TY - JOUR A1 - Oskolkova, Tatiana O. A1 - Matiushkina, Anna A. A1 - Borodina, Lyubov' N. A1 - Smirnova, Ekaterina S. A1 - Dadadzhanova, Antonina I. A1 - Sewid, Fayza A. A1 - Veniaminov, Andrey V. A1 - Moiseeva, Ekaterina O. A1 - Orlova, Anna O. T1 - FRET‐Amplified Singlet Oxygen Generation by Nanocomposites Comprising Ternary AgInS2/ZnS Quantum Dots and Molecular Photosensitizers JF - ChemNanoMat N2 - Antibacterial photodynamic therapy (a‐PDT) has emerged as a promising non‐invasive therapeutic modality that utilizes the combination of a photosensitive agent, molecular oxygen, and excitation light to generate reactive oxygen species (ROS), demonstrating remarkable activity against multidrug‐resistant bacterial infections. However, the effective use of conventional photosensitizers is significantly limited by a number of their shortcomings, namely, poor water solubility and low selectivity. Herein, we present a novel biocompatible water‐soluble nanocomposite based on hydrophobic tetraphenylporphyrin (TPP) molecules and hydrophilic ternary AgInS2/ZnS quantum dots incorporated into a chitosan matrix as an improved photosensitizer for a‐PDT. We demonstrated that TPP molecules could be successfully transferred into chitosan solution while remaining primarily in the form of monomers, which are capable of singlet oxygen generation. We performed a detailed analysis of the Förster resonance energy transfer (FRET) between quantum dots and TPP molecules within the nanocomposite and proposed the mechanism of the singlet oxygen efficiency enhancement via FRET. KW - Nano KW - Particle KW - Quantum dot KW - Fluorescence KW - Synthesis KW - Optical spectroscopy KW - Energy transfer KW - Quality assurance KW - Lifetime KW - Quantum yield PY - 2024 DO - https://doi.org/10.1002/cnma.202300469 SN - 2199-692X VL - 10 IS - 3 SP - 1 EP - 11 PB - Wiley AN - OPUS4-59728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoell, A. A1 - Heimann, M. A1 - Wegner, Karl David A1 - Haas, S. A1 - Emmerling, Franziska A1 - Schorr, S. T1 - On the usage of anomalous SAXS to analyzethe structure and composition of bimetallic nanoparticles and quantum dots N2 - Tailor-made nanoparticles are of increasing interest in e.g. catalysis, as sensor materials, analytical assays, or can have superior photophysical properties. A major issue concerning the preparation of high-quality and functional nanoparticles is a good control of particle size, shape, polydispersity, and composition. Small Angle X-ray Scattering (SAXS) is a non-destructive method for the analysis of nanostructures in a wide variety of materials. This method allows determining averaged structural parameters on a length scale from just above atomic sizes up to several 100 nanometers such as sizes, size distributions, volume fractions, and inner surface sizes. Moreover, anomalous Small Angle X-ray Scattering (ASAXS) exploits the anomalous dispersion of the scattering amplitudes near the X-ray absorption edges of the elements contained in the sample. These element sensitive contrast variations can be used to analyse average composition fluctuations on the nm scale. Two kinds of nanoparticles are chosen here to elaborate the advantages of ASAXS in the analysis of complex materials. A facile and efficient methodology is developed for the thermal synthesis of size-tunable, stable, and uniform bimetallic NiCu core–shell nanoparticles (NPs) for various application in catalysis. Their diameter can be tuned in a range from 6 nm to 30 nm and the Ni:Cu ratio is adjustable in a wide range from 1:1 to 30:1. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small-angle X-ray scattering (ASAXS), X-ray absorption fine structure, and X-ray photoelectron spectroscopy. Here, we focus on the ASAXS method and its ability to analyses nanostructure parts and their compositions at once. As a result, a NiCu alloyed core surrounded by a Ni enriched shell and an outer NiO shell was found. Semiconductor nanocrystals (quantum dots, QDs) are well known for their superior photophysical properties and enabled advancements in several key technologies of the 21st century and numerous technological applications like in photovoltaics, LED displays, photocatalysis, and biosensing. To achieve high photoluminescence quantum yields (PLQY) and enhanced photostability the QD core needs to be passivated by a second semiconductor, which possess a larger band gap to confine the charges within the QD core. An important parameter is thereby the lattice mismatch between the core and shell. To avoid strong lattice strain, which would alter the photophysical properties, an intermediary shell can be used as a lattice adapter between the core and the outer shell leading to core/shell/shell systems. These systems have shown to possess high PLQYs combined with a strong long-term stability and can be found in modern QLED displays. ASAXS was used here to better understand the core/shell/shell structure of InP/ZnSe/ZnS QDs to enable a correlation between their structural and photophysical properties. T2 - IUCr - International Union of Crystallography CY - Melbourne, Australia DA - 22.08.2023 KW - ASAXS KW - Quantum dot KW - Core/shell materials KW - Safer by design PY - 2023 AN - OPUS4-58812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Raievska, O. A1 - Barabash, A. A1 - Batentschuk, M. A1 - Osvet, A. A1 - Fiedler, Saskia A1 - Resch-Genger, Ute A1 - Hauch, J. A1 - Brabec, C. J. T1 - “Green” Synthesis of Highly Luminescent Lead-Free Cs2AgxNa1-xBiyIn1-yCl6 Perovskites JF - Journal of Materials Chemistry C N2 - A new “green” and mild synthesis of highly stable microcrystalline Cs2AgxNa1-xBiyIn1-yCl6 (CANBIC) perovskites under ambient conditions was developed that is scalable to the multi-gram production. Under UV illumination, the CANBIC perovskites emit intense broadband photoluminescence (PL) with a quantum yield (QY) of 92% observed for x = 0.35 and y = 0.01-0.02. The combination of strong UV absorbance and broadband visible emission, high PL QY, and long PL lifetimes of up to 1.4 μs, along with an outstanding stability makes these CANBICs a promising material class for many optical applications. KW - Fluorescence KW - Perovskites KW - Solar cell KW - Automated synthesis KW - Green synthesis KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Semiconductor KW - Quantum dot KW - Renewable energy PY - 2022 DO - https://doi.org/10.1039/d2tc02055f SN - 2050-7526 VL - 10 IS - 27 SP - 9938 EP - 9944 PB - Royal Society of Chemistry AN - OPUS4-55453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Weigert, Florian A1 - Andresen, Elina A1 - Grauel, Bettina A1 - Wegner, Karl David T1 - Semiconductor (SCNC) & Upconversion Nanocrystals (UCNC) – Optical Properties, Applications & Challenges N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and shortwave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of Pand demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - 27th Annual Meeting of the Slovenian Chemical Society CY - Portoroz-Portorose, Slovenia DA - 21.09.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - Synthesis KW - Semiconductur KW - Quantum dot KW - Nanocrystal KW - SWIR PY - 2021 AN - OPUS4-53723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots JF - Scientific reports N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Nirmalananthan-Budau, Nithiya A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Photoluminescence at BAM – Photoluminescence at BAM – Photophysical Studies, Quantum Yield Measurements, Multiplexing Strategies, and Standards N2 - Photoluminescence applications in the life and material sciences require bright molecular and nanocrystalline emitters, stimuli-responsive optical probes, signal enhancement, multiplexing, and barcoding strategies and traceable methods to quantify the signal-relevant optical properties of luminescent materials at the ensemble and single molecule/particle level. In this context, current research at Division Biophotonics of BAM is presented ranging from dye and nanocrystal photophysics, absolute measurements of photoluminescence quantum yields in the UV/vis/NIR/SWIR, lifetime multiplexing, and the development of different types of fluorescence standards for validating optical-spectroscopic measurements. T2 - Institutskolloquium IPHT CY - Jena, Germany DA - 22.10.2019 KW - Surface group analysis KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide KW - Cleavable probe KW - Lifetime KW - Multiplexing KW - Sensor KW - Assay PY - 2019 AN - OPUS4-49360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Advanced characterization of nanomaterials N2 - The rational synthesis and use of nanomaterials require the characterization of many different properties, ranging from particle size and size distribution over surface chemistry to more applicationrelevant features like optical, electrochemical, and magnetic properties. In the following, several methods for the characterization of functional groups on nanomaterials, like polymer and silica nanoparticles, semiconductor quantum dots, and lanthanide-based upconversion nanocrystals are presented. Additionally, procedures for the measurement of the key spectroscopic performance parameters of nanomaterials with linear and nonlinear photoluminescence, such as the photoluminescence quantum yield, are presented for the UV/vis/NIR/SWIR. T2 - Summerschool CY - Bad Honnef, Germany DA - 22.07.2019 KW - Quantum yield KW - Nanoparticle KW - Fluorescence KW - Quantum dot KW - NIR KW - SWIR KW - Quality assurance KW - Calibration PY - 2019 AN - OPUS4-48630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Richter, Maria A1 - Schneider, Thomas T1 - Determining Photoluminescence Quantum Yields of Molecular and Nanocrystal Emitters in the UV/vis/NIR/SWIR N2 - The comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters require accurate and quantitative photo-luminescence measurements. This is of special importance for all photoluminescence applications in the life and material sciences and nanobiophotonics. In the following, procedures for the determination of the spectroscopic key parameter photoluminescence quantum yield, i.e., the number of emitted per absorbed photons, in the UV/vis/NIR/SWIR are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. T2 - Kolloqium National Center for Nanoscience and Technology CY - Peking, People's Republic of China DA - 18.10.2019 KW - Fluorescence KW - Quantum yield KW - Integrating sphere spectroscopy KW - Dye KW - Nanocrystal KW - NIR KW - SWIR KW - Quantum dot KW - Fluorescence standard KW - Uncertainty KW - Calibration PY - 2019 AN - OPUS4-49362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Resch-Genger, Ute T1 - Spectral and Lifetime Encoding of Polymer Particles with Cd-free Ternary Semiconductor Nanocrystals for Flow Cytometry with Time Resolved Fluorescence Detection N2 - Multiplexed encoding schemes of nano- and micrometer sized particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. The fluorescence parameter lifetime has been, however, barely exploited. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the excitation and emission wavelength, thus reducing instrument costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically < 10 ns, the fluorescence LTs of ternary semiconductor QDs that represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This present a time region that can be barely covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed and the encoded particles will be then used for fluorescence assays for the analysis of several targets in parallel. Therefor the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs In one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Bad Honnef Physics School Exciting nanostructures: Characterizing advanced confined systems CY - Bad Honnef, Germany DA - 21.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Weigert, Florian A1 - Frenzel, Florian A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Martynenko, Irena A1 - Dhamo, Lorena T1 - Photoluminescence Properties of Different Types of Nanocrystals at the Ensemble and Single Emitter Level N2 - Correlating the photoluminescence (PL) properties of nanomaterials like semiconductor nanocrystals (QDs) and upconversion nanocrystals (UCNPs) assessed in ensemble studies and at the single particle level is increasingly relevant for applications of these nanomaterials in the life sciences like bioimaging studies or their use as reporters in microfluidic assays. Here we present a comparison of the spectroscopic properties of ensembles and single emitters for QDs like II/VI QDs and cadmium-free AIS/ZnS QDs as well as different UCNPs. The overall goal of this study was to derive particle architectures well suited for spectroscopic and microscopic applications. T2 - BIOSSPIE CY - San Francisco, CA, USA DA - 02.02.2019 KW - Quantum yield KW - Nanomaterial KW - Photoluminescence KW - Absolute fluorometry KW - Integrating sphere spectroscopy, KW - NIR KW - IR KW - Fluorescence KW - Nanoparticle KW - Semiconductor KW - Quantum dot KW - Single particle spectroscopy KW - Surface chemistry PY - 2019 AN - OPUS4-47358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Hoffmann, Kristin T1 - Lifetime Barcoding of Polystyrene Beads with Fluorescent Nanocrystals for Fluorescent Lifetime Detection in Flow Cytometry N2 - Multiplexed encoding schemes of nano- and micrometer sized polymer particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the same excitation and emission wavelength, thus reducing instrumental costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically <10ns, the fluorescence LTs of ternary semiconductor QDs which represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This presents a time region that can barely be covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed, and the encoded particles will then be used for fluorescence assays for the analysis of several targets in parallel. Therefore, the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs in one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wegner, Karl David A1 - Dhamo, Lorena A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding for flow cytometry with quantum-dot-encoded beads N2 - Spectral encoding of cells or particles and the discrimination of multiple spectral codes are a critical process in flow cytometry (FCM). Typical issues in spectral encoding are, e.g., the spectral overlap of codes, or the increasing complexity of instruments . The exploitation of the photoluminescence lifetime (LT) as an encoding parameter could be used to circumvent both of these issues, as it adds another dimension to the parameter space, or, when used as a stand-alone parameter, requiring only one excitation light source and one detector. While LT encoding was considered already decades ago it is still not implemented as a routine technique in FCM yet, mainly due to the challenge of very few photons being available within the limited transition time of a cell or particle through the laser spot. Recently, we demonstrated LT-FCM based on luminophores with ns LTs in a compact and low-cost flow cytometer. Measurements on polymer microbeads containing luminophores with distinctly different excited state LTs enabled the complete discrimination of three LT codes and five codes in total could be identified. Now, we have extended our approach towards considerably longer LTs by custom-made polymer microbeads loaded with different ratios of InP/ZnS and AgInS2 quantum dots. The use of these materials significantly expands the usable time range for LT encoding to up to several hundred ns. Our studies demonstrate the possibility to further increase the number of viable LT codes for multiplexing in LT-FCM without the need for extensive hardware modifications. T2 - Visions in Cytometry - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tietze, R. A1 - Panzer, R. A1 - Starzynski, T. A1 - Guhrenz, C. A1 - Frenzel, Florian A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Weigand, Jan J. A1 - Eychmüller, A. T1 - Synthesis of NIR-emitting InAs-based core/shell quantum dots with the use of tripyrazolylarsane as arsenic precursor JF - Particle & Particle Systems Characterization N2 - Tris(3,5-dimethylpyrazolyl)arsane (1) is introduced as a low-cost and convenient to handle arsenic precursor for the straight Forward synthesis of InAs Quantum dots (QDs). Transamination of 1 with the solvent oleylamine (OLAH) gives trioleylarsane (As(OLA)3) which in the presence of the reducing agents diisobutylaluminum hydride (DIBAL-H) or trioleylphosphane (P(OLA)3) yields InAs QDs via a typical hot injection approach. The size of the obtained InAs core QDs are tuned by varying the reaction time, the amount of the applied reducing agent, or even more effectively by changing the Indium and/or zinc halide precursors, InX3, and ZnX2 (Cl, Br, or I). Passivation of the resulting InAs particles with a protective ZnS or ZnSe shell results in improved photoluminescence of the core/shell QDs covering a spectral range between 600 and 1150 nm. KW - Quantum dot KW - NIR KW - Near infrared PY - 2018 DO - https://doi.org/10.1002/ppsc.201800175 SN - 0934-0866 SN - 1521-4117 VL - 35 IS - 9 SP - 1800175, 1 EP - 7 PB - Wiley AN - OPUS4-46076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Martin T1 - Spectroscopic characterization of semiconductor and lanthanide-based nanocrystals with vis and NIR emission N2 - The increasing interest in molecular and nanoscale emitters with photoluminescence > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, bioimaging, and safety Barcodes requires quantitative spectroscopic studies, which are, however still challenging in this long wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as lanthanide-based upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable photoluminescence quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Moreover, nonlinear emitters like lanthanide-based upconversion nanocrystals require also power density-dependent studies of their luminescence spectra, quantum yields, and decay kinetics. Here, we present suitable absolute methods and underline the impact of such measurements on a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different chemical composition and particle architecture. T2 - PCNSPA 2018 - Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications CY - St. Petersburg, Russia DA - 04.06.2018 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Photophysics KW - Modeling PY - 2018 AN - OPUS4-45796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geissler, Daniel A1 - Wegmann, Marc A1 - Hoffmann, Katrin A1 - Hannemann, M. A1 - Somma, V. A1 - Jochum, T. A1 - Niehaus, J. A1 - Roggenbuck, D. A1 - Resch-Genger, Ute T1 - NanoGenotox - Automatable Determination of the Genotoxicity of Nanoparticles with DNA-based Optical Assays N2 - Nanomaterials are used in many different applications in the material and life sciences. Examples are optical reporters, barcodes, and nanosensors, magnetic and optical contrast agents, and catalysts. Due to their small size and large surface area, there are also concerns about their interaction with and uptake by biological systems. This has initiated an ever increasing number of cyctoxicity studies of nanomaterials of different chemical composition and surface chemistry, but until now, the toxicological results presented by different research groups often do not address or differ regarding a potential genotoxicity of these nanomaterials. This underlines the need for a standardized test procedure to detect genotoxicity.1,2 Aiming at the development of fast, easy to use, and automatable microscopic methods for the determination of the genotoxicity of different types of nanoparticles, we assess the potential of the fluorometric γH2AX assay for this purpose. This assay, which can be run on an automated microscopic detection system, relies on the determination of DNA double strand breaks as a sign for genotoxicity.3 Here, we present first results obtained with broadly used nanomaterials like CdSe/CdS and InP/ZnS quantum dots as well as iron oxide, gold, and polymer particles of different surface chemistry with previously tested colloidal stability. These studies will be also used to establish nanomaterials as positive and negative genotoxicity controls or standards for assay performance validation for users of this fluorometric genotoxicity assay. In the future, after proper validation, this microscopic platform technology will be expanded to other typical toxicity assays. References. (1) Landsiedel, R.; Kapp, M. D.; Schulz, M.; Wiench, K.; Oesch, F., Reviews in Mutation Research 2009, 681, 241-258. (2) Henriksen-Lacey, M.; Carregal-Romero, S.; Liz-Marzán, L. M., Bioconjugate Chem. 2016, 28, 212-221. (3) Willitzki, A.; Lorenz, S.; Hiemann, R.; Guttek, K.; Goihl, A.; Hartig, R.; Conrad, K.; Feist, E.; Sack, U.; Schierack, P., Cytometry Part A 2013, 83, 1017-1026. T2 - 9th International Conference on Nanotoxicology - New tools in risk assessment of nanomaterials CY - Dusseldorf/Neuss, Germany DA - 18.09.2018 KW - Nano KW - Nanotoxicity KW - Fluorescence KW - Quantum dot KW - Surface KW - Passivation shell KW - Automated assay KW - Nanoparticle PY - 2018 AN - OPUS4-47540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -