TY - CONF A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmier, Michael T1 - The influence of the spatial laser energy absorption on the molten pool dynamics in high power laser beam welding N2 - The spatial laser energy absorption inside the keyhole is decisive for the dynamic molten pool behaviors and the resultant weld properties in high-power laser beam welding (LBW). In this paper, a numerical simulation of the LBW process, considering the 3D transient heat transfer, fluid flow, and keyhole dynamics, is implemented, in which the free surface is tracked by the volume-of-fluid algorithm. The underlying laser-material interactions i.e., the multiple reflections and Fresnel absorption, are considered by an advanced ray-tracing method based on a localized Level-Set strategy and a temperature-dependent absorption coefficient. The laser energy absorption is analyzed from a time-averaged point of view for a better statistical representation. It is found for the first time that a noticeable drop of the time-averaged laser energy absorption occurs at the focus position of the laser beam, and the rest region of the keyhole has relatively homogenous absorbed energy. This unique absorption pattern may lead to a certain keyhole instability and have a strong correlation with the detrimental bulging and narrowing phenomena in the molten pool. The influence of the different focus positions of the laser beam on the keyhole dynamics and molten pool profile is also analyzed and compared. The obtained numerical results are compared with experimental measurements to assure the validity of the proposed model. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, Illinois, USA DA - 16.10.2023 KW - Laser beam welding KW - Laser energy absorption KW - Molten pool KW - Keyhole dynamics KW - Numerical modeling PY - 2023 AN - OPUS4-58755 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Putra, Stephen Nugraha A1 - Meng, Xiangmeng A1 - Yang, Fan A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Einfluss der Temperaturabhängigen Modellierung der Laserstrahlabsorption auf die Schmelzbadgeometrie beim Hochleistungslaserstrahlschweißen N2 - Der Absorptionsgrad metallischer Werkstoffe spielt bei Fügeprozessen mit einer Strahlungsquelle wie dem Hochleistungslaserstrahltiefschweißen eine bedeutende Rolle. Dieser beeinflusst die Menge der absorbierten Laserenergie, welche zum Aufschmelzen sowie zur lokalen Verdampfung des zu verbindenden Materials führt. Eine der wichtigsten Eigenschaften der Laserstrahlabsorption ist die Temperaturabhängigkeit. Dennoch wird sie in vielen Simulationsarbeiten häufig ignoriert und stattdessen ein angepasster Parameter zur Kalibrierung der Ergebnisse implementiert. Diese Vorgehensweise wirkt sich negativ auf die Zuverlässigkeit sowie die Genauigkeit des numerischen Modells sowie auf die Vorhersagbarkeit der Simulationsergebnisse aus. In der vorliegenden Arbeit wird die Temperaturabhängigkeit der Laserabsorption in ein selbstkonsistentes zweiphasiges Modell unter Berücksichtigung der gekoppelten 3D-Fluidströmung und Wärmeübertragung einbezogen. Die berechnete Laserstrahlabsorption wird durch die temperaturabhängigen Materialeigenschaften, die Lasercharakteristik und den Einfallswinkel des Laserstrahls bestimmt. Die freie Oberfläche jeder Phase wird mithilfe der volume-of-fluid Methode, kurz VOF, berechnet und die Laser-Material-Wechselwirkung wird durch ein neulich implementiertes Ray-Tracing-Verfahren modelliert, die auf einem lokalisierten Level-Set-Algorithmus basiert. Anschließend wird die transiente Wärmeeinbringung und die Geometrie der Schweißnaht analysiert und mit dem temperaturunabhängigen Absorptionsmodell verglichen. Es wurde festgestellt, dass die Temperaturabhängigkeit der Laserabsorption entscheidend für die genaue Bestimmung der Wärmeeinbringung und der Schmelzbadgeometrie ist. Das entwickelte Modell wurde anhand der experimentellen Untersuchungen validiert und die Bedeutung der Temperaturabhängigkeit bei der Laserstrahlabsorption wurde für die Simulation des Laserstrahltiefschweißens aufgeklärt. T2 - 44. Assistentenseminar CY - Päwesin, Germany DA - 20.09.2023 KW - Laser beam welding KW - Temperature dependent absorption KW - Weld pool dynamics KW - Numerical modeling PY - 2023 AN - OPUS4-58810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Putra, Stephen Nugraha A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Der Einfluss verschiedener räumlicher Diskretisierungsansätze des Ray-Tracing-Verfahrens bei der Simulation des Laserstrahltiefschweißen N2 - Die Wärmeverteilung des Lasers beim Laserstrahltiefschweißen ist für die Formgebung der Dampfkapillare und für die Schweißbaddynamik entscheidend. In dieser Arbeit werden die Laserwärmeverteilung und deren Einflüsse auf die Schweißbadtiefe sowie -breite numerisch anhand des Ray-Tracing-Verfahrens analysiert. Hierbei wird der La-serstrahl in mehreren Strahlenbündeln bzw. Subrays unterteilt. Diesbezüglich soll der Pfad der Subrays präzis berechnet werden, um die Dynamik der Dampfkapillare und des Schweißbades eines realen Schweißprozesses richtig abzubilden. Zu diesem Zweck beschäftigt sich die vorliegende Arbeit mit der Genauigkeitsverbesserung der Kontaktposition und der Reflexionsrichtung der Subrays auf der freien Oberfläche anhand der Level-Set-Methode. Um die Güte dieses Simulationsansatzes zu gewährleisten, wurde eine Gegenüberstellung mit den zwei klassi-schen Ray-Tracing-Verfahren mittels drei verschiedenen Benchmark-Testreihen durchgeführt. Anschließend wur-den die Versuchsergebnisse zur Validierung der implementierten numerischen Ansätze verwendet. Im Rahmen dieser Arbeit kann es gezeigt werden, dass unterschiedliche Wärmeverteilung aufgrund der verschiedenen Ray-Tracing-Verfahren deutlich zu erkennen ist, welche wiederum die Schweißbaddynamik sowie die lokalisierte Dampfkapillardynamik stark beeinflussen. Ferner wurde es bestätigt, dass die implementierte Level-Set-Methode zu einer genaueren Ermittlung der Kontaktposition und der Reflexionsrichtung der Subrays und somit zu einer Ver-besserung der simulierten Schmelzkontur führt. T2 - 43. Assistentenseminar CY - Schwarzenberg, Germany DA - 27.09.2022 KW - Laser beam welding KW - Ray tracing method KW - Weld pool dynamics KW - Numerical modeling PY - 2022 AN - OPUS4-58840 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Chunliang A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Experimental and numerical study on grain refinement in electromagnetic assisted laser beam welding of 5754 al alloy N2 - Through experimental observation and auxiliary numerical simulation, this investigation studies the different types of grain refinement of 5754 aluminum alloy laser beam welding by applying a transverse oscillating magnetic field. Scanning electron microscope results have proved that the application of a magnetic field can reduce the average crystal branch width and increase its number. The interaction between the induced eddy current generated by the Seebeck effect and the applied external magnetic field produces a Lorentz force, which is important for the increase in the number of crystal branches. Based on the theory of dendrite fragmentation and the magnetic field-induced branches increment, the grain size reduction caused by the magnetic field is studied. Furthermore, the effects of the magnetic field are ana lyzed by combining a phase field method model and simulations of nucleation and grain growth. The grain distribution and average grain size after welding verify the reliability of the model. In addition, the introduction of a magnetic field can increase the number of periodic three-dimensional solidification patterns. In the intersection of two periods of solidification patterns, the metal can be re-melted and then re-solidified, which prevents the grains, that have been solidified and formed previously, from further growth and generates some small cel lular grains in the new fusion line. The magnetic field increases the building frequency of these solidification structures and thus promotes this kind of grain refinement. T2 - ICALEO 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Laser beam welding KW - Magnetic field KW - Crystal branch development KW - Grain refinement KW - Periodic solidification pattern PY - 2023 AN - OPUS4-58493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -