TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - SWIR luminescent nanomaterials – key chemical parameters for bright probes for in vivo bioimaging N2 - A current challenge for studying physio-pathological phenomena and diseaserelated processes in living organisms with non-invasive optical bioimaging is the development of bright optical reporters that enable deep tissue penetration, a high detection sensitivity, and a high spatial and temporal resolution. The focus of this project are nanomaterials, which absorb and emit in the shortwave infrared (SWIR) between ~900–2500 nm where scattering, absorption, and autofluorescence of the tissue are strongly reduced compared to the visible and NIR. T2 - QD2024 - 12th International Conference on Quantum Dots CY - Munich, Germany DA - 18.03.2024 KW - Quantum dots KW - Advanced nanomaterials KW - Fluorescence KW - Quality assurance KW - Gold nanocluster KW - Shortwave infrared KW - Spectroscopy KW - Bioimaging PY - 2024 AN - OPUS4-59783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Resch-Genger, Ute T1 - The 2023 Nobel Prize in Chemistry: Quantum dots JF - Analytical and Bioanalytical Chemistry N2 - The 2023 Nobel Prize in Chemistry was awarded to Aleksey I. Ekimov (prize share 1/3), Louis E. Brus (prize share 1/3), and Moungi G. Bawendi (prize share 1/3) for groundbreaking inventions in the field of nanotechnology, i.e., for the discovery and synthesis of semiconductor nanocrystals, also termed quantum dots, that exhibit size-dependent physicochemical properties enabled by quantum size effects. This feature article summarizes the main milestones of the discoveries and developments of quantum dots that paved the road to their versatile applications in solid-state lighting, display technology, energy conversion, medical diagnostics, bioimaging, and image-guided surgery. KW - Quantum dots KW - Semiconductor nanocrystals KW - Luminescence KW - Quantitative spectroscopy KW - Quantum yield KW - Advanced nanomaterials KW - Quality assurance KW - Energy transfer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597843 DO - https://doi.org/10.1007/s00216-024-05225-9 VL - 2024 SP - 1 EP - 11 PB - Springer CY - Cham AN - OPUS4-59784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Marquez, R. M. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - Exploring the photoluminescence of gold NCs and Ag2S NPs to boost their SWIR emission N2 - Current challenges and objectives for non-invasive optical bioimaging are deep tissue penetration, high detection sensitivity, high spatial and temporal resolution, and fast data acquisition. A promising spectral window to tackle these challenges is the short-wave infrared (SWIR) ranging from 900 nm to 1700 nm where scattering, absorption, and autofluorescence of biological components are strongly reduced compared to the visible/NIR. At present, the best performing SWIR contrast agents are based on nanomaterials containing toxic heavy-metal ions like cadmium or lead, which raises great concerns for biological applications. Promising heavy-metal free nanoscale candidates are gold nanoclusters (AuNCs) and Ag2S nanoparticles (NPs). The photoluminescence (PL) of both types of nanomaterials is very sensitive to their size, composition of their surface ligand shell, and element composition, which provides an elegant handle to fine-tune their absorption and emission features and boost thereby the size of the signals recorded in bioimaging studies. Aiming for the development of SWIR contrast agents with optimum performance, we dived deeper into the photophysical processes occurring in these nanomaterials, thereby exploring in depth how the environment, surface ligand composition, and the incorporation of transition metals influence the optical properties of AuNCs and Ag2S NPs. We observed a strong enhancement of the SWIR emission of AuNCs upon exposure to different local environments (in solution, polymer, and in the solid state). Addition of metal ions such as Zn2+ to Ag2S based NPs led to a strong PL enhancement, yielding PL quantum yields of about 10% and thus making them highly suitable for non-invasive deep imaging of vascular networks and 3D fluid flow mapping. T2 - NaNaX 10 - Nanoscience with Nanocrystals CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Quantum dots KW - Ag2S KW - Fluorescence KW - SWIR KW - Gold nanocluster KW - Nanomaterial KW - bioimaging PY - 2023 AN - OPUS4-58104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matiushkina, Anna A1 - Litvinov, I. A1 - Bazhenova, A. A1 - Belyaeva, T. A1 - Dubavik, A. A1 - Veniaminov, A. A1 - Maslov, V. A1 - Kornilova, E. A1 - Orlova, A. A1 - Tavernaro, Isabella A1 - Andresen, Elina A1 - Prinz, Carsten A1 - Resch-Genger, Ute T1 - Synthesis and physical properties studies of bifunctional nanocomposites N2 - At present, the field of research on nanostructures is actively developing, which is due to their unique physico-chemical properties compared to bulk materials. Many research activities are focused on obtaining nanocomposites, which combine various types of nanostructures with different properties and function. For example, the development of magneto-luminescent nanocomposites makes it possible to use their luminescence for optical imaging, and their magnetic properties for magnetic targeted delivery and as agents of hyperthermia and magnetic resonance imaging. My master studies as part of the project Goszadanie 2019-1080 at ITMO were focused on the investigation of nanocomposites, consisting of semiconductor quantum dots (QDs) as luminescent component and superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic one, in solution and during their incubation with HeLa cells. The spectrally resolved analysis of the QD photoluminescence (PL) kinetics of the free QDs and the QDs incorporated in these nanocomposites undergoing energy transfer processes allowed for (1) understanding the reasons for the quenching of QD luminescence in cells, (2) evaluating the average distance between the QDs and, based on this, concluding the degree of QD aggregation in cells, and (3) drawing conclusions about the QD-quencher composites integrity in cells. Overall, the analysis of the PL kinetics confirmed that QDs and SPIONs remain bound in the obtained nanocomposites during incubation with cells. To ensure the successful advancement of nanomaterials in biomedicine and the transition from their laboratory preparation and studies to their use in different applications and in industry, it is crucial to develop reliable measurement methods and reference materials candidates for the characterization of functional nanomaterials and assessing the quality of the obtained nanostructures. My recently started project at BAM, which is part of the EU metrology project MeTrINo, will be devoted to this topic. There we will focus on the development of methodologies for the synthesis and characterization of iron oxide nanoparticles, already used in biomedicine, and multi-element lanthanide-based nanoparticles with attractive upconversion luminescence, as reference materials with high monodispersity and reproducibility. Also, these nanoparticles will be functionalized with organic dyes for optical imaging and, probably, the study of the energy transfer phenomena. T2 - Bad Honnef Summer School CY - Bad Honnef, Germany DA - 30.07.2023 KW - Quantum dots KW - Iron oxide nanoparticles KW - Upconversion nanoparticles PY - 2023 AN - OPUS4-58075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miropoltsev, M. A1 - Wegner, Karl David A1 - Häusler, I. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Influence of Hydrophilic Thiol Ligands of Varying Denticity on the Luminescence Properties and Colloidal Stability of Quaternary Semiconductor Nanocrystals JF - Journal of Physical Chemistry C N2 - Binary photoluminescent semiconductor nanocrystals (quantum dots, QDs) are one of the best studied fluorescent nanomaterials, and their unique optoelectronic properties paved the road to many applications in (bio)nanophotonics, optoelectronics, and photovoltaics. However, concerns related to their toxic constituents like cadmium or lead and the emerging interest in greener chemistry synthesis approaches hamper their future applicability. Interesting alternatives for some applications like biosensing or bioimaging are heavy-metal-free ternary QDs like AgInS2 (AIS), CuInS2 (CIS), and quaternary QDs such as AIS-ZnS (ZAIS). In this context, we explored the effect of ligand denticity on the organic-to-aqueous phase transfer of oleylamine-stabilized ZAIS QDs with the hydrophilic ligands mercaptopropionic acid (MPA), dihydrolipoic acid (DHLA), and 3-mercapto-2,2-bis(mercaptomethyl)propanoic acid (3MPA), bearing mono-, bi-, and trialkyl thiol groups. Spectroscopic studies of the resulting water-dispersible ZAIS QDs revealed a considerable influence of ligand denticity and ligand-to-QD ratio on the spectral position and width (FWHM; full width at half-maximum) of the photoluminescence (PL) bands, the PL quantum yields (PL QY), and the PL decay kinetics. Thiol capping and phase transfer resulted in a loss in PL by at least a factor of 2. The ligand-induced PL quenching observed particularly for ligands bearing two or three thiol groups was attributed to the facilitated formation of surface-bound disulfides. The best colloidal stability under high dilution conditions was observed for 3MPA. KW - Quantum dots KW - Ligand exchange KW - Lifetime analysis KW - Thiols PY - 2022 DO - https://doi.org/10.1021/acs.jpcc.2c05342 SN - 1932-7447 VL - 126 IS - 47 SP - 20101 EP - 20113 PB - ACS Publications AN - OPUS4-56707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Reiss, P. A1 - Carriere, M. A1 - Pouget, S. A1 - Resch-Genger, Ute T1 - Luminescent Quantum dots – the next-generation nano light bulbs N2 - Fluorescent semiconductor nanocrystals, also known as quantum dots (QDs), enabled many advancements in biotechnology, photovoltaics, photocatalysis, quantum computing and display devices. The high versatility of this nanomaterial is based on their unique size-tunable photoluminescence properties, which can be adjusted from the visible to the near-infrared range. In contrast to other nanomaterials, QDs made the transition from a laboratory curiosity to the utilization in commercial products, like the QLED television screen or in smartphone displays. The best investigated QDs are composed of heavy metals like cadmium or lead, which is not the best choice in terms of toxicity and environmental pollution. A more promising material is Indium Phosphide (InP), which is also currently used by Samsung, Sony and co. in the QLED displays. In this contribution, I would like to give you a sneak peek behind the curtains of nanomaterial synthesis and show how this material is produced, how to stabilize their structural properties, and assess their toxicity in environmentally relevant conditions. Furthermore, I would like to present a synthesis method to accomplish the last open challenge in display technology of a blue luminescent LED based on QDs by introducing a new element to the InP QDs. T2 - The Berlin Postdoc Day CY - Berlin, Germany DA - 03.11.2022 KW - InP KW - Quantum dots KW - Fluorescence KW - Aging KW - Doping KW - Nanomaterial KW - Cytotoxicity PY - 2022 AN - OPUS4-56194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dhamo, Lorena A1 - Carulli, F. A1 - Nickl, Philip A1 - Wegner, Karl David A1 - Hodoroaba, Vasile-Dan A1 - Würth, Christian A1 - Brovelli, S. A1 - Resch-Genger, Ute T1 - Efficient luminescent solar concentrators based on environmentally friendly Cd-free ternary AIS/ZnS quantum dots JF - Advanced optical materials N2 - Luminescent solar concentrators (LSC) allow to obtain renewable energy from building integrated photovoltaic systems. As promising efficient and long-term stable LSC fluorophores semiconductor nanocrystals like Quantum dots (QDs) with size and composition tunable optoelectronic properties have recently emerged. The most popular II/VI or IV/VI semiconductor QDs contain, however, potentially hazardous cadmium or lead ions, which is a bottleneck for commercial applications. A simple aqueous based, microwaveassisted synthesis for environmentally friendly and highly emissive AgInS2/ ZnS QDs is developed using 3-mercaptopropionic acid (MPA) and glutathione (GSH) and their incorporation into polylaurylmethacrylate (PLMA) polymer slabs integrable in LSC devices (10.4 × 10.4 × 0.2 cm3, G = 12.98). With this simple approach, optical power efficiencies (OPE) of 3.8% and 3.6% and optical quantum efficiencies (OQE) of 24.1% and 27.4% are obtained, which are among the highest values yet reported. KW - Solar energy KW - Solar concentrator KW - Quantum dots KW - Advanced material KW - Quantum yield PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529735 DO - https://doi.org/10.1002/adom.202100587 SN - 2195-1071 SN - 0935-9648 VL - 9 IS - 17 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-52973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Weigert, Florian A1 - Häusler, I. A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Correlating HR-TEM and XPS to elucidate the core-shell structure of ultrabright CdSE/CdS semiconductor quantum dots N2 - Controlling the thickness and tightness of surface passivation shells is crucial for many applications of core-shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the application-relevant functionality like a high photoluminescence (PL) quantum yield. This calls for a whole nanoobject approach. Moreover, the thickness of the organic coating remains often unclear. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. The results of the different methods match very well within the different measurement uncertainties. Additionally, results obtained with energy-resolved XPS using excitation energies between 200 eV and 800 eV are discussed with respect to a potential core/shell intermixing. Moreover, the future application potential of this approach correlating different sizing and structural methods is discussed considering the method-inherent uncertainties and other core/multi-shell nanostructures. T2 - E-MRS Fall Meeting CY - Online meeting DA - 20.09.2021 KW - Core-shell nanoparticles KW - Quantum dots KW - High-resolution transmission electron microscopy KW - X-ray Photoelectron Spectroscopy PY - 2021 AN - OPUS4-53365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ren, J. A1 - Weigert, Florian A1 - Weber, F. A1 - Wang, Y. A1 - Choudhury, S. A1 - Xiao, J. A1 - Lauermann, I. A1 - Resch-Genger, Ute A1 - Bande, A. A1 - Petit, T. ED - Petit, Tristan T1 - Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots JF - Nanoscale N2 - Carbon dots have attracted much attention due to their unique optical, chemical and electronic properties enabling a wide range of applications. The properties of carbon dots can be effectively adjusted through modifying their chemical composition. However, a major challenge remains in understanding the core and surface contributions to optical and electronic transitions. Here, three blue luminescent carbon dots with carboxyl, amino and hydroxyl groups were comprehensively characterized by UV-vis absorption and emission spectroscopy, synchrotron-based X-ray spectroscopy, and infrared spectroscopy. The influence of the surface functionality on their fluorescence was probed by pH-dependent photoluminescence measurements. Moreover, the hydrogen bonding interactions between water and the surface groups of carbon dots were characterized by infrared spectroscopy. Our results show that both core and surface electronic states of blue luminescent carbon dots contribute to electronic acceptor levels while the chemical nature of the surface groups determines the hydrogen bonding behavior of the carbon dots. This comprehensive spectroscopic study demonstrates that the surface chemistry has a profound influence on the electronic configuration and surface–water interaction of carbon dots, thus affecting their photoluminescence properties. KW - Quantum dots KW - Spectroscopy KW - UV Vis KW - Fluorescence KW - Surface chemistry PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472325 DO - https://doi.org/10.1039/c8nr08595a SN - 2040-3372 VL - 11 IS - 4 SP - 2056 EP - 2064 PB - RSC AN - OPUS4-47232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Luminescence measurements, calibration strategies and photoluminescence quantum yields N2 - Different types of optical spectroscopies are introduced with special emphasis on method-inherent limitations and reliable instrument calibration and performance validation. In addition, procedures for the determination of spectroscopic key parameters like the photoluminescence quantum yield are presented including required instrument calibrations and material-specific effects related to certain emitters. T2 - Fakultät der University of Ottawa CY - Ottawa, Canada DA - 11.12.2018 KW - Quality assurcance KW - Optical spectroscopy KW - Method comparison KW - Photoluminescence KW - Calibration KW - Performance validation KW - Dye KW - Nanoparticle KW - Quantum dots KW - Quantum yields KW - Uncertainty KW - Method validation PY - 2019 AN - OPUS4-47630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Moros, M. A1 - Castillo-Michel, H. A1 - Materra, L. A1 - Onorato, G. A1 - Ling, W. L. A1 - Reiss, P. A1 - Tortiglione, C. T1 - In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X‑Ray Microspectroscopy JF - ACS Applied Material & Interfaces N2 - Many attempts have been made to synthesize cadmium-free quantum dots (QDs), using nontoxic materials, while preserving their unique optical properties. Despite impressive advances, gaps in knowledge of their intracellular fate, persistence, and excretion from the targeted cell or organism still exist, precluding clinical applications. In this study, we used a simple model organism (Hydra vulgaris) presenting a tissue grade of organization to determine the biodistribution of indium phosphide (InP)-based QDs by X-ray fluorescence imaging. By complementing elemental imaging with In L-edge X-ray absorption near edge structure, unique information on in situ chemical speciation was obtained. Unexpectedly, spectral profiles indicated the appearance of In−O species within the first hour post-treatment, suggesting a fast degradation of the InP QD core in vivo, induced mainly by carboxylate groups. Moreover, no significant difference in the behavior of bare core QDs and QDs capped with an inorganic Zn(Se,S) gradient shell was observed. The results paralleled those achieved by treating animals with an equivalent dose of indium salts, confirming the preferred bonding type of In3+ ions in Hydra tissues. In conclusion, by focusing on the chemical identity of indium along a 48 h long journey of QDs in Hydra, we describe a fast degradation process, in the absence of evident toxicity. These data pave the way to new paradigms to be considered in the biocompatibility assessment of QD-based biomedical applications, with greater emphasis on the dynamics of in vivo biotransformations, and suggest strategies to drive the design of future applied materials for nanotechnology-based diagnosis and therapeutics. KW - Indium phosphide KW - Quantum dots KW - Cytotoxicity KW - X-ray microspectroscopy PY - 2019 DO - https://doi.org/10.1021/acsami.9b15433 VL - 11 IS - 39 SP - 35630 EP - 35640 PB - ACS Publications AN - OPUS4-49425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Carrière, M. A1 - Reiss, P. T1 - Tuning the photoluminescence of inp quantum dots with gallium N2 - Semiconductor nanocrystals (quantum dots, QDs) are well known for their superior photophysical properties and enabled advancements in several key technologies of the 21st century and numerous technological applications. However, the most studied II-VI semiconductor nanocrystals contain the toxic heavy metal element cadmium, which is limiting their utilization in commercial applications. This has drawn the interest to alternative materials with less toxicity but having similar photophysical features. The newest generation of TV screens based on QDs have shown that there is a promising environmentally friendly alternative with similar optoelectronic properties, namely indium phosphide (InP) QDs. InP QDs possess a bulk band gap of 1.35 eV with an exciton Bohr radius of ca. 10 nm and thus allow to tune their photoluminescence (PL) from the visible to the near-infrared. Tuning the size and shape of InP QDs and thus tailor their optoelectronic properties can be achieved by different strategies, which range from different types and concentrations of precursors, synthesis temperature or post-synthetic manipulations like etching. The incorporation of other elements like Gallium within the InP core synthesis is another possibility. Using a GaP intermediate layer before growing a ZnS shell has been shown to increase the PL quantum yield, which has been attributed to reduced lattice strain and the removal of phosphor vacancies. Different Ga precursors were investigated but a thorough investigation in terms of their reactivity, localization in the QD and influence on the photophysical properties is lacking to date. In this contribution we will present the detailed investigation of the presence of two different Ga precursors within the InP core synthesis. Photophysical characterizations (steady-state and PL life-time measurements), transmission electron microscopy, XRD and EDX gave insights into the reactivity of the Ga precursors, the Ga localization in the InP core and influences on the photophysical properties. The variation of the precursor and surfactant concentration and the utilization of different ligands for the Ga precursor allowed tuning the PL emission towards the blue or the red. Depending on the used precursor type we observed the formation of larger-sized InP/GaP core/shell nanocrystals or the formation of InGaP alloy structures enabling to assess the blue range of emission (475 nm). T2 - Zsigmondy Colloquium CY - Dresden, Germany DA - 10.07.2019 KW - Indium phosphide KW - Quantum dots KW - Gallium doping PY - 2019 AN - OPUS4-49426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Dussert, F. A1 - Truffier-Boutry, D. A1 - Benayad, A. A1 - Beal, D. A1 - Mattera, L. A1 - Ling, W. L. A1 - Carrière, M. A1 - Reiss, P. T1 - Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity JF - Frontiers in Chemistry N2 - With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1−x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence Quantum yields (PLQY) > 50%and similar PL decay times (64–67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY Retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant xidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25–100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact. KW - Indium phosphide KW - Quantum dots KW - Cytotoxicity KW - Photostability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494249 DO - https://doi.org/10.3389/fchem.2019.00466 VL - 7 SP - Article Number: 466 PB - Frontiers Media SA AN - OPUS4-49424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Optical spectroscopy – Techniques, instrumentation, and typical molecular and nanoscale reporters N2 - Different types of optical spectroscopies are introduced with special emphasis on method-inherent limitations and reliable instrument calibration and performance validation. In addition, different classes of molecular and nanocrystalline emitters are presented and the underlying photophysical processes are briefly described. T2 - Fakultät der University of Ottawa CY - Ottawa, Canada DA - 11.12.2018 KW - quality assurcance KW - Optical spectroscopy KW - Method comparison KW - Photoluminescence KW - Calibration KW - Performance validation KW - Dye KW - Nanoparticle KW - Quantum dots KW - Quantum yields KW - Uncertainty KW - Method validation PY - 2018 AN - OPUS4-47631 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -