscopy, and DSC. Both materials exhibited a yellowing upon irradiation.The discoloration of UHMW-PE disappeared again after thermal aging.Therefore, the yellowing is assumed to originate fromannealable color centers in the formof free radicals that are trapped in the crystalline regions of the polymer and recombine at elevated temperatures. For the antioxidantcontaining HMWPE, yellowing was observed after both irradiation and thermal aging. The color change was correlated mainly to decomposition products of the antioxidant in addition to trapped radicals as in UHMW-PE. Additionally, black spots appeared after thermal aging of HMW-PE. KW - Irradiation KW - UHMWPE KW - Colour center KW - Yellowness index PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-423992 DO - https://doi.org/10.1155/2017/1362491 SN - 1687-9422 VL - 2017 IS - Article ID 1362491 SP - 1 EP - 10 PB - Hindawi AN - OPUS4-42399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klingelhoeffer, Hellmuth A1 - Aegerter, J. A1 - Scherm, T. A1 - Schenuit, E. A1 - Sotheran, S. A1 - Loveday, M. A1 - Bosch, P. A1 - Bloching, H. A1 - Olbricht, Jürgen A1 - McEnteggart, I. T1 - Discussion on "Analysis on the issues in ISO 6892-1 and TENSTAND WP4 report based on the data of confirm tests by 21 laboratories" JF - Journal of Testing and Evaluation N2 - The authors, Li et al., of the paper entitled “Analysis on the Issues in ISO 6892-1 and TENSTAND WP4 Report Based on Data to Confirm Tests by 21 Laboratories” (J. Test. Eval. DOI: 10.1520/JTE20150479 (online only)) have expressed views that the authors of this rebuttal believe to be based on fundamental misunderstandings and misinterpretations of the tensile testing standard ISO 6892-1:2009, ISO 6892-1:2016, and its former versions, thus leading to erroneous conclusions. This refutation is intended to clarify the understanding of ISO 6892-1 and to address the misunderstandings and the misinterpretations of the authors of the paper. The present standard ISO 6892-1:2016 has a long history dating back to the 1970s. At that time, the tensile testing procedure was standardized on the National and International scale in parallel. To understand the present standard, the knowledge of the history helps to understand the background of details of the testing procedure implemented today. The history of the tensile testing standard has been discussed extensively during the annual international standardization meeting of ISO committee TC 164 SC1 for the last few years, at which some of the authors of the Li et al. paper attended. The authors continue to disagree with facts that were agreed by the consortium of the European research project TENSTAND and by the present international experts involved in ISO TC 164 SC1. It appears that the principal objective of the authors regarding their present publication was to increase the testing speed during tensile testing. However, the international standardization community has previously declined similar proposals by some of the authors. Many arguments presented by Li et al. were thus refuted. The conclusions of their paper are misleading and the international standardization community for tensile testing refused to revise the present standard, ISO 6892-1 (2016), according the authors’ proposals. KW - Tensile testing procedure KW - ISO 6892-1 KW - TENSTAND WP4 Final Report PY - 2017 DO - https://doi.org/10.1520/JTE20160526 SN - 0090-3973 SN - 1945-7553 VL - 45 IS - 3 SP - 1105 EP - 1114 PB - ASTM International CY - West Conshohocken, PA, USA AN - OPUS4-40267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klingelhöffer, Hellmuth A1 - Aegerter, J. A1 - Scherm, T. A1 - Schenuit, E. A1 - Sotheran, S. A1 - Loveday, M. A1 - Bosch, P. A1 - Bloching, H. A1 - Olbricht, Jürgen A1 - McEnteggart, I. T1 - Discussion on “Analysis on the issues in ISO 6892-1 and TENSTAND WP4 report based on the data of confirm tests by 21 laboratories” by H. Li, X. Zhou, J. Shen, and D. Luo. The regular article was published in journal of Testing and Evaluation, Vol. 45, No. 3, 2017, pp. 723–731, doi:10.1520/ JTE20150479. ISSN 0090-3973 JF - Journal of Testing and Evaluation N2 - The authors, Li et al., of the paper entitled “Analysis on the Issues in ISO 6892-1 and TENSTAND WP4 Report Based on Data to Confirm Tests by 21 Laboratories” (J. Test. Eval. DOI: 10.1520/JTE20150479 (online only)) have expressed views that the authors of this rebuttal believe to be based on fundamental misunderstandings and misinterpretations of the tensile testing standard ISO 6892-1:2009, ISO 6892-1:2016, and its former versions, thus leading to erroneous conclusions. This refutation is intended to clarify the understanding of ISO 6892-1 and to address the misunderstandings and the misinterpretations of the authors of the paper. The present standard ISO 6892-1:2016 has a long history dating back to the 1970s. At that time, the tensile testing procedure was standardized on the National and International scale in parallel. To understand the present standard, the knowledge of the history helps to understand the background of details of the testing procedure implemented today. The history of the tensile testing standard has been discussed extensively during the annual international standardization meeting of ISO committee TC 164 SC1 for the last few years, at which some of the authors of the Li et al. paper attended. The authors continue to disagree with facts that were agreed by the consortium of the European research project TENSTAND and by the present international experts involved in ISO TC 164 SC1. It appears that the principal objective of the authors regarding their present publication was to increase the testing speed during tensile testing. However, the international standardization community has previously declined similar proposals by some of the authors. Many Arguments presented by Li et al. were thus refuted. The conclusions of their paper are misleading and the international standardization community for tensile testing refused to revise the present standard, ISO 6892-1 (2016), according the authors’ proposals. KW - Tnsile testing KW - ISO 6892-1 KW - TENSTAND WP4 Report PY - 2017 UR - www.astm.org DO - https://doi.org/10.1520/JTE20160526 SN - 0090-3973 VL - 45 IS - 3 SP - 1105 EP - 1114 PB - ASTM CY - West Conshohocken, PA, USA AN - OPUS4-46690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, P A1 - Balceris, C. A1 - Ludwig, F A1 - Posth, O A1 - Bogart, L. K. A1 - Szczerba, Wojciech A1 - Castro, A A1 - Nilsson, L A1 - Costo, R A1 - Gavilan, H A1 - Gonzalez-Alonso, D A1 - de Pedro, I A1 - Barquin, L. F. A1 - Johansson, C T1 - Distribution functions of magnetic nanoparticles determined by a numerical inversion method JF - New Journal of Physics N2 - In the present study, we applied a regularized inversion method to extract the particle size, magnetic moment and relaxation-time distribution of magnetic nanoparticles from small-angle x-ray scattering (SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. For the measurements the particles were colloidally dispersed in water. At first approximation the particles could be assumed to be spherically shaped and homogeneously magnetized single-domain particles. As model functions for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and the Debye model (ACS). The extracted distributions exhibited features/peaks that could be distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis of these peaks enabled, in combination with a prior characterization of the particle ensemble by electron microscopy and dynamic light scattering, a detailed structural and magnetic characterization of the particles. Additionally, all three extracted distributions featured peaks, which indicated deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one expected for individually dispersed, homogeneously magnetized nanoparticles. These deviations could be mainly attributed to partial agglomeration (SAXS, DCM, ACS), uncorrelated surface spins (DCM) and/or intra-well relaxation processes (ACS). The main advantage of the numerical inversion method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions are required, which enabled the detection of these contributions. We highlighted this by comparing the results with the results obtained by standard model fits, where the functional form of the distributions was a priori assumed to be log-normal shaped. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-429373 DO - https://doi.org/10.1088/1367-2630/aa73b4 SN - 1367-2630 VL - 19 SP - 073012, 1 EP - 073012, 19 PB - IOP Publ. Ltd. AN - OPUS4-42937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Bach, S. A1 - Gorelik, T. A1 - Kolb, U. A1 - Tremel, W. A1 - Emmerling, Franziska T1 - Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution JF - Zeitschrift für Kristallographie - Crystalline Materials N2 - Divalent metal phosphonates are promising hybrid materials with a broad field of application. The rich coordination chemistry of the phosphonate linkers enables the formation of structures with different dimensionalities ranging from isolated complexes and layered structures to porous frameworks incorporating various functionalities through the choice of the building blocks. In brief, metal phosphonates offer an interesting opportunity for the design of multifunctional materials. Here, we provide a short review on the class of divalent metal phosphonates discussing their syntheses, structures, and applications. We present the advantages of the recently introduced mechanochemical pathway for the Synthesis of divalent phosphonates as a possibility to generate new, in certain cases metastable compounds. The benefits of in situ investigation of synthesis mechanisms as well as the implementation of sophisticated methods for the structure analysis of the resulting compounds are discussed. KW - Metal phosphonate KW - Mechanochemistry PY - 2017 DO - https://doi.org/10.1515/zkri-2016-1971 SN - 2194-4946 SN - 2196-7105 VL - 232 IS - 1-3 SP - 209 EP - 222 PB - De Gruyter AN - OPUS4-40003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mitova, M. A1 - Iliev, M. A1 - Nováková, A. A1 - Gorbushina, Anna A1 - Groudeva, V.I. A1 - Martin-Sanchez, Pedro Maria T1 - Diversity and biocide susceptibility of fungal assemblages dwelling in the Art Gallery of Magura Cave, Bulgaria JF - International Journal of Speleology N2 - Magura Cave, north-western Bulgaria, possesses valuable rock-art paintings made with bat guano and dated from the period between the Eneolithic and Bronze Ages. Since 2008, the Art Gallery is closed to the general public in order to protect the paintings from vandalism, microclimatic changes caused by visitors and artificial illumination, and the consequent growth of fungi and phototrophs. Nevertheless, some tourist visits are allowed under the supervision of cave managers. This study provides the first scientific report on cultivable fungal assemblages dwelling different substrata in the Art Gallery. A total of 78 strains, belonging to 37 OTUs (Ascomycota 81%, Zygomycota 13%, Basidiomycota 5%), were isolated in the study. This fungal diversity was clearly dominated by Penicillium (50% of strains) and Aspergillus (13%). The most relevant visible fungal colonies were detected in sediments rich in bat guano, where, besides Penicillium, other guanophilic fungi such as Mucor, Mortierella, Trichosporon and Trichoderma were dominant. Conversely, scarce fungi were detected on rock surface of painted walls. Based on the biocide susceptibility assay, octylisothiazolinone (OIT) and benzalkonium chloride (BAC) were effective inhibiting the in vitro growth of dominant fungal species in Magura Cave, when applied at concentrations ranged from 100 to 1,000 mg/L. These data provide a valuable knowledge about Magura fungi, and exemplify a type of preliminary test that may be conducted before planning any biocide treatment. However, considering the irreversible effects of biocides on the ecological balance in caves, and the low fungal contamination in painted walls of Magura Cave, there is no reason to use conventional biocides in this cave. Further studies, monitoring microbial communities and microclimatic parameters, should be conducted to improve the knowledge on microbial ecology in Magura Cave and possible human impacts, as well as to allow the early detection of potential microbial outbreaks. KW - Fungi KW - Rock-art caves KW - Biocides PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-397436 DO - https://doi.org/10.5038/1827-806X.46.1.2061 SN - 0392-6672 VL - 46 IS - 1 SP - 67 EP - 80 PB - Scholar Commons CY - Tampa, FL, USA AN - OPUS4-39743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lichtenstein, D. A1 - Meyer, T. A1 - Böhmert, L. A1 - Juling, S. A1 - Fahrenson, C. A1 - Selve, S. A1 - Thünemann, Andreas A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Braeuning, A. A1 - Lampen, A. T1 - Dosimetric quantification of coating-related uptake of silver nanoparticles JF - Langmuir N2 - The elucidation of mechanisms underlying the cellular uptake of nanoparticles (NPs) is an important topic in nanotoxicological research. Most studies dealing with silver NP uptake provide only qualitative data about internalization efficiency and do not consider NP-specific dosimetry. Therefore, we performed a comprehensive comparison of the cellular uptake of differently coated silver NPs of comparable size in different human intestinal Caco-2 cell-derived models to cover also the influence of the intestinal mucus barrier and uptake-specialized M-cells. We used a combination of the Transwell system, transmission electron microscopy, atomic absorption spectroscopy, and ion beam microscopy techniques. The computational in vitro sedimentation, diffusion, and dosimetry (ISDD) model was used to determine the effective dose of the particles in vitro based on their individual physicochemical characteristics. Data indicate that silver NPs with a similar size and shape show coating-dependent differences in their uptake into Caco-2 cells. The internalization of silver NPs was enhanced in uptake-specialized M-cells while the mucus did not provide a substantial barrier for NP internalization. ISDD modeling revealed a fivefold underestimation of dose–response relationships of NPs in in vitro assays. In summary, the present study provides dosimetry-adjusted quantitative data about the influence of NP coating materials in cellular uptake into human intestinal cells. Underestimation of particle effects in vitro might be prevented by using dosimetry models and by considering cell models with greater proximity to the in vivo situation, such as the M-cell model. KW - Silver nanoparticles KW - Small-angle X-ray scattering KW - Saxs PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b01851 SN - 0743-7463 VL - 33 IS - 45 SP - 13087 EP - 13097 PB - Americal Chemical Society AN - OPUS4-42875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenreck, Thora A1 - Klein, M. A1 - Böllinghaus, Thomas T1 - Dynamic compressive behaviour of weld joints JF - Materials Science & Engineering A N2 - Materials used in military applications have to withstand multiple threats like ballistics and explosions. Thus, high-strength low alloyed (HSLA) steels are used. The main joining technique for metals is welding. Therefore, analysing the dynamic impact behaviour of high-strength welds is very important to fulfil these demands. Investigation of welds at high strain rates has rarely been conducted in the past. To determine the dynamic impact behaviour of hybrid laser-arc welds, the Split Hopkinson Pressure Bar (SHPB) technique was used. The base material was a quenched and tempered fine-grained armour steel with yield strength of 1100 MPa. First, a full hybrid laser-arc weld was investigated by extracting specimens consisting of weld metal and heat affected base material. The influence of two variables, the cooling time between 800 °C and 500 °C (t8/5) and strength of filler material, on the impact behaviour was studied. The cooling time t8/5 was varied by preheating to influence the microstructure in the HAZ and to analyse the effect on the hardness and dynamic compressive strength. Subsequent analysis to detail the original Investigation was carried out by dilatometer heat treatment of specimens to create homogenous subzones of the weld. These specimens have a homogenous microstructure of HAZ and were tested by SHPB to determine the stress-strain characteristics for the different microstructures of HAZ. The results of the weld specimen showed the effect of preheating and filler material strength on the dynamic compressive behaviour. The analysis of the different microstructures of the HAZ indicated that especially the tempered microstructure caused a reduction in dynamic compressive strength. KW - SHPB KW - Hybrid laser-arc weld KW - Dilatometry PY - 2017 DO - https://doi.org/10.1016/j.msea.2017.07.032 SN - 0921-5093 SN - 1873-4936 VL - 702 SP - 322 EP - 330 AN - OPUS4-41904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babutzka, Martin A1 - Heyn, A. T1 - Dynamic tafel factor adaption for the evaluation of instantaneous corrosion rates on zinc by using gel-type electrolytes JF - IOP Conf. Series: Materials Science and Engineering N2 - The paper presents a new method for the determination and evaluation of tafel factors using gel-type electrolytes and electrochemical frequency modulation technique (EFM). This relatively new electrochemical method offers the possibility to determine both polarization resistances and tafel factors within one measurement and in short measuring intervals. Starting from a comprehensive parameter study it is shown that a direct relationship between the two values exists that can be described mathematically. This contribution presents the determined tafel factors for the system gel-type electrolyte/zinc and discusses their applicability and their limits. T2 - 19th Chemnitz Seminar on Materials Engineering – 19. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 16.03.2017 KW - Gel-type electrolytes KW - Gelartige Elektrolyte KW - Zinc KW - Zink KW - Stern Geary constant KW - Stern-Geary-Konstante PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394324 UR - http://iopscience.iop.org/article/10.1088/1757-899X/181/1/012021/pdf DO - https://doi.org/10.1088/1757-899X/181/1/012021 SN - 1757-899X SN - 1757-8981 VL - 181 IS - Conference 1 SP - Article UNSP 012021, 1 EP - 11 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-39432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Hahn, Marc Benjamin A1 - Solumon, Tihomir A1 - Strum, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine can enhance structural changes in DNA in vitro JF - Scientific Reports N2 - Strand breaks and conformational changes of DNA have consequences for the physiological role of DNA. The natural protecting molecule ectoine is beneficial to entire bacterial cells and biomolecules such as proteins by mitigating detrimental effects of environmental stresses. It was postulated that ectoine-like molecules bind to negatively charged spheres that mimic DNA surfaces. We investigated the effect of ectoine on DNA and whether ectoine is able to protect DNA from damages caused by ultraviolet radiation (UV-A). In order to determine different isoforms of DNA, agarose gel electrophoresis and atomic force microscopy experiments were carried out with plasmid pUC19 DNA. Our quantitative results revealed that a prolonged incubation of DNA with ectoine leads to an increase in transitions from supercoiled (undamaged) to open circular (single-strand break) conformation at pH 6.6. The effect is pH dependent and no significant changes were observed at physiological pH of 7.5. After UV-A irradiation in ectoine solution, changes in DNA conformation were even more pronounced and this effect was pH dependent. We hypothesize that ectoine is attracted to the negatively charge surface of DNA at lower pH and therefore fails to act as a stabilizing agent for DNA in our in vitro experiments. KW - Ectoine KW - DNA KW - UV radiation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-413139 DO - https://doi.org/10.1038/s41598-017-07441-z VL - 7 IS - 1 SP - Article 7170, 1 EP - 10 AN - OPUS4-41313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Meyer, Susann A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine protects DNA from damage by ionizing radiation JF - Scientific Reports N2 - Ectoine plays an important role in protecting biomolecules and entire cells against environmental stressors such as salinity, freezing, drying and high temperatures. Recent studies revealed that ectoine also provides effective protection for human skin cells from damage caused by UV-A radiation. These protective properties make ectoine a valuable compound and it is applied as an active ingredient in numerous pharmaceutical devices and cosmetics. Interestingly, the underlying mechanism resulting in protecting cells from radiation is not yet fully understood. Here we present a study on ectoine and its protective influence on DNA during electron irradiation. Applying gel electrophoresis and atomic force microscopy, we demonstrate for the first time that ectoine prevents DNA strand breaks caused by ionizing electron radiation. The results presented here point to future applications of ectoine for instance in cancer radiation therapy. KW - Plasmid DNA pUC19 KW - Electron irradiation 30 [kV] KW - Effective irradiation dose 0.2-16 [Gy] KW - Gel electrophoresis KW - AFM intermittent contact KW - Radioprotector ectoine KW - Compatible solute PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428287 DO - https://doi.org/10.1038/s41598-017-15512-4 SN - 2045-2322 VL - 7 IS - 1 SP - 15272, 1 EP - 15272, 7 PB - Nature AN - OPUS4-42828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingelhöffer, Hellmuth A1 - Affeldt, E. E. A1 - Bache, M. A1 - Bartsch, M. A1 - Beck, T. A1 - Christ, H. J. A1 - Fedelich, Bernard A1 - Hähner, P. A1 - Holdsworth, S. R. A1 - Lang, K.-H. A1 - McGaw, M. A1 - Olbricht, Jürgen A1 - Remy, L. A1 - Skrotzki, Birgit A1 - Stekovich, S. T1 - Editorial - Special issue: Recent developments in thermo-mechanical fatigue JF - International journal of fatigue N2 - Components in the Aerospace, Power and Automotive engineering sectors are frequently subjected to cyclic stresses induced by thermal fluctuations and mechanical loads. For the design of such components, reliable material property data are required which need to be acquired using well accepted and reproducible test procedures for thermo-mechanical fatigue (TMF) loading. There is limited availability of proven TMF data indicating there is need for further research and testing. The TMF behaviour of materials is often desired to be simulated in models which describe the cyclic stress-strain behaviour, the fatigue life and the cyclic crack growth behaviour. There is a continuous need for the development and amendment of such models. Models can be validated by using materials in industrial applications which are subjected to TMF loading. The 3rd Workshop on Thermo-Mechanical Fatigue was held on 27–29 April 2016 at BAM, Berlin, Germany. The workshop was attended by 90 attendees coming from 17 countries in the world. 38 presentations including five poster presentations were held. The following topics were covered by the workshop: – TMF of materials coated with Thermal Barrier Coatings. – Thermal Gradient Mechanical Fatigue. – TMF crack growth. – TMF + High Cycle Fatigue. – TMF Modelling and Lifetime Prediction. – TMF Properties of steels, cast iron, Al-, Mg- and Ni-alloys – Advanced TMF Testing Techniques. – Industrial Applications. A panel discussion was held regarding the present state of TMF testing standards (ISO and ASTM) and their potential for improvement. The discussion and contributions were summarized and forwarded to the standard committees. The 3rd TMF-Workshop ensured the continuation of international exchange of knowledge providing a forum to present and discuss all recent developments in the field of thermo-mechanical fatigue. The current special issue publishes eleven selected papers of the 3rd TMF-Workshop 2016. The papers were peer reviewed by a number of experts in the Thermo-Mechanical Fatigue sector. I hope you will enjoy reading papers of this special issue. T2 - 3rd International Workshop on Thermo-Mechanical Fatigue (TMF-Workshop 2016) CY - Berlin, Germany DA - 27.04.2016 KW - Fatigue damage KW - Thermo-mechanical fatigue KW - Fatigue life time KW - Life time prediction KW - TMF PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2017.02.002 SN - 0142-1123 VL - 99 IS - 2 SP - 215 PB - Elsevier CY - Oxford AN - OPUS4-40895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hertwig, Andreas A1 - Hinrichs, K. A1 - Beck, Uwe A1 - Esser, N. T1 - Editorial to the proceedings of the 7th conference on spectroscopic JF - Applied Surface Science N2 - The 7th International Conference on Spectroscopic Ellipsometry (ICSE-7) was held in Berlin in June 2016, jointly organised by ICSE and BAM. The publication of the proceedings special issue in Applied Surface Science follows this event. In the special issue, about 100 articles on current topics of optics and surface science related to ellipsometry, polarimetry, and similar techniques are presented, underpinning the high significance of these techniques for many fields of materials science. T2 - 7th International Conference on Spectroscopic Ellipsometry, ICSE-7 CY - Berlin, Germany DA - 06.06.2016 KW - Spectroscopic ellipsomety PY - 2017 DO - https://doi.org/10.1016/j.apsusc.2017.04.081 SN - 0169-4332 VL - 2017 IS - 421 SP - 269 EP - 270 PB - Elsevier B.V. AN - OPUS4-42554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias T1 - Editorial: Shape memory polymers JF - Polymer Testing N2 - In this editorial the focus lies on the testing of shape memory materials. KW - Shape memory polymer KW - Testing PY - 2017 DO - https://doi.org/10.1016/j.polymertesting.2017.08.019 SN - 0142-9418 VL - 62 SP - A1 PB - Elsevier CY - Oxford AN - OPUS4-41714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linhares, F.N. A1 - Kersch, M. A1 - Niebergall, Ute A1 - Leite, M.Ch.A.M. A1 - Altstädt, V. A1 - Furtado, C.R.G. T1 - Effect of different sulphur-based crosslink networks on the nitrile rubber resistance to biodiesel JF - Fuel N2 - Biodiesel possesses some comparable physical properties to petroleum diesel in addition to its improved environmental benefits. Nonetheless, both fuels differ greatly with respect to their chemical compositions. Therefore, the compatibility of the materials, which are commonly employed in contact with diesel, must also be assured for biodiesel. This paper assessed the influence of sulphur-based curing systems on the resistance of nitrile rubber to soybean biodiesel. Formulations were prepared using highacrylonitrile-content nitrile rubber by employing a two-level experimental design. The amounts of two different accelerators and sulphur were varied to achieve different types of vulcanisation systems. Thermal analyses, mechanical tests and microscopy analyses were conducted to evaluate the behaviour of the material after contact with biodiesel. The results showed that the choice of the accelerator played an important role on the resistance of the rubber to the biofuel, and crosslink density was not a key factor with respect to the resistance. KW - Soyean oil KW - Nitrile rubber KW - Compatibility KW - Vulcanisation system KW - Biodiesel KW - Resistance PY - 2017 DO - https://doi.org/10.1016/j.fuel.2016.11.060 SN - 0016-2361 SN - 1873-7153 VL - 191 SP - 130 EP - 139 AN - OPUS4-39006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Garces, G. A1 - Adeva, Paloma A1 - Kabra, S. A1 - Gan, W. T1 - Effect of Extrusion Temperature on the Plastic Deformation of an Mg-Y-Zn Alloy Containing LPSO Phase Using In Situ Neutron Diffraction JF - Metallurgical and Materials Transactions A N2 - The evolution of the internal strains during in situ tension and compression tests has been measured in an MgY2Zn1 alloy containing long-period stacking ordered (LPSO) phase using neutron diffraction. The alloy was extruded at two different temperatures to study the influence of the microstructure and texture of the magnesium and the LPSO phases on the deformation mechanisms. The alloy extruded at 623 K (350 °C) exhibits a strong fiber texture with the basal plane parallel to the extrusion direction due to the presence of areas of coarse non-recrystallised grains. However, at 723 K (450 °C), the magnesium phase is fully recrystallised with grains randomly oriented. On the other hand, at the two extrusion temperatures, the LPSO phase orients their basal plane parallel to the extrusion direction. Yield stress is always slightly higher in compression than in tension. Independently on the stress sign and the extrusion temperature, the beginning of plasticity is controlled by the activation of the basal slip system in the dynamic recrystallized grains. Therefore, the elongated fiber-shaped LPSO phase which behaves as the reinforcement in a metal matrix composite is responsible for this tension–compression asymmetry. KW - Mg-Y-Zn Alloy KW - LPSO Phase KW - Neutron Diffraction PY - 2017 DO - https://doi.org/10.1007/s11661-017-4284-6 VL - 48A IS - 11 SP - 5332 EP - 5343 PB - Spinger AN - OPUS4-42935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Kromm, Arne A1 - Seyfert, Christoph A1 - Farahbod, Lena A1 - Haberland, Christoph A1 - Schneider, Judith Ann A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718 JF - Materials and Design N2 - In the present study, samples fabricated by varying the deposition hatch length during selective laser melting of nickel based superalloy Inconel 718 were investigated. Microstructure and texture of these samples was characterized using scanning electron microscopy, combined with electron back-scattered diffraction, and residual stress assessment, using neutron diffraction method. Textured columnar grains oriented along the sample building direction were observed in the shorter hatch length processed sample. A ten-fold increase in the hatch length reduced the texture intensity by a factor of two attributed to the formation of finer grains in the longer hatch length sample. Larger gradients of transverse residual stress in the longer hatch length sample were also observed. Along the build direction, compressive stresses in the shorter hatch length and negligible stresses for the longer hatch length specimen were observed. Changes to the temperature gradient (G) in response to the hatch length variation, influenced the G to growth rate (R) ratio and the product G × R, in agreement with the microstructures and textures formed. For the residual stress development, geometry of the part also played an important role. In summary, tailored isotropy could be induced in Inconel 718 by a careful selection of parameters during selective laser melting. KW - Additive manufacturing KW - Nickel-based superalloy KW - Microstructure and texture KW - Residual stress KW - Electron back-scattered diffraction KW - Neutron diffraction PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0264127517308018 DO - https://doi.org/10.1016/j.matdes.2017.08.049 SN - 0264-1275 VL - 134 SP - 139 EP - 150 PB - Elsevier CY - Oxford, UK AN - OPUS4-41606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cooper, R. A1 - Bruno, Giovanni A1 - Shyam, A. A1 - Watkins, T. A1 - Pandey, A. A1 - Wheeler, M. T1 - Effect of microcracking on the uniaxial tensile response of beta-eucryptite ceramics: Experiments and constitutive model JF - Acta Materialia N2 - A constitutive model for the nonlinear or “pseudoplastic” mechanical behavior in a linear-elastic solid with thermally induced microcracks is developed and applied to experimental results. The model is termed strain dependent microcrack density approximation (SDMDA) and is an extension of the modified differential scheme that describes the slope of the stress-strain curves of microcracked solids. SDMDA allows a continuous variation in the microcrack density with tensile loading. Experimental uniaxial tensile response of β-eucryptite glass and ceramics with controlled levels of microcracking is reported. It is demonstrated that SDMDA can well describe the extent of non-linearity in the experimental uniaxial tensile response of β-eucryptite with varying levels of microcracking. The advantages of the SDMDA are discussed in regard to tensile loading. KW - Microcracking KW - β-eucryptite KW - Young's modulus KW - Modeling KW - Tensile behavior PY - 2017 DO - https://doi.org/10.1016/j.actamat.2017.06.033 SN - 1359-6454 SN - 1873-2453 VL - 135 SP - 361 EP - 371 PB - Elsevier Ltd. AN - OPUS4-40859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiedmann, A. A1 - Weise, Frank A1 - Kotan, E. A1 - Müller, H. S. A1 - Meng, Birgit T1 - Effects of fatigue loading and alkali-silica reaction on the mechanical behaviour of pavement concrete JF - Structural Concrete N2 - The primary aim of this paper is to analyze the impact of mechanical pre-damage and alkali–silica reaction (ASR) on the fracture mechanical properties of pavement concrete. For this purpose, a four point bending test was applied to large format beams to produce a defined level of cyclic pre-damage. The fatigue-induced concrete degradation process was simultaneously recorded using a testing procedure specifically developed for the purpose. In addition, fatigue-induced cracks on extracted drilling cores were spatially visualized and quantified using micro X-ray 3D-computed tomography (3D-CT). The storage of the small-format test specimens, with and without cyclic pre-damage, in an ASR-conducive environment showed that pre-damage leads to an increase in ASR damage processes. Subsequent structural mechanical investigations on small format specimens with and without pre-damage show that fatigue loading and ASR significantly influence fracture mechanical parameters of the concrete. KW - Acoustic emissions analysis KW - Alkali-silica reaction KW - Concrete pavement KW - Fatigue loading KW - Fracture energy KW - Monitoring of damage KW - Tensile strength KW - Ultrasonic velocity PY - 2017 DO - https://doi.org/10.1002/suco.201600179 SN - 1751-7648 SN - 1464-4177 VL - 18 IS - 4 SP - 539 EP - 549 PB - Ernst & Sohn AN - OPUS4-41007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosemann, Paul A1 - Müller, C. A1 - Kauss, N. A1 - Halle, T. T1 - Einfluss der Wärmebehandlung auf die Korrosionsbeständigkeit von Schneidwaren JF - HTM Journal of Heat Treatment and Materials N2 - Härte und Korrosionsbeständigkeit sind die wichtigsten Qualitätsmerkmale von Schneidwaren. Diese werden nur durch eine optimal durchgeführte Wärmebehandlung des martensitischen nichtrostenden Stahls 1.4116 (X50CrMoV15) erreicht. In der industriellen Fertigung wird die Korrosionsbeständigkeit von Schneidwaren durch Wechseltauchversuche überprüft, die herstellerübergreifend eine große Schwankung der Korrosionsbeständigkeit belegen. In den letzten Jahren wurden neue elektrochemische Untersuchungsmethoden für die Werkstoffgruppe der martensitischen nichtrostenden Stähle entwickelt, welche die geringe Lochkorrosionsbeständigkeit von Schneidwaren auf das Phänomen der Chromverarmung zurückzuführen. Derzeit wird in der wissenschaftlichen und in der industriellen Gemeinschaft der Schritt des Anlassens als Hauptursache der Chromverarmung angesehen. Bei Schneidwaren sind die Anlasstemperaturen aber zu gering, um die auftretende Chromverarmung zu erklären. Aus diesem Grund wurden drei verschiedene Wärmebehandlungsparameter (Austenitisierungsdauer, Abkühlgeschwindigkeit und Anlasstemperatur) systematische untersucht, um deren Beitrag zur Chromverarmung darzustellen. Dazu wird die Untersuchungsmethode der elektrochemisch potentiodynamischen Reaktivierung (EPR) eingesetzt, die sehr sensibel auf Veränderungen im Gefüge reagiert und den Grad an Chromverarmung ermittelt. Außerdem wurde die KorroPad-Prüfung durchgeführt und kritische Lochkorrosionspotentiale ermittelt, um den Zusammenhang zwischen Chromverarmung und Lochkorrosionsbeständigkeit herzustellen. Die Ergebnisse aller Untersuchungen verdeutlichen wie eng das Prozessfenster ist, in dem Schneidwaren mit hoher Korrosionsbeständigkeit hergestellt werden können. T2 - 72. HärtereiKongress CY - Cologne, Germany DA - 26.10.2016 KW - Schneidwaren KW - Wärmebehandlung KW - nichtrostender Stahl KW - martensitisch KW - Lochkorrosion KW - EPR KW - KorroPad PY - 2017 DO - https://doi.org/10.3139/105.110317 SN - 1867-2493 VL - 72 IS - 2 SP - 87 EP - 98 PB - Carl Hanser CY - München AN - OPUS4-41241 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Unnikrishnakurup, Sreedhar A1 - Monte, C. A1 - Adibekyan, A. A1 - Gutschwager, B. A1 - Knazowicka, L. A1 - Blahut, A. A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. A1 - Aktas, A. T1 - Einfluss thermischer und optischer Materialeigenschaften auf die Charakterisierung von Fehlstellen in Faserverbundwerkstoffen mit aktiven Thermografieverfahren T1 - Influence of thermal and optical material properties on the characterization of defects in fiber reinforced composites with active thermography methods JF - tm - Technisches Messen N2 - In diesem Beitrag werden zerstörungsfreie Untersuchungen mittels aktiver Thermografie an Probekörpern aus CFK und GFK mit unterschiedlichen künstlichen Fehlstellen vorgestellt. Dabei wird die zeitliche und örtliche Temperaturverteilung nach der Erwärmung mit Blitzlampen oder mit einem Infrarot-Strahler mit einer Infrarot-Kamera erfasst. Zur späteren Rekonstruktion der Messdaten wurde ein numerisches Modell entwickelt. Dazu war die Bestimmung der thermophysikalischen und optischen Materialeigenschaften erforderlich, was in diesem Beitrag ebenfalls beschrieben wird. Die Ergebnisse der numerischen Modellierung werden mit den experimentellen Untersuchungen der aktiven Thermografie verglichen. Weiterhin werden die experimentellen Untersuchungen hinsichtlich der beiden Materialsysteme CFK und GFK und unter Berücksichtigung der Teiltransparenz des GFK-Materials sowie der unterschiedlichen Anregungsquellen bewertet. N2 - This paper presents results of the non-destructive evaluation of CFRP and GFRP test specimens with various artificial defects using active thermography. After heating the specimens with flash lamps or with an infrared radiator, the temporal and spatial resolved temperature distribution is recorded with an infrared camera. For the reconstruction of the experimental data, a numerical model was developed. For the numerical simulations, the thermal and optical material parameters had to be determined, which is described in this contribution as well. The results of numerical modelling are compared to experimental data of active thermography. Additionally, the experimental results are assessed related to the two materials CFRP and GFRP by considering the partial transmissivity of the GFRP material, and to the different excitation sources. T2 - Temperatur 2017 CY - Berlin, Germany DA - 17.05.2017 KW - Zerstörungsfreie Prüfung KW - Aktive Thermografie KW - Faserverbundwerkstoffe (CFK, GFK) KW - Numerische Simulation PY - 2017 DO - https://doi.org/10.1515/teme-2017-0078 SN - 0171-8096 SN - 2196-7113 VL - 85 IS - 1 SP - 13 EP - 27 PB - DE GRUYTER CY - Oldenburg AN - OPUS4-42395 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Selleng, Christian A1 - Meng, Birgit A1 - Gröger, K. A1 - Fontana, Patrick T1 - Einflussgrößen auf die Wirksamkeit einer Wärmebehandlung von Ultrahochfestem Beton (UHFB) T1 - Influencing factors for the effectivity of heat treatment of ultrahigh performance concrete (UHPC) JF - Beton- und Stahlbau N2 - Mittels Wärmebehandlung lassen sich die hervorragenden Eigenschaften von UHFB nochmals verbessern. Die für eine optimale Umsetzung relevanten Randbedingungen werden aktuell in der Fachwelt diskutiert. In dieser Veröffentlichung werden die Ergebnisse eines Forschungsprojekts vorgestellt, das die Wirkung verschiedener Einflussgrößen bei der Wärmebehandlung auf die Eigenschaften von UHFB zum Thema hatte. Dabei wurden die Art des Schutzes gegen das Austrocknen, die Vorlagerungszeit und die Haltezeit variiert. Um die zugrunde liegenden Prozesse zu verstehen, wurde der Phasenbestand mittels Röntgendiffraktometrie untersucht. Die höchsten Druckfestigkeiten des UHFB ließen sich bei einer Wärmebehandlung mit Wasserlagerung erzielen, da hierbei eine weitere Hydratation begünstigt wird. Vergleichsweise niedriger waren die Steigerungen bei einer Behandlung mit Schutz vor Austrocknung, während eine ungeschützte Behandlung zu deutlich geringeren Festigkeiten führte. Die Vorlagerungszeit beträgt im Idealfall einige Tage, um die Ausbildung eines offenbar günstigen Ausgangsgefüges sicherzustellen. Die Haltezeit sollte möglichst ausgedehnt sein, weil die Hydratation entsprechend lange gefördert wird. Im oberflächennahen Bereich war unter bestimmten Bedingungen eine Zonierung zu beobachten, deren Ursachen und Folgen, insbesondere in Bezug auf die Dauerhaftigkeit, weitere Forschung erfordern. KW - Ultra-Hochleistungsbeton KW - Wärmebehandlung KW - Behandlungsparameter KW - Vorlagerungszeit KW - Haltezeit KW - Festigkeitssteigerung KW - Zonierung KW - Ettringit PY - 2017 DO - https://doi.org/10.1002/best.201600059 SN - 0005-9900 VL - 112 IS - 1 SP - 12 EP - 21 PB - Ernst & Sohn AN - OPUS4-39171 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Hielscher, R. A1 - Winkelmann, Aimo T1 - Electron backscatter diffraction beyond the mainstream JF - Crystal Research and Technology N2 - We present special applications of electron backscatter diffraction (EBSD) which aim to overcome some of the limitations of this technique as it is currently applied in the scanning electron microscope. We stress that the raw EBSD signal carries additional information which is useful beyond the conventional orientation determination. The background signal underlying the backscattered Kikuchi diffraction (BKD) patterns reflects the chemical composition and surface topography but also contains channeling-in information which is used for qualitative real-time orientation imaging using various backscattered electron signals. A significantly improved orientation precision can be achieved when dynamically simulated pattern are matched to the experimental BKD patterns. The breaking of Friedel’s rule makes it possible to obtain orientation mappings with respect to the point-group symmetries. Finally, we discuss the determination of lattice parameters from individual BKD patterns. Subgrain structure in a single quartz grain. The increased noise level in the left map reflects the lower precision of a standard orientation determination using band detection by the Hough transform. The right map results from the same experimental raw data after orientation refinement using a pattern matching approach. The colors correspond an adapted inverse pole figure color key with a maximum angular deviation of about 2° from the mean orientation. KW - Electron backscatter diffraction PY - 2017 DO - https://doi.org/10.1002/crat.201600252 SN - Online 1521-4079 VL - 52 IS - 1 SP - Special Issue - Article Number: UNSP 1600252, 1 EP - 24 PB - WILEY-VCH AN - OPUS4-37935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosu, Dana-Maria A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. A1 - Hertwig, Andreas ED - Hertwig, Andreas ED - Hinrichs, K. ED - Beck, Uwe ED - Esser, N. T1 - Ellipsometric porosimetry on pore-controlled TiO2 layers JF - Applied Surface Science N2 - The practical performance of surface coatings in applications like catalysis, water splitting or batteries depends critically on the coating materials’ porosity. Determining the porosity in a fast and nondestructive way is still an unsolved problem for industrial thin-films technology. As a contribution to calibrated, non-destructive, optical layer characterisation, we present a multi-method comparison study on porous TiO2 films deposited by sol-gel synthesis on Si wafers. The ellipsometric data were collected on a range of samples with different TiO2 layer thickness and different porosity values. These samples were produced by templated sol-gel synthesis resulting in layers with a well-defined pore size and pore density. The ellipsometry measurement data were analysed by means of a Bruggeman effective medium approximation (BEMA), with the aim to determine the mixture ratio of void and matrix material by a multi-sample analysis strategy. This analysis yielded porosities and layer thicknesses for all samples as well as the dielectric function for the matrix material. Following the idea of multi-method techniques in metrology, the data was referenced to imaging by electron microscopy (SEM) and to a new EPMA (electron probe microanalysis) porosity approach for thin film analysis. This work might lead to a better metrological understanding of optical porosimetry and also to better-qualified characterisation methods for nano-porous layer systems. 1. IntroductionPorous materials, especially porous thin films play an importantrole in chemical and physical technology in every case where thecontact area between two media has to be maximised. From cataly-sis to photochemistry and photovoltaics, the applications of porouslayer materials are diverse and numerous [1–6].The accurate and non-destructive characterisation of porousfilms for layered systems poses a challenge. This applies especiallyfor the key parameter of porous films, their porosity, i.e. the mix-ing ratio between the Matrix of the film (host material) and thepore volume which is empty or filled with a fluid medium (inclu-sions). This parameter influences most of the physical and chemicalproperties of a porous thin film and is therefore essential for theunderstanding as well as the optimisation of this class of materials. T2 - International Conference on Spectroscopic Ellipsometry (ICSE-7) CY - Berlin, Germany DA - 06.06.2016 KW - Spectroscopic ellipsometry KW - Porous materials KW - Porosimetry KW - Multi-sample analysis KW - Thin film metrology PY - 2017 DO - https://doi.org/10.1016/j.apsusc.2016.11.055 SN - 0169-4332 SN - 1873-5584 VL - 421 IS - Part B SP - 487 EP - 493 PB - Elsevier B.V. AN - OPUS4-42517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sproesser, G. A1 - Chang, Y.-J. A1 - Pittner, Andreas A1 - Finkbeiner, M. A1 - Rethmeier, Michael T1 - Energy efficiency and environmental impacts of high power gas metal arc welding JF - The International Journal of Advanced Manufacturing Technology N2 - Single-wire gas metal arc welding (SGMAW) and high power tandem GMAW (TGMAW) are evaluated with respect to energy efficiency. The key performance indicator electrical deposition efficiency is applied to reflect the energy efficiency of GMAW in different material transfer modes. Additionally, the wall-plug efficiency of the equipment is determined in order to identify the overall energy consumption. The results show that energy efficiency can be increased by 24% and welding time is reduced over 50% by application of the tandem processes. A comparative life cycle assessment of a 30-mm-thick weld is conducted to investigate the influences of the energy efficiency on the environmental impacts. The environmental impacts on the categories global warming potential, acidification potential, eutrophication potential, and photochemical ozone creation potential can be reduced up to 11% using an energy-efficient TGMAW process. KW - Tandem gas metal arc welding KW - Life cycle assessment (LCA) KW - Energy efficiency KW - High power welding PY - 2017 DO - https://doi.org/10.1007/s00170-017-9996-7 SN - 0268-3768 SN - 1433-3015 VL - 91 IS - 9-12 SP - 3503 EP - 3513 PB - Springer CY - London AN - OPUS4-39564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Engineering approach to assess residual stresses in welded components JF - Welding in the World N2 - Present trends to lightweight design lead to an expanding relevance of high-strength fine-grained structural steels especially in mobile crane constructions. With growing material strength, the challenge for welding fabrication increases, since high loading capacities and safety requirements have to be accomplished. The utilisation of the high strength potential often requires complex constructions associated with high restraint conditions while welding. Increased residual stresses may occur due to superimposing reaction and restraint stresses, which have to be quantified and evaluated to ensure the safety and integrity of high-strength steel constructions. Particularly, the scope of residual stresses has to be taken into account for different effects in the HAZ, notches, weld and base metal. Commonly, conservative assumptions of residual stresses lead to distinct underestimations of the load bearing capacity particularly for welded high-strength steel constructions. This study concludes results of recent works of the researchers regarding the complex interaction among heat control, material and restraint intensity on the residual stress state in welded components. These analyses are extended by further experiments. Based on the obtained major effects, an approach for a welding residual stress assessment regarding component design according to prevailing standards for crane construction, an important application for high-strength steels, is presented. KW - Process parameters KW - Residual stresses KW - MAG welding KW - Restraint KW - High-strength steels PY - 2017 DO - https://doi.org/10.1007/s40194-016-0394-9 SN - 0043-2288 SN - 1878-6669 VL - 91 IS - 1 SP - 91 EP - 106 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-39044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maenz, S. A1 - Brinkmann, O. A1 - Kunisch, E. A1 - Horbert, V. A1 - Gunella, F. A1 - Bischoff, S. A1 - Schubert, H. A1 - Sachse, A. A1 - Xin, L. A1 - Günster, Jens A1 - Illerhaus, Bernhard A1 - Jandt, K. D. A1 - Bossert, J. A1 - Kinne, R. W. A1 - Bungartz, M. T1 - Enhanced bone formation in sheep vertebral bodies after minimally invasive treatment with a novel, PLGA fiber-reinforced brushite cement. JF - The Spine Journal N2 - Injectable, brushite-forming calcium phosphate cements (CPC) show potential for bone replacement, but they exhibit low mechanical strength. This study tested a CPC reinforced with poly(l-lactide-co-glycolide) acid (PLGA) fibers in a minimally invasive, sheep lumbar vertebroplasty model. The study aimed to test the in vivo biocompatibility and osteogenic potential of a PLGA fiber-reinforced, brushite-forming CPC in a sheep large animal model. KW - µCT KW - Vertebral KW - PLGA cement PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S152994301631066X DO - https://doi.org/10.1016/j.spinee.2016.11.006 SN - 1529-9430 SN - 1878-1632 VL - 17 IS - 5 SP - 709 EP - 719 PB - Elsevier Science direct AN - OPUS4-40462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lamiel, C. A1 - Lee, Y. R. A1 - Cho, M. H. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Enhanced electrochemical performance of nickel-cobalt-oxide@reduced graphene oxide//activated carbon asymmetric supercapacitors by the addition of a redox-active electrolyte JF - Journal of Colloid and Interface Science N2 - Supercapacitors are an emerging energy-storage system with a wide range of potential applications. In this study, highly porous nickel-cobalt-oxide@reduced graphene oxide (Ni-Co-O@RGO-s) nanosheets were synthesized as an active material for supercapacitors using a surfactant-assisted microwave irradiation technique. The RGO-modified nanocomposite showed a larger specific area, better conductivity, and lower resistivity than the unmodified nanocomposite because the RGO facilitated faster ion diffusion/transport for improved redox activity. The synergistic effect of Ni-Co-O@RGO-s resulted in a high capacitance of 1903 F/g (at 0.8 A/g) in a mixed KOH/redox active K3Fe(CN)6 electrolyte. The asymmetric Ni-Co-O@RGO-s//AC supercapacitor device yielded a high energy density and power density of 39 Wh/kg and 7500 W/kg, respectively. The porous structure and combination of redox couples from both the electrode and electrolyte provided a highly synergistic effect, which improved the performance of the supercapacitor device. KW - Ni-Co oxide KW - Reduced graphene oxide KW - Nanocomposite KW - Supercapacitor PY - 2017 DO - https://doi.org/10.1016/j.jcis.2017.08.003 SN - 0021-9797 SN - 1095-7103 VL - 507 SP - 300 EP - 309 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-41284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sproesser, G. A1 - Chang, Y.-J. A1 - Pittner, Andreas A1 - Finkbeiner, M. A1 - Rethmeier, Michael T1 - Environmental energy efficiency of single wire and tandem gas metal arc welding JF - Welding in the World N2 - This paper investigates gas metal arc welding (GMAW) with respect to energy consumption and its associated environmental impacts. Different material transfer modes and power levels for single wire GMAW (SGMAW) and tandem GMAW (TGMAW) are evaluated by means of the indicator electrical deposition efficiency. Furthermore, the wall-plug efficiency of the equipment is measured in order to describe the total energy consumption from the electricity grid. The results show that the energy efficiency is highly affected by the respective process and can be significantly enhanced by a TGMAW process. The wall-plug efficiency of the equipment shows no significant dependency on the power range or the material transfer mode. Moreover, the method of life cycle assessment (LCA) is adopted in order to investigate the influences of energy efficient welding on the environmental impacts. In the comparative LCA study, the demand of electrical energy is reduced up to 24%. In consequence, the indicator values for global warming potential (100), acidification potential, eutrophication potential, and photochemical ozone creation potential are reduced up to 11%. KW - Energy input KW - Tandem welding KW - MAG welding KW - Environment KW - Lifetime PY - 2017 DO - https://doi.org/10.1007/s40194-017-0460-y SN - 0043-2288 SN - 1878-6669 VL - 61 IS - 4 SP - 733 EP - 743 PB - Springer CY - Heidelberg AN - OPUS4-39877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Böhning, Martin A1 - Oehler, H. A1 - Alig, I. A1 - Niebergall, Ute T1 - Environmental stress cracking of polyethylene high density (PE-HD) induced by liquid media – Validation and verification of the full-notch creep test (FNCT) T1 - Umgebungsinduzierte Spannungsrissbildung von Polyethylen- Werkstoffen hoher Dichte durch flüssige Medien – Validierung und Verifizierung des Kriechversuchs an Probekörpern mit umlaufender Kerbe JF - Materials Science & Engineering Technology N2 - The full-notch creep test (FNCT) is widely used to characterize the slow crack growth (SCG) behavior of polyolefin materials in “inert” media as well as effects of environmental stress cracking (ESC) in which the medium has decisive influence on damage mechanism and time to failure. The test is of greatest importance for pipe and blow molding types of polyethylene, high density (PE-HD). Usually the full-notch creep test is applied as a standardized testing method (ISO 16770) using a few universal liquid media, such as solutions of Arkopal N 100. In our study, selected relevant polyethylene, high density materials are investigated also in real media – practical formulations as well as representative pure chemicals – and influences of temperature and geometry of specimen and notch are explicitly addressed. Furthermore, the investigations comprise also the environmental stress cracking behavior of polyethylene, high density in media that are sorbed to a significant extent – examples are diesel and biodiesel – based on comparison with samples previously saturated with those media. Thus, also the underlying diffusion controlled sorption process has to be assessed before. The investigations were performed using a full-notch creep testing device with 12 individual sub-stations, each equipped with individual electronic stress and temperature control and continuous online monitoring of the specimen elongation. N2 - Der Kriechversuch an Probekörpern mit umlaufender Kerbe (FNCT) wird flächendeckend angewendet, um das Verhalten von Polyolefinen sowohl gegenüber langsamen Risswachstums (SCG) bei Kontakt mit „inerten“ Medien als auch gegenüber umgebungsbedingtem Spannungsrisswachstum (ESC), bei welchem das umgebende Medium entscheidenden Einfluss auf den Schädigungsmechanismus und die Standzeit hat, zu charakterisieren. Der Test ist von großer Bedeutung bei der Analyse von hochdichten Polyethylen-Typen, die als Rohr- und Blasformwerkstoffe angewendet werden – dabei besonders für Transport und Verpackung von Gefahrstoffen, aber auch für weitere Hochleistungsanwendungen. Üblicherweise wird der Kriechversuch an Probekörpern mit umlaufender Kerbe als Normmethode (ISO 16770) unter Verwendung einiger weniger universeller Modellflüssigkeiten, wie z. B. Arkopal N 100, durchgeführt. In dieser Studie werden ausgewählte, marktrelevante Polyethylen-Werkstoffe hoher Dichte in realen Medien – praktisch verwendete Gefahrgüter sowie repräsentative reine Chemikalien – untersucht und explizit die Einflüsse von Temperatur und Prüfkörper- sowie Kerbgeometrie adressiert. Weiterhin beinhalten die Untersuchungen die Analyse des umgebungsbedingten Spannungsriss-Verhaltens von Polyethylen hoher Dichte in Medien, die maßgeblich vom Werkstoff sorbiert sind – beispielsweise mit Kraftstoffen wie diesel und biodiesel – basierend auf dem Vergleich mit vorgesättigten Probekörpern. Der dabei vorliegende diffusionsgesteuerte Sorptionsprozess muss dementsprechend zuvor evaluiert werden. Alle Untersuchungen wurden mithilfe einer Kriechversuchsanlage an Probekörpern mit umlaufender Kerbe mit 12 Stationen durchgeführt, welche jeweils mit einer individuell ansteuerbaren elektronischen Spannungs- und Temperatursteuerung sowie fortwährender Online-Überwachung der Prüfkörperdehnung ausgestattet sind. KW - Full-notch creep test (FNCT) KW - Polyethylene (PE-HD) KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Biodiesel PY - 2017 DO - https://doi.org/10.1002/mawe.201700065 SN - 1521-4052 SN - 0933-5137 VL - 48 IS - 9 SP - 846 EP - 854 PB - Wiley-VCH CY - Weinheim AN - OPUS4-41885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krütt, Enno T1 - Ermüdungsbedingte Degradation von Fahrbahnbeton - Einfluss auf den Stofftransport T1 - Fatigue-induced degradation of deck concrete influence on the material transport JF - Beton- und Stahlbetonbau N2 - In den letzten 15 Jahren hat im deutschen Autobahnnetz die Anzahl von Schäden an Betonfahrbahnen, die vor 2005 er-richtet wurden zugenommen. Dies führt oft zu einer Vermin-derung der Lebensdauer von 30 auf 10 bis 15 Jahre. Trotz umfassender Untersuchungen wurde die Ursache bis jetzt nicht eindeutig geklärt, jedoch scheint die Alkali-Kieselsäure-Reaktion (AKR) hierbei eine Rolle zu spielen. Vor diesem Hintergrund wurden AKR-Performance-Tests entwickelt, die jedoch die mechanischen Einwirkungen aus Klima und Ver-kehr nicht berücksichtigen. Aus diesem Grund wurde eine AKR-Forschergruppe von der Deutschen Forschungsgemein-schaft ins Leben gerufen, welche sich experimentell und auf Simulationsebene mit diesem Thema befasst. Inhalt dieses Beitrages sind ausgewählte Ergebnisse des an der BAM bear-beiteten experimentellen Projektteils, welche in eine auf die Auswirkung einer mechanischen Degradation fokussierte Promotionsarbeit einfließen. Ziel der ausgewählten Untersuchung ist es, den Einfluss einer mechanisch induzierten Betondegradation auf den Stofftrans-port herauszuarbeiten. Hierzu wird ein großformatiger Balken einem zyklischen Vier-Punkt Biegezugversuch mit einer Anzahl von 5 Mio. Lastwechseln unterzogen. Während des Versuches findet ein Schadensmonitoring mit verschiedenen zerstörungsfreien Prüftechniken statt. Hierzu zählen Deh-nungsmessungen, Schallemissionsanalyse und Ultraschall-messungen. Nach dem zyklischen Belastungs-versuch werden kleinformatige Probekörper aus dem belasteten Balken entnommen. Als Referenz dienen unbelas-tete Probekörper aus der gleichen Herstellungscharge. Die Oberflächen der entnommenen Probekörper werden in einem kapillaren Saugversuch zum einen mit deionisiertem Wasser und zum anderen mit einer 3,6 %igen NaCl-Lösung beauf-schlagt. Während der Saugversuche dienen verschiedene zerstörungsfreie bzw. -arme Messmethoden dazu, die Feuch-teaufnahme bzw. -verteilung in den Probekörpern zu messen. Hierzu gehören neben der Gravimetrie die Messung mit NMR (Nuclear-Magnetic-Resonance) sowie TDR (Time-Domain-Reflectometry). Nach den Saugversuchen wird die Na- und Cl-Verteilung an den mit NaCl-Lösung beaufschlagten Pro-bekörpern zerstörend mittels LIBS (Laser-Induced-Breakdown-Spectroscopy) ermittelt. Erste Ergebnisse zeigen, dass die zyklische Ermüdungsdegradation den Stofftransport tendenziell verstärkt. KW - Degradation KW - Stofftransport KW - Fahrbahnbeton PY - 2017 SN - 0005-9900 SN - 1437-1006 VL - 112 IS - 7 SP - 458 EP - 458 AN - OPUS4-41097 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unnikrishnakurup, Sreedhar A1 - Rouquette, Sebastien A1 - Soulie, Fabien A1 - Fras, Gilles T1 - Estimation of heat flux parameters during static gas tungsten arc welding spot under argon shielding JF - International Journal of Thermal Sciences N2 - A multi-physics modelling of a static Gas Tungsten Arc Welding (GTAW) operation has been established in order to estimate the heat flux exchanged between the arc plasma and the work-piece. The heat flux was described with a Gaussian function where two parameters required to be estimated: process efficiency and radial distribution. An inverse heat transfer problem (ihtp) has been developed in the aim to estimate these parameters from experimental data. Levenberg-Marquardt algorithm was used as the regularization method in addition to an iterative process. The experiment consisted in a static spot weld with GTAW process. The weld spot was on for 5 s under Argon shielding gas, 2.4 mm pure tungsten electrode on a SS304L disc. Temperatures were measured with thermocouples and weld pool growth monitored with a high speed camera. The experimental data were used to solve the ihtp what led to values such as 0.7 for process efficiency and average radial distribution of 1.8 mm. KW - Gas tungsten arc welding KW - Numerical simulation of welding KW - Heat flux estimation KW - Inverse heat transfer problem PY - 2017 DO - https://doi.org/10.1016/j.ijthermalsci.2016.12.008 SN - ISSN 1290-0729 VL - 114 SP - 205 EP - 212 PB - Elsevier Masson SAS AN - OPUS4-38905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meißner, G. A1 - Dirican, D. A1 - Jäger, Christian A1 - Braun, T. A1 - Kemnitz, E. T1 - Et3GeH versus Et3SiH: controlling reaction pathways in catalytic C–F bond activations at a nanoscopic aluminum chlorofluoride† JF - Catalysis Science & Technology N2 - Catalytic C–F bond activation reactions of mono- and polyfluoroalkanes at Lewis acidic amorphous aluminum chlorofluoride (ACF) are presented. The hydrogen sources Et3GeH or Et3SiH control the selectivity of the conversions. The immobilization of Et3GeH at ACF resulted in catalytic dehydrohalogenation reactions to yield olefins under very mild conditions. In contrast, if Et3SiH is immobilized at ACF, C–C coupling occured and the formation of Friedel–Crafts products was observed. MAS NMR spectroscopic studies revealed information about the surface binding of the substrates. KW - Vapor-phase hydrofluorination KW - Carbon-fluorine bonds KW - Vinyl fluoride KW - Phosphine-ligands KW - Room-temperature KW - Building-blocks KW - Etal-complexes KW - Germylium ions KW - Lewis-acids KW - Hydrodefluorination PY - 2017 DO - https://doi.org/10.1039/c7cy00845g SN - 2044-4753 SN - 2044-4761 VL - 7 IS - 15 SP - 3348 EP - 3354 PB - The Royal Society of Chemistry AN - OPUS4-41836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Caricato, A.P. A1 - Focsa, C. A1 - Krüger, Jörg A1 - Palla Papavlu, A. T1 - European materials research society spring meeting 2016 symposium "Laser - materials interactions for tailoring future's applications" Preface JF - Applied Surface Science N2 - This Conference Proceedings volume contains a selection of the contributions presented in Symposium C “Laser-material interactions for tailoring future applications” organized during the annual Spring Meeting of the European Materials Research Society (E-MRS) held from May 2nd to 6th 2016 in the Lille Grand Palais, France. T2 - EMRS Spring Meeting 2016, Symposium "“Laser-material interactions for tailoring future applications” CY - Lille, France DA - 02.05.2016 KW - European Materials Research Society (E-MRS) KW - Laser-material interactions KW - Spring Meeting 2016 PY - 2017 DO - https://doi.org/10.1016/j.apsusc.2017.04.089 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 419 EP - 419 PB - Elsevier B.V. AN - OPUS4-40570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Léonard, Fabien A1 - Oesch, Tyler A1 - Meinel, Dietmar A1 - Bruno, Giovanni A1 - Rachmatulin, Natalia A1 - Fontana, Patrick A1 - Sevostianov, I. T1 - Evaluation of fiber orientation in a composite and its effect on material behavior JF - The e-journal of nondestructive testing & ultrasonics N2 - The reinforcement of concrete with polymer fibers provides resistance to crack formation. The orientation distribution of these fibers has a significant influence on the mechanical behavior of the material. To optimize material performance, micromechanical models that are capable of making accurate predictions of the mechanical behavior of composite materials are needed. These models must be calibrated using experimental results from microstructural characterization. For the fiber orientation distribution analysis in the present study, computed tomography (CT) data were used to evaluate the properties of a fiber-reinforced cement mortar. The results have indicated that the fibers in this material have highly anisotropic orientation characteristics and that there is a clear tendency for the polymer fibers to agglomerate during mixing and casting. The incorporation of this experimental data into micromechanical models will increase the accuracy of those models for material simulation and optimization. T2 - 7th Conference on Industrial Computed Tomography (iCT 2017) CY - Leuven, Belgium DA - 07.02.2017 KW - Orientation distribution KW - Fiber-reinforced concrete KW - Computed tomography PY - 2017 UR - http://www.ndt.net/?id=20818 SN - 1435-4934 VL - 22 IS - 3 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-39338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeegers, G. P. A1 - Steinhoff, R. F. A1 - Weidner, Steffen A1 - Zenobi, R. T1 - Evidence for laser-induced redox reactions in matrix-assisted laserdesorption/ionization between cationizing agents and target plate material: a study with polystyrene and trifluoroacetate salts JF - International Journal of Mass Spectrometry N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is often applied to assess the dispersity and the end groups of synthetic polymers through the addition of cationizing agents. Here weaddress how these cation adducts are formed using polystyrene (PS) as a model polymer. We analyzed PSby MALDI-MS with a 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) as the matrix and a range of trifluoroacetate (TFA) salts as cationizing agents on a range of different targetplate materials (copper, 1.4301 stainless steel, aluminum, Inconel 625, Ti90/Al6/V4 and chromium-, gold-and silver-plated stainless steel). It was found that on a stainless steel substrate the metal cations Al+,Li+, Na+, Cu+and Ag+formed polystyrene adducts, whereas K+, Cs+, Ba2+, Cr3+, Pd2+, In3+, or their lower oxidation states, did not. For the copper and silver substrates, PS and DCTB adduct formation with cations liberated from these target plate materials was observed upon addition of a cationizing agent, which indicates the occurrence of redox reactions between the added TFA salts and the target plate material. Judging from their standard electrode potentials, these redox reactions would not normally occur, i.e.,they require an additional energy input, strongly suggesting that the observed redox reactions are laser-induced. Furthermore, copper granules were found to successfully sequester PS from a tetrahydrofuran(THF) solution, consistent with the view complex formation with the copper target plate can take place prior to the MALDI-MS measurement. KW - Polymer MALDI KW - Cationization KW - Polystyrene KW - Laser-induced redox reactions KW - Target plate material PY - 2017 DO - https://doi.org/10.1016/j.ijms.2016.10.007 SN - 1387-3806 SN - 1873-2798 VL - 416 SP - 80 EP - 89 PB - Elsevier B.V. AN - OPUS4-41146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Martynenko, Irina ED - Baimuratov, A. S. ED - Osipova, V. A. ED - Kuznetsova, V. A. ED - Purcell-Milton, F. ED - Rukhlenko, I. D. ED - Fedorov, A. V. ED - Gun'ko, Y. K. ED - Baranov, A. V. T1 - Excitation energy dependence of the photoluminescence quantum yield of core/shell CdSe/CdS quantum dots and correlation with circular dichroism JF - Chemistry Of Materials N2 - Quantum dot (QD) based nanomaterials are very promising materials for the fabrication of optoelectronic devices like solar cells, light emitting diodes (LEDs), and photodetectors as well as as reporters for chemo- and biosensing and bioimaging. Many of These applications involve the monitoring of changes in photoluminescence intensity and energy transfer processes which can strongly depend on excitation wavelength or energy. In this work, we analyzed the excitation energy dependence (EED) of the photoluminescence quantum yields (PL QYs) and decay kinetics and the circular dichroism (CD) spectra of CdSe/CdS core/shell QDs with different thicknesses of the surface passivation shell. Our results demonstrate a strong correlation between the spectral position of local maxima observed in the EED of PL QY and the zero-crossing points of the CD profiles. Theoretical analysis of the energy band structure of the QDs with effective mass approximation suggests that these structures could correspond to exciton energy levels. This underlines the potential of CD spectroscopy for the study of electronic energy structure of chiroptically active nanocrystals which reveal quantum confinement effects. KW - Fluorescence KW - Semiconductor KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Lifetime KW - Nanocrystal KW - Cysteine KW - Thiol KW - Ligand KW - Quantum dot KW - CdSe KW - Exciton KW - Circular dichroism KW - Theory KW - Excitation spectra KW - Excitation energy dependence PY - 2017 DO - https://doi.org/10.1021/acs.chemmater.7b04478 SN - 0897-4756 SN - 1520-5002 VL - 30 IS - 2 SP - 465 EP - 471 PB - ACS Publications AN - OPUS4-44034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Kaiser, Martin A1 - Wilhelm, Stefan A1 - Grauel, Bettina A1 - Hirsch, Th. A1 - Resch-Genger, Ute T1 - Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents JF - Nanoscale N2 - The rational design of brighter upconversion nanoparticles (UCNPs) requires a better understanding of the radiationless deactivation pathways in these materials. Here, we demonstrate the potential of excitation power density (P)-dependent studies of upconversion (UC) luminescence intensities, slope factors, and absolute quantum yields (ΦUC) of popular β-NaYF4:20% Yb3+,2% Er3+ UCNPs of different surface chemistries in organic solvents, D2O, and water as a tool to gain deeper insight into the UC mechanism including population and deactivation pathways particularly of the red emission. Our measurements, covering a P regime of three orders of magnitude, reveal a strong difference of the P-dependence of the ratio of the green and red luminescence bands (Ig/r) in water and organic solvents and P-dependent population pathways of the different emissive energy levels of Er3+. In summary, we provide experimental evidence for three photon processes in UCNPs, particularly for the red emission. Moreover, we demonstrate changes in the excited population dynamics via bi- and triphotonic processes dependent on the environment, surface chemistry, and P, and validate our findings theoretically KW - Upconverion KW - Quantum Yield KW - Photo physics PY - 2017 UR - http://pubs.rsc.org/en/content/articlepdf/2017/nr/c7nr00092h DO - https://doi.org/10.1039/c7nr00092h SN - 2040-3364 SN - 2040-3372 VL - 9 IS - 12 SP - 4283 EP - 4294 PB - The Royal Society of Chemistry AN - OPUS4-39849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Würth, Christian A1 - Wolter, C. A1 - Weller, H. A1 - Resch-Genger, Ute T1 - Excitation wavelength dependence of the photoluminescence quantum yield and decay behavior of CdSe/CdS quantum dot/quantum rods with different aspect ratios JF - Physical Chemistry Chemical Physics (PCCP) N2 - The excitation wavelength (lexc) dependence of the photoluminescence (PL) quantum yield (FPL) and decay behavior (tPL) of a series of CdSe/CdS quantum dot/Quantum rods (QDQRs), consisting of the same spherical CdSe core and rod-shaped CdS shells, with aspect ratios ranging from 2 to 20 was characterized. lexc between 400–565 nm were chosen to cover the first excitonic absorption band of the CdSe core material, the onset of absorption of the CDs shell, and the region of predominant shell absorption. A strong lexc dependence of relative and absolutely measured FPL and tPL was found particularly for the longer QDQRs with higher aspect ratios. This is attributed to combined contributions from a length-dependent shell-to-core exciton localization efficiency, an increasing number of defect states within the shell for the longest QDQRs, and probably also the presence of absorbing, yet non-emitting shell material. Although the FPL values of the QDQRs decrease at shorter wavelength, the extremely high extinction coefficients introduced by the shell outweigh this effect, leading to significantly higher brightness values at wavelengths below the absorption onset of the CdS Shell compared with direct excitation of the CdSe cores. Moreover, our results present also an interesting example for the comparability of absolutely measured FPL using an integrating sphere setup and FPL values measured relative to common FPL standards, and underline the Need for a correction for particle scattering for QDQRs with high aspect ratios. KW - Quantum dot KW - Quantum rod KW - Quantum yield KW - Integrating sphere KW - Decay time PY - 2017 DO - https://doi.org/10.1039/C7CP02142A SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 19 SP - 12509 EP - 12516 PB - Royal Society of Chemistry (RSC) AN - OPUS4-40814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fedelich, Bernard A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Experimental and analytical investigation of the TMF-HCF lifetime behavior of two cast iron alloys JF - International journal of fatigue N2 - The combined loading Thermomechanical Fatigue (TMF) with High Cycle Fatigue (HCF) has been experimentally investigated for two cast iron alloys. Both alloys contain globular graphite nodules but the first one has a ferritic structure while the second one has an austenitic crystal structure. In particular, the influences of the HCF frequency, of the HCF loading amplitude and of the location of the superposed HCF cycles have been investigated. It was observed that the HCF frequency has a limited impact on the fatigue life. On the other side, the HCF-strain amplitude has a highly non-linear influence on the fatigue life. The experimental results can be understood in terms of a fracture mechanics based damage mechanism: Cracks quickly initiate due to the TMF loading and the growth of the cracks up to a few mm controls the fatigue life. If HCF-loading cycles are superposed, cyclic crack propagation dramatically accelerates after a threshold has been reached. This threshold is regarded as controlling the fatigue life reduction. The previous ideas have been expressed in a model that can be very simply applied to estimate the fatigue life reduction ratio due to the superposed HCF cycles. It only contains two adjustable parameters and can be combined with any TMF life assessment model. T2 - 3rd International Workshop on Thermo-Mechanical Fatigue (TMF-Workshop 2016) CY - Berlin, Germany DA - 27.04.2016 KW - Thermomechanical Fatigue (TMF) KW - High Cycle Fatigue (HCF) KW - Cast iron KW - Fatigue assessment PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2016.11.013 SN - 0142-1123 SN - 1879-3452 VL - 99 IS - 2 (Special issue: Recent developments in thermo-mechanical fatigue) SP - 266 EP - 278 PB - Elsevier CY - Oxford AN - OPUS4-39810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -