TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Simulation of solidification during keyhole laser welding of thick plates T1 - Моделирование процесса кристаллизациипри лазерной сварке со сквозным проплавлением пластин большой толщины JF - СВАРОЧНОЕ ПРОИЗВОДСТВО N2 - A method of solving the thermo-fluid dynamics problem is presented, enabling the prediction of the shape and dimensions of the weld pool during keyhole laser welding of thick plates. It is shown that the rear weld pool boundary can be satisfactorily approximated by a set of superellipses (Lamé curves). The presence of a convex rear weld pool boundary in the mid-plane has been observed experimentally and reproduced numerically. It was shown that in this zone the concentration of liquating impurities increases and the local solidification temperature decreases, contributing to the susceptibility to hot cracking. KW - Laser beam welding KW - Three-dimensional crystallization KW - Mathematical modeling KW - Superellipse KW - Thick steel plates PY - 2024 DO - https://doi.org/10.34641/SP.2023.1062.5.041 VL - 5 SP - 31 EP - 36 AN - OPUS4-59639 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karkhin, Victor A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Simulation of solidification during laser welding of thin plates T1 - Моделирование процесса кристаллизации при лазерной сварке пластин малой толщины JF - СВАРОЧНОЕ ПРОИЗВОДСТВО N2 - It is proposed to model the experimentally observed weld pool boundary with superellipses (Lamé curves) and to find the unknown parameters of the curves using optimization methods. It has been shown experimentally that during laser welding of austenitic stainless steel with a thickness of 2 mm at a speed of 20 mm/s, the rear weld pool part has a shape close to triangular which can be accurately approximated by a superellipse. Analytical dependences of the trajectory and growth rate of the crystal and its cross-sectional area on the geometry of the rear weld pool part are obtained. KW - Laser beam welding KW - Plane crystalization KW - Mathematical modeling KW - Superellipse KW - Thin steel plates PY - 2023 DO - https://doi.org/10.34641/SP.2023.1061.4.033 VL - 4 SP - 28 EP - 33 AN - OPUS4-59649 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Bachmann, Marcel A1 - Khomich, Pavel A1 - Rethmeier, Michael T1 - МОДЕЛИРОВАНИЕ ГИДРОДИНАМИЧЕСКИХ И ТЕПЛОВЫХ ПРОЦЕССОВ ПРИ ЛАЗЕРНОЙ СВАРКЕ СО СКВОЗНЫМ ПРОПЛАВЛЕНИЕМ JF - СВАРОЧНОЕ ПРОИЗВОДСТВО N2 - Разработана модель физических процессов при сварке плавлением на основе концепции эквивалентных источников теплоты. Модель включает в себя две части: термогидродинамику сварочной ванны и теплопроводность свариваемого тела вне ванны. В задаче термогидродинамики учитываются температурные зависимости свойств материала, форма парогазового канала, термокапиллярная и естественная конвекция, фазовые превращения и другие физические явления.Приведено решение задачи термогидродинамики методом конечных элементов на примере сварки стальной пластины толщиной 15 мм со сквозным проплавлением лазерным лучом (по технологии "замочная скважина"). Показано, что термокапиллярная конвекция жидкого металла является основной причиной сложной выпукло-вогнутой формы границы ванны с увеличенными размерами в приповерхностных областях. Получено удовлетворительное совпадение расчетных и экспериментальных размеров сварочной ванны. KW - ЛАЗЕРНАЯ СВАРКА KW - СВАРОЧНАЯ ВАННА KW - ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ KW - ГИДРОДИНАМИКА KW - КОНВЕКЦИЯ KW - ТЕПЛОПРОВОДНОСТЬ KW - ТЕМПЕРАТУРНОЕ ПОЛЕ KW - МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ PY - 2020 SN - 0491-6441 SP - 58 EP - 69 AN - OPUS4-50290 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Ökologische Bilanzierung von Schmelzschweißverfahren unter Berücksichtigung vor- und nachgelagerter Prozessschritte N2 - Ein wesentliches Ziel der deutschen Industriepolitik besteht darin, Rahmenbedingungen zu schaffen, welche die Positionierung nachhaltiger Produkte und Prozesse innerhalb globaler Wertschöpfungsketten ermöglichen und ökoeffiziente Fertigungsprozesse langfristig sichern. In diesem Beitrag werden aktuelle Forschungsarbeiten zur Bewertung der Umweltwirkungen der schweißtechnischen Fertigungskette anhand ausgewählter Schmelzschweißverfahren unter Berücksichtigung vor- sowie nachgelagerter Fertigungsschritte dargestellt. Eine weit verbreitete und standardisierte Methode zur Abschätzung der Umweltwirkungen eines Produkts oder Prozesses ist die Ökobilanzierung. Hierbei stellen die Sachbilanzierung, das heißt die Ermittlung sämtlicher relevanter Energie- und Ressourcenverbräuche während der schweißtechnischen Fertigung, aufgrund des hohen Dokumentationsaufwands, sowie die Ableitung assoziierter Wirkkategorien das größte Hindernis für eine Etablierung und Akzeptanz der Ökobilanzierung in der Praxis dar. Gleichwohl wird seitens Unternehmen, welche als Zulieferer von OEM’s (engl.: original equipment manufacturer) agieren, die Dokumentation des fertigungsspezifischen CO2-Verbrauches gefordert. Ein weiterer Aspekt der Arbeiten beinhaltet Methoden zur automatisierten Erfassung von schweißtechnischen Produktionsdaten sowie deren Nachverfolgbarkeit. Anhand unterschiedlicher Schweißverfahren werden die aus den Produktionsdaten abgeleiteten Energie- und Ressourcenverbräuche automatisiert in die relevanten Umweltwirkungen überführt. Die analysierten Schweißprozesse umfassen dabei ein breites für kleine und mittlere Unternehmen (KMU) relevantes Spektrum. Durch die softwareseitige Bereitstellung der aufgestellten Umweltprofile ist der Anwender in der Lage, Schweißprozesse unter ökologischen Aspekten zu bewerten und die effizienteste Variante zu identifizieren. T2 - Webinar „Zukunft des Bauens – Nachhaltigkeit bei Errichtung, Abbruch und Rückbau“ CY - Online meeting DA - 15.11.2021 KW - Ökobilanzierung KW - Verfahrensvergleich KW - Umweltwirkungen PY - 2021 AN - OPUS4-56649 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Ökologische Bilanzierung von Schmelzschweißverfahren unter Berücksichtigung vor- und nachgelagerter Prozessschritte N2 - In diesem Vortrag werden die aktuellen Forschungsergebnisse im Bereich der ökologischen Bilanzierung von Schweißprozessen dargestellt. Der Fokus liegt hierbei in der Ermittlung relevanter Wirkkategorien zur Charakterisierung der Umweltwirkungen von Schweißprozessen. Exemplarisch für verschiedene Verfahrenskombinationen werden die ökologischen Umweltwirkungen auf Basis eines Life Cycle Assessments ermittelt und verfahrensspezifische Einflussgrößen analysiert. T2 - DVS Fachausschuss 3 "Lichtbogenschweißen" CY - Salzgitter Mannesmann Forschung, Duisburg, Germany DA - 13.03.2018 KW - Life Cycle Assessment (LCA) Schweißprozesse KW - Life Cycle Assessment (LCA) Umweltwirkungen KW - Life Cycle Assessment (LCA) Fusion welding KW - Life Cycle Assessment (LCA) Impact categories PY - 2018 AN - OPUS4-46641 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Ökobilanzierung schweißtechnischer Fertigungsverfahren - Methodik, Einflussgrößen und Implementierung N2 - Ein wesentliches Ziel der deutschen Industriepolitik besteht darin, Rahmenbedingungen zu schaffen, welche die Positionierung nachhaltiger Produkte und Prozesse innerhalb globaler Wertschöpfungsketten ermöglichen und ökoeffiziente Fertigungsprozesse langfristig sichern. In diesem Beitrag werden aktuelle Forschungsarbeiten zur Bewertung der Umweltwirkungen der schweißtechnischen Fertigungskette anhand ausgewählter Schmelzschweißverfahren unter Berücksichtigung vor- sowie nachgelagerter Fertigungsschritte dargestellt. Eine weit verbreitete und standardisierte Methode zur Abschätzung der Umweltwirkungen eines Produkts oder Prozesses ist die Ökobilanzierung. Hierbei stellen die Sachbilanzierung, das heißt die Ermittlung sämtlicher relevanter Energie- und Ressourcenverbräuche während der schweißtechnischen Fertigung, aufgrund des hohen Dokumentationsaufwands, sowie die Ableitung assoziierter Wirkkategorien das größte Hindernis für eine Etablierung und Akzeptanz der Ökobilanzierung in der Praxis dar. Gleichwohl wird seitens Unternehmen, welche als Zulieferer von OEM’s (engl.: original equipment manufacturer) agieren, die Dokumentation des fertigungsspezifischen CO2-Verbrauches gefordert. Ein weiterer Aspekt der Arbeiten beinhaltet Methoden zur automatisierten Erfassung von schweißtechnischen Produktionsdaten sowie deren Nachverfolgbarkeit. Anhand unterschiedlicher Schweißverfahren werden die aus den Produktionsdaten abgeleiteten Energie- und Ressourcenverbräuche automatisiert in die relevanten Umweltwirkungen überführt. Die analysierten Schweißprozesse umfassen dabei ein breites für kleine und mittlere Unternehmen (KMU) relevantes Spektrum. Durch die softwareseitige Bereitstellung der aufgestellten Umweltprofile ist der Anwender in der Lage, Schweißprozesse unter ökologischen Aspekten zu bewerten und die effizienteste Variante zu identifizieren. T2 - Woche der Fügetechnik 2022, HWK Münster CY - Online meeting DA - 30.11.2022 KW - Ökobilanzierung KW - Verfahrensvergleich KW - Schweißprozesse KW - Umweltwirkungen KW - Implementierung PY - 2022 AN - OPUS4-56650 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Äquivalente Wärmequellenmodellierung beim Hochleistungslaserstrahlschweißen dicker Bleche T2 - 38. Assistentenseminar Füge- und Schweißtechnik N2 - Der vorgestellte Modellierungsprozess dient zur Abschätzung einer geeigneten äquivalenten Wärmequelle und Berechnung des thermischen Verhaltens beim Laserstrahlschweißen. Die Methode Kombiniert die Vorteile von gägngigen Simulationsverfahren und reduziert die berücksichtigte Anzahl an physikalischen Aspekten und Kalibrierungsparameter. Durch die modellierten physikalischen Phänomene konnten die Informationen über die Strömung im Schmelzbad und dessen Einfluss auf die resultierende lokale Temperaturverteilung und folglich auf das transiente Temperaturfeld gewonnen werden. Dadurch wurde die Simulatioszeit(inkl. Kalibrierungsaufwand) auf weniger als einen Tag Rechenzeit verringert. T2 - 38. Assistentenseminar Füge- und Schweißtechnik CY - Rabenau, Germany DA - 06.10.2017 KW - Äquivalente Wärmequelle KW - Bewegtes Gitter KW - Hochleistungslaserstrahlschweißen KW - Prozesssimulation KW - Knotenweise Zwangsbedingungen PY - 2019 SN - 978-3-96144-028-3 VL - 342 SP - 66 EP - 76 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-47699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Seitz, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Wire Electron Beam Additive Manufacturing von niedriglegierten Zinnbronzen – Erreichbare Bauteileigenschaften und Prozessmerkmale T2 - Kupfer-Symposium 2023 Vortragsband N2 - Die Additive Fertigung gewinnt zunehmend an Bedeutung für die Verarbeitung von Kupferwerkstoffen im industriellen Umfeld. Hierbei wird verstärkt auf drahtförmige Ausgangswerkstoffe gesetzt, da diese Vorteile im Handling bieten, bereits aus der Schweißtechnik bekannt sind und sich zumeist durch geringere Beschaffungskosten auszeichnen. In den letzten Jahren entwickelte sich unter den drahtbasierten Verfahren der Directed-Energy-Deposition (DED) eine Prozessvariante unter Nutzung des Elektronenstrahls zur industriellen Marktreife. Dabei zeigt die Technologie Wire Electron Beam Additive Manufacturing (DED-EB) besondere Vorteile gegenüber anderen DED-Prozessen für die Anwendung an Kupfer. Um das Verfahren einem breiten Anwenderkreis in der Industrie zugänglich zu machen, fehlen jedoch Daten zu Leistungsfähigkeit, Prozessgrenzen und Anwendungsmöglichkeit- en. Die vorliegende Untersuchung beschäftigt sich mit dieser Problemstellung am Beispiel der Legierung CuSn1MnSi. Über mehrstufige Testschweißungen werden die physikalisch möglichen Prozessgrenzen ermittelt und Rückschlüsse über die Eignung der Parameter zum additiven Aufbau gezogen. An verschiedenen additiv gefertigten Probekörpern werden anschließend Kennwerte für Aufbaurate, Härte, Mikrostruktur, Oberflächenqualität sowie mechanische Festigkeitswerte ermittelt. Es zeigt sich, dass das die durch DED-EB hergestellten Proben, trotz des groben Gefüges sowie der thermischen Belastung im Aufbauprozess, in ihren Eigenschaften gut mit den Spezifikationen des Ausgangsmaterials übereinstimmen. T2 - Kupfersymposium 2023 CY - Jena, Germany DA - 29.11.2023 KW - Wire Electron Beam Additive Manufacturing KW - DED-EB KW - CuSn1 KW - Additive Fertigung PY - 2023 SN - 978-3-910411-03-6 SP - 28 EP - 33 PB - Kupferverband e. V. AN - OPUS4-59118 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Wire arc additive manufacturing with novel Al-Mg-Si filler wire - Assessment of weld quality and mechanical properties JF - Metals N2 - Wire arc additive manufacturing enables the production of near-net shape large-volume metallic components leveraging an established industrial base of welding and cladding technology and adapting it for layer-wise material deposition. However, the complex relationship between the process parameters and resulting mechanical properties of the components still remains challenging. In case of high-strength Al-Mg-Si aluminum alloys, no commercial filler wires are yet available due the high susceptibility of solidification cracking as well as the necessary efforts to obtain acceptable mechanical properties. To address this need, we evaluated a novel filler wire based on AlMg0.7Si doped with a Ti5B1 master alloy to foster fine equiaxed grains within the deposited metal. The correlation between the process parameters and component quality was examined by analyzing the size and distribution of pores as well as the grain morphology. Furthermore, we evaluated the influence of different post-weld heat treatment strategies to achieve mechanical properties corresponding to the reference wrought material. We demonstrated that fine equiaxed grains in the weld metal reduced the susceptibility of solidification cracking significantly. The novel AlMg0.7Si-TiB (S Al 6063-TiB) filler wire facilitated wire arc additive manufacturing of high-strength aluminum components with mechanical properties that were almost as superior as the corresponding wrought base material. KW - Wire arc additive manufacturing KW - Precipitation hardening aluminum alloys KW - AlMg0.7SiTiB filler wire KW - Grain refinement KW - Mechanical properties PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538327 DO - https://doi.org/10.3390/met11081243 SN - 2075-4701 VL - 11 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-53832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Welding with high-power lasers: trends and developments T2 - Physics Procedia - 9th International Conference on Photonic Technologies - LANE 2016 N2 - High-power laser beam welding became new stimuli within the last 10 years due to the availability of a new generation of high brightness multi kilowatt solid state lasers. In the welding research new approaches have been developed to establish reliable and praxis oriented welding processes meeting the demands of modern industrial applications during this time. The paper focuses on some of the current scientific and technological aspects in this research field like hybrid laser arc welding, simulation techniques, utilization of electromagnetic fields or reduced pressure environment for laser beam welding processes, which contributed to the further development of this technology or will play a crucial role in its further industrial implementation. T2 - 9th International Conference on Photonic Technologies - LANE 2016 CY - Fürth, Germany DA - 19.09.2016 KW - High-power Laserbeam Welding KW - Electromagnetic Force KW - Vacuum KW - Simulation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377280 DO - https://doi.org/10.1016/j.phpro.2016.08.003 VL - 83 SP - 15 EP - 25 PB - Elsevier B.V. CY - Berlin, Germany AN - OPUS4-37728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey T1 - Welding with high-power lasers: trends and developments N2 - High power laser welding technology has made a large progress in the last decade and established itself in different industrial applications; Hybrid laser arc welding is one of the most prospective technologies for heavy components assembling; Modern high speed video observation, in situ x-ray screening as well as simulation techniques contributed to better understanding of laser welding process; New approaches e.g. application of electromagnetic fields for melt pool control and welding at reduced pressure ambient have significantly contributed to extending the process boundaries far beyond the known Limits. T2 - LANE 2016 CY - Fürth, Germany DA - 19.09.2016 KW - Laser hybrid welding KW - Process diagnostics and simulation KW - Electromagnetic weld support system KW - Laser beam welding under vacuum/reduced pressure PY - 2016 AN - OPUS4-38340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Pittner, Andreas A1 - Haeberle, Nicolas A1 - Fabry, Çağtay T1 - Welding simulation for the digital factory N2 - Contents 1 Introduction 2 What is possible? -case study 3 Perspectives –utilization for arc process automation 4 Conclusion T2 - CAWE 2017 CY - Jinan, China DA - 18.10.2017 KW - Welding simulation KW - Digital factory PY - 2017 AN - OPUS4-43529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey T1 - Welding of thick metal plates with laser - Where are the limits? N2 - -With modern high-power lasers (and vacuum) penetration around 100 mm is possible -Important for industrial applications: single-pass full penetration welds with tolerances -Contactless EM-backing helps to overcome many main restrictions: -Single-pass HLAW of up to 30 mm can be realized with 20 kW laser power -Increase of the gap bridgeability and misalignement of edges -Lower sensitivity to manufacturing tolerances and edge quality; samples can be prepared by a plasma-cut instead of time-consuming milling process -Gives the possibility to increase the welding parameter window and cooling rate so that the required mechanical properties can be reached -Improved filler wire mixing behaviour T2 - AKL22 - International Laser Technology Congress CY - Aachen, Germany DA - 04.05.2022 KW - Laser hybrid welding KW - Thick-walled steel KW - High-power laser KW - Electromagnetic backing PY - 2022 AN - OPUS4-56367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Weld pool shape observation in high power laser beam welding JF - Procedia CIRP N2 - The geometry of the melt pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. In this study, a butt configuration of 15 mm thick structural steel and transparent quartz glass was used to observe the weld pool geometry by means of high-speed camera and an infrared camera recording. The observations show that the dimensions of the weld pool vary depending on the depth. The areas close to the weld pool surface take a teardrop-shape. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a 3D transient thermal-fluid numerical simulation was performed to obtain the weld pool shape and to understand the formation mechanism of the observed bulging effect. The model takes into account the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. The numerical results showed good accordance and were furthermore used to improve the understanding of the experimentally observed bulging effect. T2 - LANE Conference 2018 CY - Fürth, Germany DA - 03.09.2018 KW - High power laser beam welding KW - Weld pool shape KW - Bulging KW - Numerical process simulation PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458759 DO - https://doi.org/10.1016/j.procir.2018.08.043 SN - 2212-8271 VL - 74 SP - 683 EP - 686 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-45875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winterkorn, R. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Vorteile und Herausforderungen dynamischer Parameterstudien beim Wire Arc Additive Manufacturing von Al-Mg-Si-Legierungen T2 - DVS-Berichte N2 - Der Einsatz von Aluminiumlegierungen als Konstruktionswerkstoff hat in den letzten Jahren stetig zugenommen. Insbesondere höherfeste Aluminiumlegierungen, wie die Vertreter der 6000’er Aluminiumgruppe, rücken Aufgrund ihres hervorragenden Festigkeits- / Gewichtsverhältnisses immer mehr in den Fokus. Vertreter dieser Aluminiumklasse, die als Hauptlegierungselemente Magnesium und Silizium beinhalten, weisen neben der bei allen Aluminiumlegierungen präsenten Affinität zur Porenbildung zusätzlich eine ausgeprägte Heißrissanfälligkeit auf. Die additive Verarbeitung von Al-Mg-Si-Legierungen mittels MSG Verfahren gestaltet sich daher herausfordernd. Neben der Schweißeignung ist die geometrische Gestalt der Schweißraupe für die additive Fertigung von entscheidender Bedeutung. Spurbreite und Spurhöhe sind maßgebliche Größen, die bei der Pfadgenerierung im Hinblick auf Endkonturnähe und der Vermeidung von Ungänzen, Poren und Bildefehlern zu beachten sind. Dieser Beitrag zeigt am Beispiel des Wire Arc Additive Manufacturing von Al-Mg-Si-Legierungen einen Ansatz, mit dem es möglich ist, zeit- und kostenintensive vollfaktorielle Parameterstudien zum Erhalt von Spurgeometrie und Schweißqualität durch dynamische Parameterstudien zu ersetzen. T2 - 41. Assistentenseminar Fügetechnik CY - Magdeburg, Germany DA - 02.09.2020 KW - WAAM PY - 2021 SN - 978-3-96144-141-9 VL - 370 SP - 1 EP - 10 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-52902 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biegler, M. A1 - Rethmeier, Michael ED - Mayr, P. ED - Berger, M. T1 - Vorhersage zur Bauteilmaßhaltigkeit bei der additiven Fertigung mittels Schweißstruktursimulation T2 - Füge- und Montagetechnik Chemnitz 2017 N2 - Ziel bei der Anwendung von Schweißstruktursimulation in der additiven Fertigung ist die Anzahl an notwendigen Experimenten bis zur Erreichung von Maßhaltigkeit und gewünschter Bauteilqualität zu reduzieren. Für die Laser-Metal-Deposition besteht durch die im Vergleich zu pulverbettbasierten Verfahren größeren Auftragsraten und Spurgrößen - die Möglichkeit, schon heute volltransiente thermomechanische Simulationen für kleine Bauteile durchzuführen. Da das Bauteil nicht von Pulver umschlossen ist, kann im Prozess die Wärmeverteilung und der Bauteilverzug gemessen werden. In diesem Vortrag wird der Arbeitsablauf beim additiven Aufbau einer kleinen Struktur aus Inconel 718 demonstriert. Im Experiment werden die Temperaturverteilungen mittels Thermoelementen sowie der Verzug der Bodenplatte durch einen Laserabstandssensor gemessen. Die phänomenologische Wärmequelle in der Simulation wird anhand von Temperaturmessungen und Querschliffen kalibriert und der mechanische Verzug der Basisplatte wird mit in-situ Messwerten abgeglichen. Abschließend wird die Rechenzeit des Modells bewertet und gezeigt wie die Simulation die Bauteilqualität vorhersagen kann. T2 - Füge- und Montagetechnik Chemnitz 2017 CY - Chemnitz, Germany DA - 14.11.2017 KW - Schweißstruktursimulation KW - Additive KW - Laser-Metal-Deposition KW - Pulverbettbasiert KW - Spurgröße KW - Volltransient KW - Thermomechanisch KW - Inconel 718 KW - Phänomenologisch PY - 2017 SN - 978-3-96100-034-0 SN - 2365-8096 SN - 2365-810X VL - 2017/2 SP - 37 EP - 46 PB - readbox unipress CY - Münster AN - OPUS4-43105 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gook, Sergej A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Vermeidung von Schweißimperfektionen im Überlappbereich bei laserstrahlhybridgeschweißten Rundnähten T2 - DVS Congress - Große Schweißtechnische Tagung N2 - Die Laserstrahl-Hybrid-Schweißtechnologie erweist sich in der schweißtechnischen Fertigung immer mehr als innovative Alternative gegenüber anderen Schweißverfahren. Obwohl das Laserstrahl-Hybridschweißverfahren viele wirtschaftliche Vorteile gegenüber herkömmlichen Schweißverfahren aufweist, wie z.B. große Einschweißtiefe und dadurch eine reduzierte Anzahl von Schweißlagen, geringe thermische Belastung des Grundwerkstoffes aufgrund reduziertem Wärmeeintrag, konnte das Schweißverfahren überwiegend für das Schweißen von Längsnähten demonstriert werden. Eine Vielzahl von Schweißaufgaben, z.B. beim Schweißen von Segmenten von Windkraftanlagen oder dem Orbitalschweißen beim Verlegen von Großrohrleitungen sieht vor, dass die zu schweißenden Bauteile mit einer Rundnaht zusammengefügt werden. Die schweißtechnische Herausforderung ist hier, dass beim Schließen einer Rundnaht mit der Entstehung eines fehlerbehafteten Überlappbereiches zu rechnen ist. Ein zentrales Problem im Überlappbereich einer laserstrahl- sowie laserhybridgeschweißten Rundnaht ist die Bildung von Imperfektionen wie Poren, Rissen sowie die Bildung eines Endkraters, welcher als geometrische Kerbe wirkt. Bisher liegen keine universellen Lösungen zur fehlerfreien Ausführung von geschlossenen Rundnähten beim Laserstrahl-Hybridschweißen vor. Diese Studie befasst sich mit der Entwicklung eines Verfahrens, mit dem die Entstehung von o.g. Schweißimperfektionen vermieden wird. Die Strategie der Prozessführung beim Schließen der Rundnaht sieht hervor, dass ein fehlerfreier Überlappbereich durch die Kontrolle der Erstarrungsbedingungen am Schweißnahtende erreicht werden kann. Die kontrollierte Wärmeführung wird durch eine Anpassung der Parameter von beiden beteiligten Schweißprozessen, dem Laserstrahl- sowie MSG-Schweißprozess realisiert. Im Rahmen dieser Arbeit wurde eine Serie von Schweißversuchen an 9,5 mm dicken Rohabschnitten aus hochfestem Pipelinestahl X100Q mit Variation der Prozessparameter wie der Laserleistung, der Defokussierung des Laserstrahls sowie der Endkraterfüllzeit im Überlappbereich der Rundnaht durchgeführt. Nachfolgend werden die erzielten Ergebnisse dargestellt und diskutiert. T2 - DVS-Studentenkongress 2019 CY - Dusseldorf, Germany DA - 16.09.2019 KW - Laserstrahlschweißen KW - Laserhybridschweißen KW - Rundnaht KW - Endkrater KW - Überlappbereich KW - Defokussierung PY - 2019 SP - 370 EP - 378 AN - OPUS4-49242 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gook, S. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey T1 - Vermeidung von Schweißimperfektionen im Überlappbereich bei laserstrahlhybrid-geschweißten Rundnähten N2 - Schwerpunkte: Strategie zur Vermeidung von Schweißimperfektionen im Überlappbereich beilaserhybridgeschweißten Rundnähten für 9.5 mm dicke Rohre. Anpassung der Laserleistung in Kombination mit der Defokussierung des Laserstrahls sowie einer Endkraterfüllung am Ende der Schweißnaht führte zu einer besseren Nahtausbildung. Herausrampung der Energie des Schweißprozesses, sodass ein Übergang von Durchschweißung zu einer Einschweißung mit gewünschter kelchförmiger Nahtgeometrie stattfand. Einstellung eines Wärmestaus durch Defokussierung und Verschiebung des Laserstrahls führt zu einem gut ausgebildeten Überlappbereich ohne Poren, Risse. Schweißungen an Rohrabschnitten mit einer max. Wandstärke von 15 mm, bei gegebenenfalls weiteren Parameteranpassungen. T2 - DVS Congress 2019 CY - Rostock, Germany DA - 16.09.2019 KW - Rundnähte KW - Laserhybridschweißen KW - Endkrater PY - 2019 AN - OPUS4-49895 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Verfahren zum fehlerfreien Laserstrahl-MSG-Hybridschweißen geschlossener Rundnähte JF - Laserstrahl-MSG-Hybridschweissen N2 - In diesem Beitrag werden Ergebnisse der Untersuchungen eines Verfahrens zum fehlerfreien Laserstrahl-MSG-Hybridschweißen von geschlossenen Rundnähten vorgestellt. Das Verfahren zielt auf die Vermeidung von Schweißnahtunregelmäßigkeiten im Überlappbereich einer hybridgeschweißten Rundnaht. Eine Strategie der Prozessführung beim Schließen der Rundnaht wurde entwickelt, mit der ein fehlerfreier Überlappbereich durch die Kontrolle der Erstarrungsbedingungen am Schweißnahtende erreicht wird. Die kontrollierte Wärmeführung wird durch eine Anpassung der Parameter von beiden beteiligten Schweißprozessen, dem Laserstrahl sowie dem Metallschutzgas (MSG)-Schweißprozess, realisiert. Experimentelle Untersuchungen wurden an 12 bis 15 mm dicken Rohrabschnitten durchgeführt. Der Einfluss von Prozessparametern wie der Veränderung des Abbildungsmaßstabs und der Defokussierung des Laserstrahls auf die Erstarrungsbedingungen am Ende der Rundnaht wurde untersucht, um eine optimale Strategie zum Herausführen der Prozessenergie zu finden. Im Rahmen der experimentellen Untersuchungen konnte gezeigt werden, dass eine Defokussierung des Laserstrahls im Bereich zwischen 60 mm und 100 mm über einen kurzen Auslaufbereich der Naht von etwa 15 mm zu einer deutlich besseren Nahtausbildung im Überlappbereich führt. Es konnte eine günstige kelchförmige Schweißnaht ohne eine Tendenz zur Rissbildung erzielt werden. Die Laseroptik mit motorisch angesteuertem Linsensystem ermöglichte dabei eine Vergrößerung des Laserstrahldurchmessers ohne eine Veränderung der Position des MSG-Lichtbogens relativ zur Bauteiloberfläche. KW - Hybrid welding KW - Laser beam welding KW - Pipe manufacturing KW - As-shielded arc welding KW - Weld defects PY - 2021 VL - 73 IS - 3 SP - 116 EP - 121 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-52365 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gook, Sergej A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey T1 - Verfahren zum fehlerfreien Laserstrahl-Hybridschweißen von geschlossenen Rundnähten N2 - In diesem Beitrag werden Ergebnisse der Untersuchungen eines Verfahrens zum fehlerfreien Laserstrahl-Hybridschweißen von geschlossenen Rundnähten vorgestellt. Das Verfahren zielt auf die Vermeidung von Schweißimperfektionen im Überlappbereich einer laserstrahlhybridgeschweißten Rundnaht. Eine Strategie der Prozessführung beim Schließen der Rundnaht wurde entwickelt, mit der ein fehlerfreier Überlappbereich durch die Kontrolle der Erstarrungsbedingungen am Schweißnahtende erreicht wird. Die kontrollierte Wärmeführung wird durch eine Anpassung der Parameter von beiden beteiligten Schweißprozessen, dem Laserstrahl- sowie MSG-Schweißprozess realisiert. Experimentelle Untersuchungen wurden an 12 mm bis 15 mm dicken Rohrabschnitten durchgeführt. Der Einfluss von Prozessparametern wie der Laserleistungsrampe und Rampenzeit, der Veränderung des Abbildungsmaßstabes und der Defokussierung des Laserstrahls auf die Erstarrungsbedingungen am Ende der Rundnaht wurde untersucht, um eine optimale Strategie zum Herausführen der Prozessenergie zu finden. Im Rahmen der experimentellen Untersuchungen konnte gezeigt werden, dass eine Defokussierung des Laserstrahls im Bereich zwischen 60 mm und 100 mm über einen kurzen Auslaufbereich der Naht von ca. 15 mm zu einer deutlich besseren Nahtausbildung im Überlappbereich führte. Es konnte eine günstige kelchförmige Schweißnahtform ohne eine Tendenz zur Rissbildung erzielt werden. Die Laseroptik mit motorisch angesteuertem Linsensystem ermöglichte dabei eine Vergrößerung des Laserstrahldurchmessers ohne eine Veränderung der Position des MSG-Lichtbogens relativ zur Bauteiloberfläche. T2 - DVS CONGRESS 2020 CY - Online meeting DA - 14.09.2020 KW - Endkrater KW - Rundnaht KW - Laserhybridschweißen PY - 2020 AN - OPUS4-51749 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gook, S. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Verfahren zum fehlerfreien Laserstrahl-Hybridschweißen von gechlossenen Rundnähten T2 - DVS CONGRESS 2020 - DVS-Berichte N2 - In diesem Beitrag werden Ergebnisse der Untersuchungen eines Verfahrens zum fehlerfreien Laserstrahl Hybridschweißen von geschlossenen Rundnähten vorgestellt. Das Verfahren zielt auf die Vermeidung von Schweißimperfektionen im Überlappbereich einer laserstrahlhybridgeschweißten Rundnaht. Eine Strategie der Prozessführung beim Schließen der Rundnaht wurde entwickelt, mit der ein fehlerfreier Überlappbereich durch die Kontrolle der Erstarrungsbedingungen am Schweißnahtende erreicht wird. Die kontrollierte Wärmeführung wird durch eine Anpassung der Parameter von beiden beteiligten Schweißprozessen, dem Laserstrahl- sowie MSG­ Schweißprozess realisiert. Experimentelle Untersuchungen wurden an 12 mm bis 15 mm dicken Rohrabschnitten durchgeführt. Der Einfluss von Prozessparametern wie der Laserleistungsrampe und Rampenzeit, der Veränderung des Abbildungsmaßstabes und der Defokussierung des Laserstrahls auf die Erstarrungsbedingungen am Ende der Rundnaht wurde untersucht, um eine optimale Strategie zum Herausführen der Prozessenergie zu finden. Im Rahmen der experimentellen Untersuchungen konnte gezeigt werden, dass eine Defokussierung des Laserstrahls im Bereich zwischen 60 mm und 100 mm über einen kurzen Auslaufbereich der Naht von ca. 15 mm zu einer deutlich besseren Nahtausbildung im Überlappbereich führte. Es konnte eine günstige kelchförmige Schweißnahtform ohne eine Tendenz zur Rissbildung erzielt werden. Die Laseroptik mit motorisch angesteuertem Linsensystem ermöglichte dabei eine Vergrößerung des Laserstrahldurchmessers ohne eine Veränderung der Position des MSG-Lichtbogens relativ zur Bauteiloberfläche. T2 - DVS Congress 2020 CY - Online meeting DA - 14.09.2020 KW - Defokussierung KW - Endkrater KW - Laser-Hybridschweißen KW - Rundnaht KW - Überlappbereich PY - 2020 SN - 978-3-96144-098-6 VL - 365 SP - 855 EP - 860 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-51324 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Verbesserung der Übertragbarkeit eines künstlichen neuronalen Netzes zur Qualitätsvorhersage beim Widerstandspunktschweißen von hochfesten Stählen T2 - DVS Congress 2023 Große Schweißtechnische Tagung N2 - Eine typische Automobilkarosserie kann bis zu 5000 Widerstandspunktschweißverbindungen aufweisen, welche hohen Qualitätsanforderungen genügen müssen. Daher ist eine durchgehende Prozessüberwachung unerlässlich. Die Transformation zur E-Mobilität in der Automobilindustrie und die damit einhergehende Reichweitenproblematik treiben die Entwicklung und Einführung neuer hochfester Stähle an. Dies resultiert in einem gesteigerten Fertigungsaufwand hinsichtlich einer stabilen Prozess-führung in der Fügetechnik. Um diesen Anstieg an Komplexität zu bewältigen, sind die Methoden der künstlichen Intelligenz ein geeignetes Mittel. Mit ihnen kann, durch Auswertung der Prozessparameter und -signale, die individuelle Schweißpunktqualität sichergesellt werden. Die Vorhersagegenauigkeit von neuen Daten, also das extrapolieren, stellt für die meisten Algorithmen eine große Herausforderung dar. In dieser Arbeit wird ein künstliches neuronales Netz zur Vorhersage des Punktdurchmessers von Widerstandspunktschweißungen anhand von Prozessparametern implementiert. Die Vorhersagegenauigkeit und Extrapolationsfähigkeit des Modells wird durch die Auswertung des dynamischen Widerstandssignals verbessert. Um die Extrapolationsfähigkeit zu untersuchen, wird die Vorhersagegenauigkeit des Modells mit Daten getestet, die sich in Bezug auf den Werkstoff und der Beschichtungszusammensetzung deutlich von den Trainingsdaten unterscheiden. Dazu wurden mehrere Schweißexperimente mit Werkstoffen verschiedener Hersteller durchgeführt und nur ein Teil der Daten in das Training einbezogen. Die Ergebnisse dieser Arbeit verdeutlichen den positiven Einfluss der Prozesssignale auf die Robustheit des Modells und die Skalierbarkeit der Algorithmen künstlicher neuronaler Netze auf Daten außerhalb des Trainingsraums. T2 - DVS Congress 2023 Große Schweißtechnische Tagung CY - Essen, Germany DA - 11.09.2023 KW - Widerstandspunktschweißen KW - Hochfester Stahl KW - Künstliche Intelligenz KW - Neuronales Netz KW - Fügequalität PY - 2023 SN - 978-3-96144-230-0 SP - 772 EP - 779 AN - OPUS4-58693 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Verbesserung der Vorhersagegüte von künstlichen neuronalen Netzen zum Widerstandspunktschweißen durch Auswertung des dynamischen Widerstands JF - Schweißen und Schneiden N2 - Das Widerstandspunktschweißen ist ein etabliertes Fügeverfahren in der Automobilindustrie. Es wird vor allem bei der Herstellung sicherheitsrelevanter Bauteile, zum Beispiel der Karosserie, eingesetzt. Daher ist eine kontinuierliche Prozessüberwachung unerlässlich, um die hohen Qualitätsanforderungen zu erfüllen. Künstliche neuronale Netzalgorithmen können zur Auswertung der Prozessparameter und -signale eingesetzt werden, um die individuelle Schweißpunktqualität zu gewährleisten. Die Vorhersagegenauigkeit solcher Algorithmen hängt von dem zur Verfügung gestellten Trainingsdatensatz ab. In diesem Beitrag wird untersucht, inwieweit die Vorhersagegüte eines künstlichen neuronalen Netzes durch Auswertung einer Prozessgröße, dem dynamischen Widerstand, verbessert werden kann. KW - Künstliche Intelligenz KW - Qualität KW - Neuronales Netz KW - Widerstandspunktschweißen PY - 2021 SP - 785 EP - 789 AN - OPUS4-53976 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyerdierks, M. A1 - Schreiber, V. A1 - Böhne, Ch. A1 - Jüttner, S. A1 - Meschut, G. A1 - Rethmeier, Michael T1 - Validierung von Methoden zur Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen (IGF 21483 BG / P 1488) N2 - Ziel des Forschungsprojekts ist es, eine Korrelation zwischen Gleeble-Heißzug-Prüfverfahren und Widerstandspunktschweiß-basierten Prüfverfahren herzustellen. Es soll die Effektivität von Methoden zu Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen bewertet werden. Weiterhin soll Kenntnis über Auswirkungen von LME Rissen auf das Tragverhalten von realitätsnahen Prinzipbauteilen gewonnen werden. T2 - 30. Schweißtechnische Fachtagung CY - Barleben, Germany DA - 07.10.2021 KW - Liquid Metal Embrittlement KW - Gleeble KW - Heißzug KW - Widerstandpunktschweißen KW - Flüssigmetallversprödung PY - 2021 AN - OPUS4-54061 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Vinzenz A1 - Fasselt, Janek Maria A1 - Kruse, Tobias A1 - Klötzer, Christian A1 - Kleba-Ehrhardt, Rafael A1 - Choma, Tomasz A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Using ultrasonic atomization to recycle aluminium bronze chips for additive laser directed energy deposition JF - IOP Conference Series: Materials Science and Engineering N2 - Abstract In the post-processing of large maritime components, a considerable amount of waste in the form of milling and grinding chips is produced. At the same time, additive manufacturing technologies have shown great potential in producing high-volume parts for maritime applications, allowing novel design approaches and short lead times. In this context, this study presents a sustainable approach to recycle and use aluminium bronze waste material, generated during post-processing of large cast ship propellers, as feedstock for laser-powder directed energy deposition. The recycling technology used to produce powder batches is inductive re-melting in combination with ultrasonic atomization. The derived metal powders are characterized using digital image analysis, powder flowability tests, scanning electron microscopy as well as energy dispersive X-ray spectroscopy. Compared to conventional metal powders produced by gas atomization, the recycled material shows excellent sphericity and a powder size distribution with a higher content of finer and coarser particles. Metallographic sections of deposited additively produced specimens show an increased hardness and reduced ductility, but also competitive densities and higher yield and ultimate tensile strength compared to cast material. The process chain shows high potential for the maritime sector to enable circular and sustainable manufacturing. KW - Industrial and Manufacturing Engineering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594444 DO - https://doi.org/10.1088/1757-899X/1296/1/012036 VL - 1296 IS - 1 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-59444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Untersuchungen der Heißrissanfälligkeit laserstrahlgeschweißter Verbindungen austenitischer Stähle T2 - 36. Assistentenseminar Füge- und Schweißtechnik N2 - Die lokalen Dehnungen bzw. Dehngeschwindigkeiten im heißrisskritischen Temperaturintervall sind Funktionen des Temperaturfeldes im Nahbereich des Schmelzbades (Schweißverfahren, Werkstoff), der thermo-mechanischen Kennwerte des Versuchswerkstoffes sowie von außen aufgebrachten Verfor-mungen. Da die lokal vorherrschenden Dehnungen im Nahbereich des Schmelzbades nicht bzw. nur mit sehr aufwendigen Methoden ermittelt werden können, dienen bespielweise die im CTW-Test (Controlled Tensile Weldability) von außen aufgebrachten Dehnungen oder Dehnraten als Kriterium für die Heißriss-empfindlichkeit. In dieser Studie wurde CTW-Test zur Untersuchung der Heißrissresistenz verschiedenen austenitischen Stählen eingesetzt. T2 - 36. Assistentenseminar Füge- und Schweißtechnik CY - Brunswick, Germany DA - 05.10.2015 KW - Heißriss KW - Heißrissresistenz KW - Austenitische Stähle KW - CTW-Test PY - 2017 SN - 978-3-945023-57-0 SP - 106 EP - 111 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-41246 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zur Herstellung von Cu-Strukturen mittels Wire Electron Beam Additive Manufacturing T2 - DVS-Berichte N2 - Das Additive Manufacturing gewinnt zunehmend an Bedeutung für die Fertigung metallischer Bauteile im industriellen Umfeld. Hierbei wird zunehmend auch auf drahtförmige Ausgangswerkstoffe gesetzt, da diese Vorteile im Handling bieten, bereits in der Industrie etabliert sind und sich in der Regel durch geringere Beschaffungskosten auszeichnen. In den letzten Jahren entwickelte sich neben den bereits im großen Umfeld untersuchten Wire-DED-Verfahren auch eine Prozessvariante unter Nutzung des Elektronenstrahls zur industriellen Marktreife. Dabei zeigt die als Wire Electron Beam Additive Manufacturing bezeichnete Technologie besondere Vorteile gegenüber anderen, zumeist Laser- oder Lichtbogen-basierten DED-Prozessen. Das Verfahren bietet vor allem Potenzial für die Verarbeitung von hochleitfähigen, reflektierenden oder oxidationsgefährdeten Werkstoffen. Insbesondere für die Herstellung von Bauteilen aus Kupferlegierungen zeigt sich der Elektronenstrahl als besonders geeignet. Um das Verfahren einem breiten Anwenderkreis in der Industrie zugänglich zu machen, fehlen jedoch übergreifende Daten zu Leistungsfähigkeit, Prozessgrenzen und Anwendungsmöglichkeiten. Die vorliegende Untersuchung beschäftigt sich mit dieser Problemstellung am Beispiel zweier Cu-Werkstoffe. Dabei werden ein korrosionsbeständiger Werkstoff aus dem maritimen Bereich sowie eine Bronze mit guten Verschleißeigenschaften aus dem Anlagenbau getestet. Über mehrstufige Testschweißungen wurden die physikalisch möglichen Prozessgrenzen ermittelt und Rückschlüsse über die Eignung der Parameter zum additiven Aufbau gezogen. Hierfür wurden zunächst optimale Bereiche für den Energieeintrag anhand von Volumenenergie sowie mögliche Schweißgeschwindigkeiten untersucht. Anschließend wurde die Skalierbarkeit des Prozesses anhand von Strahlstrom und Drahtvorschub getestet. Als wesentliche Zielgrößen wurden dabei Spurgeometrie, Aufmischung und Härte herangezogen. Die Eignung der ermittelten Parameter wurde im letzten Schritt exemplarisch anhand einer additiven Testgeometrie in Form eines Zylinders nachgewiesen. T2 - DVS Congress 2022 Große Schweißtechnische Tagung DVS CAMPUS CY - Koblenz, Germany DA - 19.09.2022 KW - WEBAM KW - Electron beam KW - EBAM KW - Wire electron beam additive manufacturing PY - 2022 SN - 978-3-96144-189-1 VL - 382 SP - 446 EP - 454 PB - DVS Media AN - OPUS4-56058 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zum Elektronenstrahlschweißen von additiv gefertigtem Inconel 939 T2 - DVS-Berichte: Band 385 N2 - Hochfeste Nickelbasislegierungen wie Inconel 939 spielen eine wesentliche Rolle im modernen Turbinenbau. Additive Fertigungstechnologien eröffnen hierbei neue Möglichkeiten für die Verarbeitung, jedoch fehlen verlässliche Fügeprozesse für die Absicherung der additiven Prozesskette im Bereich Neuteilfertigung und Instandsetzung. Insbesondere Heißrisse stellen eine große Herausforderung an die Fügetechnik. Die vorliegende Untersuchung befasst sich daher mit dem Verhalten von additiv gefertigten Blechen aus Inconel 939 beim Elektronenstrahlschweißen. Es werden grundlegende Zusammenhänge zwischen Prozessparametern, Härte und Rissneigung betrachtet und Ansätze für eine Optimierung auf Basis statistischer Versuchsplanung aufgezeigt. Hierbei erfolgt eine Einteilung der Risse nach bestimmten Nahtbereichen. Risse am Nahtkopf können durch die Faktoren Vorschub und Streckenenergie sowie die Härte des Schweißgutes beeinflusst werden. Risse im Bereich der parallelen Nahtflanken stehen hingegen im Zusammenhang mit der Härte der Wärmeinflusszone. Ein abschließender Vergleich der angepassten Parameter mit der Ausgangssituation zeigt, dass durch Anwendung der statistischen Optimierung eine deutliche Reduzierung der Rissneigung erreicht werden kann. T2 - 42. Assistentenseminar Fügetechnik CY - Beverungen, Germany DA - 06.10.2021 KW - Elektronenstrahlschweißen KW - Additive Fertigung KW - Schweißnahtbewertung PY - 2022 SN - 978-3-96144-210-2 VL - 385 SP - 1 EP - 8 PB - DVS Media GmbH AN - OPUS4-57320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Jokisch, T. A1 - Marko, A. A1 - Rethmeier, Michael T1 - Untersuchung zum Elektronenstrahlschweißen heißrissgefährdeter Nickelbasis-Superlegierungen mittels statistischer Versuchsplanung T2 - DVS CONGRESS 2020 - DVS-Berichte N2 - Nickelbasis-Superlegierungen sind seit vielen Jahren in unterschiedlichen Industrieanwendungen im Einsatz. Aufgrund der großen Heißrissneigung ist das Schweißen dieser Werkstoffe jedoch bei einer Vielzahl von Legierungen problematisch. Neue Arbeiten auf dem Gebiet zeigen, dass entgegen den gängigen Theorien auch reduzierte Schweißgeschwindigkeiten eine Tendenz zur Verringerung der Rissneigung aufweisen. Bisher existieren jedoch kaum Erkenntnisse zum Prozessverhalten in diesem Parameterbereich. In dieser Arbeit wird daher der Einfluss der relevanten Prozessparameter beim Elektronenstrahlschweißen (EBW) auf die Nahtgestalt im Bereich geringer Vorschubgeschwindigkeiten untersucht. Auf Grundlage der gewonnenen Erkenntnisse soll ein Ansatz zum rissfreien Fügen von komplexen Nickelbasis-Superlegierung gebildet werden. Die praktische Umsetzbarkeit wird abschließend anhand einiger Probeschweißungen an einem besonders heißrissgefährdeten Werkstoff demonstriert. Um fehlerfreie Verbindungen zu ermöglichen, wurden zunächst die relevanten Parameter für die Einstellung von Nahtbreite, Einschweißtiefe, Aspektverhältnis und Nahtfläche anhand einer Versuchsreihe mit 17 Blindschweißungen auf einer 12 mm dicken Platte aus Inconel 718 bestimmt. Die genaue Beschreibung des Einflusses der als signifikant identifizierten Faktoren erfolgte über die Anwendung einer Regressions- und Varianzanalyse. Die Ergebnisse zeigen, dass die Einschweißtiefe, die Nahtbreite, das Aspektverhältnis sowie die Nahtfläche vorrangig über den Strahlstrom, die Fokuslage sowie den Vorschub beeinflusst werden können. Auf Basis der gebildeten statistischen Modelle erfolgte die Vorhersage geeigneter Parameter für eine finale Versuchsreihe. Die abschließenden Demonstratorschweißungen wurden exemplarisch an einer Nickelbasis-Gusslegierung mit besonders hohem Ausscheidungsphasenanteil durchgeführt. Hierfür wurden Schweißungen im I- Stoß an 6,5 mm und 10 mm dicken Blechen ausgeführt. Trotz der mangelnden Schweißeignung und dem hohen Anteil an Ausscheidungsphase des Werkstoffes, zeigten sich nach Optimierung der Prozessparameter keine Heißrisse mehr. T2 - DVS Congress 2020 CY - Online meeting DA - 14.09.2020 KW - Heißrisse KW - Nickelbasis-Superlegierungen KW - Elektonenstrahlschweißen KW - Alloy 247 PY - 2020 SN - 978-3-96144-098-6 VL - 365 SP - 17 EP - 22 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-51320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Marquardt, R. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zum Elektronenstrahlschweißen additiv gefertigter Ni-Basis-Bauteile T2 - DVS-Berichte N2 - Die vorliegende Untersuchung befasst sich mit dem Einfluss des Additive Manufacturing auf die Schweißeignung von Bauteilen aus Inconel 718. Hierfür wurden Proben mittels DED und L-PBF hergestellt und ihr Verhalten in Blindschweißversuchen anhand eines Vergleichs mit konventionellen Gussblechen untersucht. Im zweiten Schritt wurden die verschiedenen additiv hergestellten Proben mit dem Gussmaterial im I-Stoß sowie untereinander verschweißt. Als Schweißverfahren wurde für alle Proben das Elektronenstrahlschweißen angewandt. Zur Auswertung wurde anhand von Schliffen das Nahtprofil vermessen und die Proben auf Poren und Risse untersucht. Zusätzlich wurde die Dichte vermessen und eine Prüfung auf Oberflächenrisse durchgeführt. Das AM-Material zeigte dabei Unterschiede in Nahtform und Defektneigung im Vergleich zum Gusswerkstoff. Insbesondere die DED-proben neigten unter bestimmten Parameterkonstellationen verstärkt zu Porenbildung. Risse konnten nicht beobachtet werden. Trotz auftretender Nahtunregelmäßigkeiten wurde in den kombinierten AM-Schweißproben die Bewertungsgruppe C erreicht. Eine Prüfung der bestehenden Regelwerke zur Schweißnahtbewertung anhand der gewonnenen Erkenntnisse zu additiv gefertigten Proben im Elektronenstrahlschweißprozess zeigte keinen Ergänzungsbedarf. T2 - #additivefertigung: Metall in bestForm CY - Essen, Germany DA - 26.10.2022 KW - Elektronenstrahlschweißen KW - Additive Fertigung KW - Schweißnahtbewertung PY - 2022 SN - 978-3-96144-202-7 VL - 383 SP - 81 EP - 92 PB - DVS-Media GmbH AN - OPUS4-56173 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael T1 - Unterpulverschweißen von Großrohren N2 - Unterpulverschweißen von Großrohren ist eine einzigartige Anlagentechnik im Bereich der Forschung. Es werden verschiedene Experimente durchgeführt und erläutert. Als weiteres Thema wurde das Längsnahtschweißen von Großrohren behandelt sowie verschiedene Versuche dazu durchgeführt. T2 - Fraunhofer IPK Kuratorium CY - Berlin, Germany DA - 17.11.2017 KW - Unterpulverschweißen KW - Längsnahtschweißen KW - Großrohre PY - 2017 AN - OPUS4-43608 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael T1 - Trends in European thin sheet welding N2 - 1. Steel Production and Processing in Europe 2. Design Trends in the Automotive Industry 3. Welding Technologies in the Automotive Industry 4. Problems while Processing AHSS/UHSS 5. Challenges in Joining Multi-Material Structures 6. Mechanical Joining Technologies 7. Thermal-Mechanical Joining Processes 8. Energy Efficiency of Welding Processes T2 - AWS Sheet Metal Welding Conference XVII CY - Livonia, MI, USA DA - 19.10.2016 KW - Lightweight concepts PY - 2016 AN - OPUS4-38763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Transient Process Simulation of Heat Transfer in Laser Beam Welding with an Equivalent Heat Source T2 - COMSOL Conference 2017 (Proceedings) N2 - This paper presents a multiphysics modelling framework developed for the prediction of the three-dimensional transient temperature field of the laser welding process. The numerical model consists of two studies. In the first study, a steady-state CFD process simulation of full-penetration keyhole laser beam welding was performed. Considering the effects of, thermo-capillary and natural convection, latent heat of fusion and temperature-dependent material properties up to evaporation temperature the local weld pool geometry and temperature field were obtained. These results were used in the second subsequent study as an equivalent volumetric heat source by the prediction of the transient thermal cycle during and after fusion welding. Here the energy input and the movement of the heat source were realized by a novel technique, making use of pointwise constraints and a moving mesh provided with helper lines and additional remeshing condition. The numerically calculated results were compared to experimentally observed weld pool shapes and time-temperature curves showing a very good agreement. T2 - COMSOL Conference 2017 CY - Rotterdam, Netherlands DA - 18.10.2017 KW - High power laser beam welding KW - Transient heat transfer KW - Equivalent volumetric heat source KW - Moving mesh KW - Pointwise constraints PY - 2017 SP - 1 EP - 7 CY - Rotterdam AN - OPUS4-42701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Transferability of ANN-generated parameter sets from welding tracks to 3D-geometries in Directed Energy Deposition JF - Material Testing 2022 N2 - Directed energy deposition (DED) has been in industrial use as a coating process for many years. Modern applications include the repair of existing components and additive manufacturing. The main advantages of DED are high deposition rates and low energy input. However, the process is influenced by a variety of parameters affecting the component quality. Artificial neural networks (ANNs) offer the possibility of mapping complex processes such as DED. They can serve as a tool for predicting optimal process parameters and quality characteristics. Previous research only refers to weld beads: a transferability to additively manufactured three-dimensional components has not been investigated. In the context of this work, an ANN is generated based on 86 weld beads. Quality categories (poor, medium, and good) are chosen as target variables to combine several quality features. The applicability of this categorization compared to conventional characteristics is discussed in detail. The ANN predicts the quality category of weld beads with an average accuracy of 81.5%. Two randomly generated parameter sets predicted as “good” by the network are then used to build tracks, coatings,walls, and cubes. It is shown that ANN trained with weld beads are suitable for complex parameter predictions in a limited way. KW - Welding parameter KW - Quality assurance KW - DED KW - Artificial neural network KW - Additive manufacturing PY - 2022 DO - https://doi.org/10.1515/mt-2022-0054 SN - 0025-5300 VL - 64 IS - 11 SP - 1586 EP - 1596 PB - De Gruyter AN - OPUS4-56278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Thermal Cycles and Charpy Impact Toughness of Single-Pass Hybrid Laser-Arc Welded Thick-Walled Structures T2 - Lasers in Manufacturing Conference 2021 N2 - The study deals with the influence of the heat input on the thermal cycles and Charpy impact toughness for hybrid laser-arc welding of 25 mm thick structural steel S355J2 using a 20-kW high-power laser in combination with an electromagnetic weld pool support. The main focus is on the change of the mechanical properties over the entire seam thickness. The cooling times were measured using a pyrometer in combination with an optical fibre in three different locations near to fusion lines corresponding to different heights of the seam. Also, Charpy impact specimens were taken from different parts of the weld joint corresponding to the different heights. The influence of the heat input was investigated for 1.8 kJ mm-1 and 3.2 kJ mm-1. Despite the observed decreased values of both t8/5-cooling time and the Charpy impact toughness in the root part of the seam, the required values could be reached in dependance on applied heat input. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - laser hybrid welding KW - Charpy impact toughness KW - thick plate welding KW - thermal cycles PY - 2021 SP - 1 EP - 8 AN - OPUS4-53926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding JF - Journal of Laser Applications N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly nonlinear and multicoupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modeling. A 3D transient multiphysical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics, and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph, and the element distribution from the energy dispersive x-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2020 DO - https://doi.org/10.2351/7.0000069 VL - 32 IS - 2 SP - 022026-1 EP - 022026-9 AN - OPUS4-50874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - The influence of the free surface reconstruction on the spatial laser energy distribution in high power laser beam welding modeling T2 - Proceedings of the ICALEO 2022, 41st International Congress on Applications of Lasers & Electro-Optics N2 - An accurate and efficient description of the spatial distribution of laser energy is a crucial factor for the modeling of laser material processing, e.g., laser welding, laser cutting, or laser-based additive manufacturing. In this study, a 3D heat transfer and fluid flow model coupled with the volume-of-fluid algorithm for free surface tracking is developed for the simulation of molten pool dynamics in high-power laser beam welding. The underlying laser-material interactions, i.e., the multiple reflections and Fresnel absorption, are considered by a ray-tracing method. Two strategies of free surface reconstruction used in the ray-tracing method are investigated: a typical piecewise linear interface calculation (PLIC)-based method and a novel localized Level-Set method. The PLIC-based method is discrete, resulting in non-continuous free surface reconstruction. In the localized Level-Set method, a continuous free surface is reconstructed, and thus the exact reflection points can be determined. The calculated spatial laser energy distribution and the corresponding molten pool dynamics from the two methods are analyzed and compared. The obtained numerical results are evaluated with experimental measurements to assure the validity of the proposed model. It is found that distinct patterns of the beam multiple reflections are obtained with the different free surface reconstructions, which shows significant influence not only on the molten pool behaviors but also on the localized keyhole dynamics. T2 - International Congress of Applications of Lasers & Electro-Optics 2022 CY - Orlando, FL, USA DA - 17.10.2022 KW - Laser beam welding KW - laser energy distribution KW - Weld pool dynamics KW - Ray-tracing PY - 2022 SP - 1 EP - 9 AN - OPUS4-56533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - The influence of magnetic field orientation on metal mixing in electromagnetic stirring enhanced wire feed laser beam welding JF - Journal of Materials Processing Technology N2 - The application of the electromagnetic stirring from an oscillating magnetic field can improve the metal mixing in wire feed laser beam welding. However, the extra parameters introduced in this technique make the selection of an optimal combination of process parameters more difficult. In the current study, besides the commonly concerned magnetic flux density and frequency, the influence of the magnetic field orientation (magnetic field angle) on the transport of filler metal is studied numerically and experimentally. Ex-situ X-ray fluorescence spectrometer measurements are used to map the metal mixing in the final weld. A three-dimensional transient multi-physical model is developed to reveal the deeper physical essence, considering the coupling between heat transfer, fluid flow, keyhole dynamics, element transport and magnetohydrodynamics. The spatial distribution of the laser energy on the keyhole wall is calculated by a ray tracing algorithm. The results show that the magnetic field with smaller angle with respect to the transverse direction provides better penetration capacity, and its stirring effect can reach the lower part of the molten pool. Therefore, the smaller magnetic field angle produces better metal mixing. A constant downward flow is formed at the lower part of the molten pool when magnetic field of 10° angle is applied, which brings the filler metal to the root region. As the magnetic field angle increases to 40°, the beneficial downward flow changes into a constant upward flow, resulting in a concentration of the filler metal in the upper region. This study provides further insight of the underlying physics in the electromagnetically enhanced laser beam welding, which may guide the optimization of parameters to achieve property homogeneity or to avoid potential defects. KW - Laser welding KW - Metal mixing KW - Magnetic field KW - Magnetohydrodynamics KW - Multi-physical modelling PY - 2021 DO - https://doi.org/10.1016/j.jmatprotec.2021.117135 VL - 294 SP - 117135 PB - Elsevier B.V. AN - OPUS4-52469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhne, C. A1 - Meschut, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - The Influence of Electrode Indentation Rate on LME Formation during RSW JF - Welding journal N2 - During resistance spot welding of zinc-coated advanced high-strength steels (AHSSs) for automotive production, liquid metal embrittlement (LME) cracking may occur in the event of a combination of various unfavorable influences. In this study, the interactions of different welding current levels and weld times on the tendency for LME cracking in third-generation AHSSs were investigated. LME manifested itself as high penetration cracks around the circumference of the spot welds for welding currents closely below the expulsion limit. At the same time, the observed tendency for LME cracking showed no direct correlation with the overall heat input of the investigated welding processes. To identify a reliable indicator of the tendency for LME cracking, the local strain rate at the origin of the observed cracks was analyzed over the course of the welding process via finite element simulation. While the local strain rate showed a good correlation with the process-specific LME cracking tendency, it was difficult to interpret due to its discontinuous course. Therefore, based on the experimental measurement of electrode displacement during welding, electrode indentation velocity was proposed as a descriptive indicator for quantifying cracking tendency. KW - Liquid Metal Embrittlement (LME) KW - Crack KW - Resistance Spot Welding (RSW) KW - Advanced High-Strength Steel (AHSS) KW - Welding Current KW - Heat Input KW - Simulation PY - 2022 DO - https://doi.org/10.29391/2022.101.015 SN - 0043-2296 VL - 101 IS - 7 SP - 197-s EP - 207-s PB - American Welding Society CY - New York, NY [u.a.] AN - OPUS4-55600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, K. A1 - Meschut, G. A1 - Seitz, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - The Identification of a New Liquid Metal Embrittlement (LME) Type in Resistance Spot Welding of Advanced High Strength Steels on Reduced Flange Widths JF - metals N2 - Liquid metal embrittlement (LME) cracking is a phenomenon observed during resistance spot welding (RSW) of zinc􀀀coated advanced high􀀀strength steels (AHSS) in automotive manufacturing. In this study, severe cracks are observed at the edge of the sheet under reduced flange widths. These cracks, traversing the AHSS sheet, culminate at the edge with a width of approximately 1.2 mm. Through combined numerical and experimental investigations, and material testing, these cracks are identified and validated as a new type of LME crack. The mechanism behind this crack formation is attributed to unique geometric conditions that, when compared to center welding, amplify radial material flow by ninefold to 0.87 mm. The resultant tangential tensile stresses approximate 760 MPa, which exceed the yield strength of the examined advanced high􀀀strength steel (AHSS) under heightened temperature conditions, and when combined with liquid zinc, promote the formation of this new type of LME crack. KW - Liquid metal embrittlement KW - Crack KW - Advanced high strength steels KW - Resistance spot welding KW - Simulation KW - Flange width PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586940 DO - https://doi.org/10.3390/met13101754 VL - 13 IS - 10 SP - 1 EP - 13 PB - MDPI AN - OPUS4-58694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Churiaque Bermejo, C. A1 - Sánchez-Amaya, J. M. A1 - Porrúa-Lara, M. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - The Effects of HLAW Parameters for One Side T-Joints in 15 mm Thickness Naval Steel JF - Metals N2 - The present contribution is the first research reporting full penetration HLAW joints in 15 mm thick EH36 steel butt T-welds with square grooves on 2F welding position by single-sided welding. The effects of welding parameters were investigated to increase the quality of the joints. Conditions leading to defect-free full penetration welds fulfilling naval regulations includes a laser power of 12.5 kW, a welding speed of 1.6 m/min and the vertical laser offset distance from the flange of 1 mm. Advanced characterization of selected welds included a microstructural identification by optical microscopy, SEM, and XRD, revealing the presence of acicular, polygonal and Widmanstätten ferrite, lath martensite, and some retained austenite at FZ. Hardness and microhardness mapping tests showed values of 155 HV at base metal and 200 to 380 HV at the fusion zone connecting the web to the flange. KW - Ship building KW - Laser beam welding KW - Hybrid laser arc welding PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523931 DO - https://doi.org/10.3390/met11040600 VL - 11 IS - 4 SP - 600 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root T2 - The 18th Nordic Laser Materials Processing Conference CY - Lulea, Sweden DA - 18.01.2022 KW - Laser beam welding KW - Melt pool dinamics PY - 2022 AN - OPUS4-54333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - The bulging effect and its relevance in high power laser beam welding JF - IOP Conference Series: Materials Science and Engineering N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and an infrared camera is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs more frequently during partial penetration above 6 mm and complete penetration above 8 mm penetration depth, respectively. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - 18th Nordic Laser Materials Processing Conference (18th NOLAMP) KW - High-power laser beam welding KW - Bulge effect KW - Solidification cracking KW - Multi-physical modelling KW - Metal mixing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539149 DO - https://doi.org/10.1088/1757-899X/1135/1/012003 VL - 1135 IS - 012003 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-53914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - 1st Annual Assembly and Conference of The Welding Federation of Africa (TWF-Africa) CY - Cairo, Egypt DA - 14.03.2023 KW - Laser beam welding KW - Melt pool dinamics PY - 2023 AN - OPUS4-58695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winterkorn, R. A1 - Petrat, T. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Temperature generation of different travel path strategies to build layers using laser metal deposition T2 - Lasers in Manufacturing Conference 2017 N2 - Laser Metal Deposition offers the chance to build near net shape parts. The temperature evolution within the process has an influence on track and layer geometries. There are special travel path strategies required to produce near net shape components and reduce shape deviation resulting of error propagation. This paper deals with the temperature progression of individual layers and the maximum heating of deeper substrate regions. Spiral and zig-zag strategies are examined. The investigations are carried out using S235JR as substrate and 316L as powder material. The influence of different strategies on temperature evolution is discussed. The results from the experiments show that various production strategies are associated with different temperature fields. Furthermore, the extent of the temperature variations of layer strategies and layer position are strongly dependent on the production direction. These results demonstrate the importance of developing suitable build-up strategies for parts of complex shape to ensure a stable process with constant temperature as well as even layers. T2 - Lasers in Manufacturing Conference 2017 CY - Munich, Germany DA - 26.06.2017 KW - 316L KW - Additive Manufacturing KW - Temperature behavior KW - Laser Metal Deposition KW - Stainless Steel KW - Edge effects PY - 2017 SP - 1 EP - 5 AN - OPUS4-42878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sproesser, G. A1 - Schenker, S. A1 - Pittner, Andreas A1 - Borndörfer, R. A1 - Rethmeier, Michael A1 - Chang, Y.-J. A1 - Finkbeiner, M. T1 - Sustainable welding process selection based on weight space partitions T2 - Procedia CIRP N2 - Selecting a welding process for a given application is crucial with respect to the sustainability of part manufacturing. Unfortunately, since welding processes are evaluated by a number of criteria, preferences for one or the other process can be contradictory. However, the prevalent procedure of weight assignment for each criterion is subjective and does not provide information about the entire solution space. From the perspective of a decision maker it is important to be able to assess the entire set of possible weightings and answer the question which welding process is optimal for which set of weights. This issue is investigated by means of a weight space partitioning approach. Two welding processes are considered with respect to three criteria that reflect their economic and environmental performance. In order to find the most sustainable welding process the underlying weight space partition is evaluated. T2 - 13th Global Conference on Sustainable Manufacturing – Decoupling Growth from Resource Use CY - Bình Dương New City, Vietnam DA - 16.09.2015 KW - Welding costs KW - Multi-criteria decision support KW - LCA KW - Welding process selection KW - GMAW KW - Multi-attribute decision method PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-353740 DO - https://doi.org/10.1016/j.procir.2016.01.077 SN - 2212-8271 VL - 40 SP - 127 EP - 132 PB - Elsevier B.V. AN - OPUS4-35374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Sproesser, G. A1 - Change, Y.-J. A1 - Pittner, Andreas A1 - Finkbeiner, M. A1 - Rethmeier, Michael ED - Stark, R. ED - Bonvoisin, J. ED - Seliger, G. T1 - Sustainable technologies for thick metal plate welding T2 - Sustainable Manufacturing Challenges, Solutions and Implementation Perspectives N2 - Welding is the most important joining technology. In the steel construction industry, e.g. production of windmill sections, welding accounts for a main part of the manufacturing costs and resource consumption. Moreover, social issues attached to welding involve working in dangerous environments. This aspect has unfortunately been neglected so far, in light of a predominant focus on economics combined with a lack of suitable assessment methods. In this chapter, exemplary welding processes are presented that reduce the environmental and social impacts of thick metal plate welding. Social and environmental Life Cycle Assessments for a thick metal plate joint are conducted for the purpose of expressing and analysing the social and environmental impacts of welding. Furthermore, it is shown that state-of-the-art technologies like Gas Metal Arc Welding with modified spray arcs and Laser Arc-Hybrid Welding serve to increase social and environmental performance in contrast to common technologies, and therefore offer great potential for sustainable manufacturing. KW - Human health G. KW - Life cycle assessment (LCA) KW - Arc welding KW - Laser arc-hybrid welding KW - Resource efficiency KW - Social life cycle assessment (SLCA) PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-390025 SN - 978-3-319-48513-3 SN - 978-3-319-48514-0 DO - https://doi.org/10.1007/978-3-319-48514-0 SN - 2194-0541 SN - 2194-055X SP - 71 EP - 84 PB - Springer CY - Cham, Switzerland AN - OPUS4-39002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Rethmeier, Michael T1 - Susceptibility of electrolytically galvanized dual-phase steel sheets to liquid metal embrittlement during resistance spot welding JF - Welding in the World N2 - Modern advanced high-strength steel sheets for automotive applications are mostly zinc coated for corrosion resistance. However, the presence of zinc can—besides its positive effects—increase the material’s susceptibility to liquid metal embrittlement (LME) during resistance spot welding (RSW). Zinc and its eutectics are, due to their low melting point, present in liquid state during the welding process. This fact can, in combination with other factors like tensile strains or stresses, lead to the formation of brittle, intergranular cracks in the weld, and heat-affected zone. This phenomenon is commonly called liquid metal embrittlement. In order to understand the process from a practical perspective, one must learn what factors facilitate it. In this study, industry-relevant parameters are investigated regarding their influence on the occurrence of LME, embodied by the formation of surface cracks. It was found that electrode wear has less of an influence on the cracking susceptibility than welding current or tensile stresses. Finite element analysis is believed to provide a powerful tool in order to gain insights on the formation process. Modeling of the process shows promising initial results, revealing the underlying local stress and strain fields, unmeasurable with common techniques. KW - Resistance spot welding KW - High-strength steel sheets KW - Surface cracks KW - Liquid metal embrittlement KW - Zinc PY - 2018 DO - https://doi.org/10.1007/s40194-018-0619-1 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 5 SP - 1031 EP - 1037 PB - Springer AN - OPUS4-45775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Rethmeier, Michael A1 - Steinhoff, K. T1 - Surface structuring by pulsed laser implantation T2 - THERMEC 2016: International Conference on Processing & Manufacturing of Advanced Materials N2 - Micrometric surface topologies are required for a wide range of technical applications. While lowered surface features have been used for many years to improve the tribological behavior of contacting surfaces, there are also other fields of application, where the potential of elevated surface features is known, e. g. for metal forming tools. However, the demand for a high wear resistance of these structures often inhibits an industrial application. A solution is offered by structuring techniques that use additional material. A promising approach is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This paper describes the potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces by means of microstructural and topological investigations. Afterwards, results of a wear test are given and different applications for this structuring technique are discussed. It can be shown that dome-shaped or ring-shaped structures on a micrometric scale can be produced with high hardness and wear resistance. T2 - THERMEC 2016: 9th International Conference on Processing & Manufacturing of Advanced Materials CY - Graz, Austria DA - 29.05.2016 KW - Surface structuring KW - Metal forming tools KW - Laser implantation KW - Laser dispersing PY - 2017 DO - https://doi.org/10.4028/www.scientific.net/MSF.879.750 SN - 1662-9752 VL - 879 SP - 750 EP - 755 PB - Trans Tech Publications CY - Schweiz AN - OPUS4-38927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Rethmeier, Michael A1 - Steinhoff, K. T1 - Surface structuring by pulsed laser implantation JF - Materials Science Forum N2 - Micrometric surface topologies are required for a wide range of technical applications. While lowered surface features have been used for many years to improve the tribological behavior of contacting surfaces, there are also other fields of application, where the potential of elevated surface features is known, e. g. for metal forming tools. However, the demand for a high wear resistance of these structures often inhibits an industrial application. A solution is offered by structuring techniques that use additional material. A promising approach is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This paper describes the potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces by means of microstructural and topological investigations. Afterwards, results of a wear test are given and different applications for this structuring technique are discussed. It can be shown that dome-shaped or ring-shaped structures on a micrometric scale can be produced with high hardness and wear resistance. KW - Laser implantation KW - Surface structuring PY - 2017 DO - https://doi.org/10.4028/www.scientific.net/MSF.879.750 SN - 0255-5476 SN - 1662-9752 VL - 879 SP - 750 EP - 755 PB - Trans Tech Publications AN - OPUS4-38263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Study on the transition behavior of the bulging effect during deep penetration laser beam welding JF - International Journal of Heat and Mass Transfer N2 - The present work is devoted to the study of the transition behavior of the recently confirmed widening of the weld pool, known as the bulging effect, during high-power deep penetration laser beam welding of thick unalloyed steel sheets. A three-dimensional transient multi-physics numerical model is developed, allowing for the prediction of the bulge formation and the study of its temporal behavior. The model is generalized to account automatically for the transition from partial to complete penetration. Several experimental measurements and observations, such as drilling period, weld pool length, temperature, efficiency, and metallographic cross-sections are used to verify the model and assure the plausibility of the numerical results. The analysis of the calculated temperature and velocity distributions, as well as the evolution of the keyhole geometry, shows that the formation of a bulging region strongly depends on the penetration depth of the weld. Based on the numerical results, the bulge is found to occur transiently, having its transition from a slight bulge to a fully developed bulging between penetration depths of 6 mm and 9 mm, respectively. KW - Laser beam welding KW - Deep penetration KW - Bulge formation KW - Numerical modeling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545067 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2021.122171 VL - 184 SP - 122171 PB - Elsevier Ltd. AN - OPUS4-54506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Muhammad, S. A1 - Han, S.W. A1 - Na, S.J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study on the role of recondensation flux in high power laser welding by computational fluid dynamics simulations JF - Journal of laser applications N2 - Partial penetration welding with fiber laser on 20mm thick plates was carried out in horizontal position to study the role of secondary heating in modeling of high power fiber laser welding. Experiments were carried out using 18.8kW laser with 1.5 m/min welding speed at Ar assist gas flow rates of 0, 17, 29, and 40 l/min, all four cases show similar bead shape with bright emission of vapor plume. Numerical simulations were performed using volume of fluid method by considering three different models as models A–C. Model A considers only Fresnel reflection inside the keyhole using real time tracking of free surface. Model B considers vapor recondensation flux inside keyhole along with model A. Finally, model C is used, which considers vapor plume heating at 4100K temperature along with models A B. Secondary heating by recondensation and vapor plume is vital in modeling of high power fiber laser welding; especially, the upper part of the bead is more influenced due to secondary heating. Tungsten particles are also used to visualize the flow pattern of melt pool. KW - Laser keyhole welding KW - Fresnel reflection KW - Secondary heat source KW - Plume heating KW - Vapor recondensation KW - High brightness KW - High power KW - Partial penetration KW - Fiber laser PY - 2018 DO - https://doi.org/10.2351/1.4994246 SN - 1042-346X SN - 1938-1387 VL - 30 IS - 1 SP - 012013-1 EP - 012013-12 PB - Laser Institute of America CY - Orlando, Fla. AN - OPUS4-44345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study on Duplex Stainless Steel Powder Compositions forthe Coating of Thick Plates for Laser Beam Welding JF - Advanced Engineering Materials N2 - Duplex stainless steels combine the positive properties of its two phases, austenite and ferrite. Due to its good corrosion resistance, high tensile strength and good ductility it has multiple applications. But laser beam welding of duplex steels changes the balanced phase distribution in favor of ferrite. This results in a higher vulnerability to corrosion and a lower ductility. In this study different powder combinations consisting of duplex and nickel for coating layers by laser metal deposition are investigated. Afterwards laser tracks are welded, and the temperature cycles measured. The ferrite content of the tracks are analyzed by feritscope, metallographic analysis and Electron Backscatter Diffraction. The goal is the development of a powder mixture allowing for a duplex microstructure in a two-step process, where firstly the edges of the weld partners are coated with the powder mixture by LMD and secondly those edges are laser beam welded. The powder mixture identified by the pretests is tested in the two-step process and analyzed by metallographic analysis, energy dispersive X-ray spectroscopy and Vickers hardness tests. The resulting weld seams show a balanced duplex microstructure with a homogenous nickel distribution and a hardness of the weld seam similar to the base material. KW - Duplex AISI 2205 KW - Stainless Steel KW - Laser Beam Welding KW - Nickel KW - Laser Metal Deposition PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554663 DO - https://doi.org/10.1002/adem.202101327 SN - 1438-1656 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study on Duplex Stainless Steel Powder Compositions for the Coating of thick Plates of Laser Beam Welding JF - Advanced Engineering Materials N2 - Duplex stainless steels combine the positive properties of its two phases, austenite and ferrite. Due to its good corrosion resistance, high tensile strength, and good ductility, it has multiple applications. But laser beam welding of duplex steels changes the balanced phase distribution in favor of ferrite. This results in a higher vulnerability to corrosion and a lower ductility. Herein, different powder combinations consisting of duplex and nickel for coating layers by laser metal deposition (LMD) are investigated. Afterward, laser tracks are welded, and the temperature cycles are measured. The ferrite content of the tracks is analyzed by feritscope, metallographic analysis, and electron backscatter diffraction. The goal is the development of a powder mixture allowing for a duplex microstructure in a two-step process, where first the edges of the weld partners are coated with the powder mixture by LMD and second those edges are laser beam welded. The powder mixture identified by the pretests is tested in the two-step process and analyzed by metallographic analysis, energy-dispersive X-ray spectroscopy, and Vickers hardness tests. The resulting weld seams show a balanced duplex microstructure with a homogenous nickel distribution and a hardness of the weld seam similar to the base material. KW - Duplex AISI 2205 KW - Laser metal deposition KW - Laser beam welding KW - Nickel KW - Stainless steels PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547024 DO - https://doi.org/10.1002/adem.202101327 SN - 1438-1656 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ö. A1 - Fritzsche, André A1 - Avilov, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study of gap and misalignment tolerances at hybrid laser arc welding of thick-walled steel with electromagnetic weld pool support system JF - Procedia CIRP N2 - The hybrid laser arc welding (HLAW) process provides many advantages such as improved gap bridgeability, deep penetration and misalignment of edges, that is why the process is used increasingly in industrial applications e.g. shipbuilding, power plant industry and line-pipe manufacturing. The obvious encountered problem for single pass welding in flat position is the gravity drop-out at low welding velocities. With the usage of an electromagnetic weld pool support system, which is based on generating Lorentz forces within the weld pool, wide seams followed by reduced welding velocities could be achieved in this study leading to the realization of a gap bridgeability up to 1 mm, misalignment of edges up to 2 mm and a single pass weld up to 28 mm thickness with a 20-kW fibre laser. These developments expand the boundaries of the HLAW process for different industrial applications. As a result, less accurate preparation of the edges would be sufficient, which saves time for manufacturing. KW - Hybrid laser-arc welding KW - Electromagnetic weld pool support system KW - Thick-walled steel KW - Gap bridgeability KW - Single pass welding KW - Misalignment of edges PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468263 DO - https://doi.org/10.1016/j.procir.2018.08.016 SN - 2212-8271 VL - 74 SP - 757 EP - 760 PB - Elsevier AN - OPUS4-46826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrat, T. A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Witt, G. ED - Eichmann, M. ED - Kniffka, W. T1 - Strategien zur Erreichung eines konstanten Volumenaufbaus bei der additiven Fertigung mittels Laser-Pulver-Auftragschweißen T1 - Strategies to achieve constant build-up with laser metal deposition T2 - Rapid.Tech International Trade Show & Conference for Additive Manufacturing - Proceedings of the 13th Rapid.Tech Conference N2 - Der Einsatz von Hochleistungswerkstoffen verlangt nach einer hohen Endformnähe der zu fertigenden Bauteile, um den Aufwand und somit die Kosten für Materialeinsatz und Nachbearbeitung möglichst gering zu halten. Der additive Einsatz in Form des Laser-Pulver-Auftragschweißens bietet hierfür durch den gezielten Materialauftrag ein hohes Potential. Herausforderungen bestehen in Bereichen der Vorhersagbarkeit und der Reproduzierbarkeit des Materialauftrages, sowie der Fertigungszeit. Unterschiedliche Einflüsse bei der Schichterzeugung führen dabei zu Abweichungen von der Soll-Geometrie. Die vorliegenden Untersuchungen behandeln den Einfluss von Spurgeometrie, Spurüberlappung, Verfahrweg und Aufbaureihenfolge auf die entstehende Bauteilform. Die Teilung einer Lage in Rand- und Kernbereich ermöglicht einen konturangepassten Verfahrweg und eine Erhöhung der Endformnähe innerhalb einer Ebene. Die Verwendung unterschiedlicher Spurgrößen bei der Bauteilerzeugung verdeutlicht die Möglichkeiten einer hohen Auftragsrate bei gleichzeitig hoher Formgenauigkeit. Bereits kleine Unterschiede beim Materialauftrag zwischen Kern- und Randbereichen, Start- und Endpunkten sowie in Bereichen des Richtungswechsels führen aufgrund von Fehlerfortpflanzung nachmehreren Lagen zu Abweichungen in der Aufbaurichtung. Kompensierungen mittels angepasster Baustrategien werden aufgezeigt und diskutiert. Die Nickelbasislegierung Inconel 718, die Titanlegierung Ti-6Al-4V sowie der austenitische Stahl 316L sind Bestandteil der vorliegenden Untersuchungen. Die gewonnenen Erkenntnisse verdeutlichen das Potenzial einer angepassten Aufbaustrategie zur reproduzierbaren Erzeugung von Bauteilen am Beispiel unterschiedlicher Körpergeometrien. T2 - Rapid.Tech International Trade Show & Conference for Additive Manufacturing CY - Erfurt, Germany DA - 14.06.2016 KW - Laser-Pulver-Auftragschweißen KW - Additive Fertigung KW - Aufbaustrategie KW - 3DDruck KW - Ti-6Al-4V KW - Inconel 718 KW - 316L PY - 2016 SN - 978-3-446-45017-2 SP - 49 EP - 60 PB - Carl Hanser Verlag CY - München, Germany AN - OPUS4-36571 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neubert, S. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL JF - Mechanical Testing N2 - In order to generate a material data base for computational welding mechanics, temperature and strain-rate dependent stress-strain experiments were performed by using a Gleeble®3500 testing system. The object of the investigation was HSLA transformable steel S960QL and related solid phases as bainite, martensite and austenite. For the production of these solid phases, the base material was heat treated according to an average weld temperature cycle which was extracted within the heat affected zone of a thermal numerical weld simulation of a GMA weld. The hot tensile tests were carried out via cost-saving flat specimen geometries. Two experimental series with different strain-rates were conducted, where the longitudinal strain-rate was controlled by specification of the transversal strain-rate applying Poisson’s-ratio. Subsequently, the resulting stress-strain curves were approximated in accordance with the Ramberg-Osgood-materials law. Consequently, it is shown that the temperature and strain-rate dependent stress-strain behavior of metals can be successfully characterized by means of a Gleeble®-system. However, this requires a control of the longitudinal strain-rate by specification of the transversal strain-rate. The related experimental procedure and the method of evaluation are explained in detail. With regard to all tested solid phases, a significant strain-rate dependency can only be observed upwards from temperatures of 400 °C. Based on experimental results, Ramberg-Osgood-parameters will be presented to describe the stress-strain behavior of steel S960QL and related solid phases for temperatures between 25 °C and 1200 °C. Furthermore, the use of costsaving flat specimen-geometry appears reasonable. N2 - Für die Generierung einer Materialdatenbank zur Schweißstruktursimulation wurden temperatur- und dehnratenabhängige Spannungs-Dehnungsexperimente unter Einsatz einer Gleeble® 3500-Anlage durchgeführt. Als Untersuchungsgegenstand diente der hochfeste niedriglegierte Feinkornbaustahl S960QL und seine zugehörigen Festphasen Bainit, Martensit und Austenit. Zur Herstellung dieser Festphasen wurde der Grundwerkstoff Wärmebehandlungen ausgesetzt, welche die charakteristischen Merkmale eines durchschnittlichen Schweißzeittemperaturzyklus aufweisen. Dieser Temperaturzyklus wurde aus der Wärmeeinflusszone eines numerisch nachgebildeten Temperaturfeldes einer MAG-Schweißverbindung extrahiert. Die Zugversuche wurden an einer kostengünstig herzustellenden Flachprobengeometrie durchgeführt, wobei zwei Experimentalreihen mit jeweils unterschiedlichen Dehnraten realisiert wurden. Die resultierenden Spannungs-Dehnungskurven wurden durch die Ramberg-Osgood-Beziehung approximiert. Es konnte gezeigt werden, dass das temperatur- und dehnratenabhängige Spannungs-Dehnungsverhalten von Metallen durch die Anwendung eines Gleeble®-Systems erfolgreich charakterisiert werden kann. Die Einstellung der Längsdehnrate muss dabei durch die Kontrolle der Querdehnrate unter Berücksichtigung des Poisson-Verhältnisses erfolgen. Die experimentellen Prozeduren und die zugehörigen Auswertemethodiken wurden detailliert erläutert. Für alle getesteten Festphasen wurde ein signifikanter Dehnrateneinfluss erst für Temperaturen ab 400 °C aufwärts beobachtet. Die anhand der Messergebnisse abgeleiteten Ramberg-Osgood-Parameter zur Beschreibung des Verfestigungsverhaltens für den Temperaturbereich zwischen 25 °C und 1200 °C werden vollständig präsentiert. KW - Stress-strain behavior KW - Gleeble testing KW - HSLA KW - Strain-rate KW - Numerical welding simulation KW - Transformable steels PY - 2018 DO - https://doi.org/10.3139/120.111208 SN - 0025-5300 VL - 60 IS - 7-8 SP - 733 EP - 748 PB - Carl Hanser CY - München AN - OPUS4-45791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huo, W. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Wolter, K. T1 - Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets JF - Applied sciences N2 - The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency. KW - Convolutional neural network KW - Strain fields prediction KW - Laser beam welding KW - Solidification cracking PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570565 DO - https://doi.org/10.3390/app13052930 VL - 13 IS - 5 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Statistical analysis of weld bead geometry in Ti6Al4V laser cladding JF - Materials Testing N2 - The process of laser cladding has become more important during recent years because of its broad application for cladding, repair or additive manufacturing. In the field of mechanical engineering, one use is the repair of turbine blades. For high quality and reliability of the repaired components, it is necessary to adjust the weld bead geometry to the specific repair task. The bead geometry influences the metallurgical bonding and the degree of dilution as well as the formation of defects like pores or cracks. Therefore, it is important to know the effects of the different parameters on the welding bead. A valuable tool to meet this industrial challenge is the design of experiments (DoE). In this context, the user can choose between a huge number of test plans. Greater Profit of information is expected by a larger test range. In order to confirm the acceptance, a five-step full factorial test plan is compared to a central composite design in this paper. Moreover, the limits of the experimental range are indicated and restrictions can be derived. As the results show, the essential effects are detected with a full factorial test plan as well as with a central composite design. Merely the effect strength could not always be specified unambiguously. On this account and in consideration of cost efficiency, the use of central compound design is recommended in industrial applications. KW - Laser metal deposition KW - Design of experiments KW - Laser cladding KW - Cladding parameter KW - Additive manufacturing PY - 2017 DO - https://doi.org/10.3139/120.111077 SN - 0025-5300 SN - 2195-8572 VL - 59 IS - 10 SP - 837 EP - 843 PB - Carl Hanser Verlag CY - München AN - OPUS4-42882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Çağtay A1 - Rethmeier, Michael A1 - Thiele, Marc A1 - Baeßler, Matthias A1 - Brauser, S. T1 - SmartWeld - Leichtbautechnik für Tragstrukturen von Offshore Windenergieanlagen N2 - Die Anwendung von Leichtbauprinzipien im Stahlbau, wie z.B. die Verwendung von aufgelösten Tragstrukturen, sog. Jackets-Fundamenten, bietet ein großes Potential zur Reduzierung des Ressourcenverbrauchs, insbesondere im Hinblick auf die benötigte Stahlmenge. In diesem Vortrag zeigen wir die Potenziale einer vollständigen Digitalisierung der schweißtechnischen Fertigungs- und Prüfkette auf, um eine vollautomatische Fertigung sowie Qualitätsprüfung von Rohrknoten als Schlüsselelement von Jackets-Fundamenten zu ermöglichen. Darüber hinaus wird der Zusammenhang zwischen der Geometrie der Nahtform und der resultierenden Ermüdungsfestigkeit durch numerische Methoden unter Einbeziehung bionischer Prinzipien bewertet. Es wird gezeigt, dass Hohlprofilknoten vollautomatisch unter Berücksichtigung von Geometrietoleranzen geschweißt werden können. Darüber hinaus konnte die Nahtform gemäß den numerischen Modellen hergestellt werden, was ein großes Potenzial für eine verlängerte Lebensdauer bietet. Anschließend werden die Verbesserungen bei der Ressourceneffizienz und die Reduzierung der Kohlendioxidemissionen durch eine Lebenszyklusanalyse bewertet. T2 - 11. Zukunftskonferenz Wind & Maritim CY - Rostock, Germany DA - 01.09.2022 KW - Offshore Windenergieanlagen KW - Gründungsstrukturen KW - Leichtbauprinzipien KW - Automatisierte Fertigung PY - 2022 AN - OPUS4-56654 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - SmartWeld - Innovatives Design und Fertigungskonzept zur Steigerung der Leichtbaupotenziale im Stahlbau N2 - Die Anwendung von Leichtbauprinzipien im Stahlbau, wie z.B. die Verwendung von aufgelösten Tragstrukturen, sog. Jackets-Fundamenten, bietet ein großes Potential zur Reduzierung des Ressourcenverbrauchs, insbesondere im Hinblick auf die benötigte Stahlmenge. In diesem Vortrag zeigen wir die Potenziale einer vollständigen Digitalisierung der schweißtechnischen Fertigungs- und Prüfkette auf, um eine vollautomatische Fertigung sowie Qualitätsprüfung von Rohrknoten als Schlüsselelement von Jackets-Fundamenten zu ermöglichen. Darüber hinaus wird der Zusammenhang zwischen der Geometrie der Nahtform und der resultierenden Ermüdungsfestigkeit durch numerische Methoden unter Einbeziehung bionischer Prinzipien bewertet. Es wird gezeigt, dass Hohlprofilknoten vollautomatisch unter Berücksichtigung von Geometrietoleranzen geschweißt werden können. Darüber hinaus konnte die Nahtform gemäß den numerischen Modellen hergestellt werden, was ein großes Potenzial für eine verlängerte Lebensdauer bietet. Anschließend werden die Verbesserungen bei der Ressourceneffizienz und die Reduzierung der Kohlendioxidemissionen durch eine Lebenszyklusanalyse bewertet. T2 - Bundesverband der Windparkbetreiber Offshore: Tagung der Arbeitsgruppe Engineering CY - Online meeting DA - 26.11.2021 KW - Offshore Windenergieanlagen KW - Gründungsstrukturen KW - Automatisierte Fertigung KW - Aufgelöste Tragstrukturen PY - 2021 AN - OPUS4-56652 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Single-pass Hybrid Laser Arc Welding of Thick Materials Using Electromagnetic Weld Pool Support T2 - Lasers in Manufacturing Conference 2019 N2 - Hybrid laser-arc welding process allows single-pass welding of thick materials, provides good quality formation of joints with minimal thermal deformations and a high productivity in comparison with arc-based welding processes. Nevertheless, thick-walled steels with a thickness of 20 mm or more are still multi-pass welded using arc welding processes, due to increased process instability by increasing laser power. One limitation factor is the inadmissible formation of gravity drop-outs at the root. To prevent this, an innovative concept of electromagnetic weld pool support is used in this study. With help of such system a stable welding process can be established for 25 mm thick steel plates and beyond. Sound welds could be obtained which are tolerant to gaps and misalignment of the welded parts. The adaptation of this system to laser and hybrid laser-arc welding process can dramatically increase the potential field of application of these technologies for real industrial implementation. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Full Penetration KW - Hybrid Laser Arc Welding KW - Electromagnetic Weld Pool Support KW - Thick Materials PY - 2019 SP - 1 EP - 8 PB - WLT Wissenschaftliche Gesellschaft Lasertechnik e.V. AN - OPUS4-48971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey T1 - Single-pass Hybrid Laser Arc Welding of Thick Materials Using Electromagnetic Weld Pool Support N2 - Hybrid laser-arc welding process allows single-pass welding of thick materials, provides good quality formation of joints with minimal thermal deformations and a high productivity in comparison with arc-based welding processes. Nevertheless, thick-walled steels with a thickness of 20 mm or more are still multi-pass welded using arc welding processes, due to increased process instability by increasing laser power. One limitation factor is the inadmissible formation of gravity drop-outs at the root. To prevent this, an innovative concept of electromagnetic weld pool support is used in this study. With help of such system a stable welding process can be established for 25 mm thick steel plates and beyond. Sound welds could be obtained which are tolerant to gaps and misalignment of the welded parts. The adaptation of this system to laser and hybrid laser-arc welding process can dramatically increase the potential field of application of these technologies for real industrial implementation. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Full Penetration KW - Hybrid Laser Arc Welding KW - Electromagnetic Weld Pool Support KW - Thick Materials PY - 2019 AN - OPUS4-48975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A. A1 - Saiyah, A. A1 - Khafagi, S. A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - Shielded metal arc welding of 9%Ni steel using matching ferritic filler metal JF - Science and Technology of Welding and joining N2 - Motivated by the tensile strength loss of 9%Ni steel arc welded joints made using Ni-based austenitic filler metals, the feasibility of maintaining the tensile strength using matching ferritic filler metal has been demonstrated. In comparison with shielded metal arc welded joint made using Ni-based austenitic electrode ENiCrMo-6, higher tensile strength comparable to that of the base metal was obtained using matching ferritic electrode. Besides, sufficient impact toughness energies with much lower mismatch were obtained for weld metal and heat-affected zone. Welded joint with a lower mechanical mismatching is of considerable importance for achieving acceptable combination of tensile strength and impact toughness.Abetter combination of These mechanical properties is ensured by applying a post weld heat treatment. KW - Mechanical mismatching KW - Mechanical properties KW - Microstructure KW - Austenitic welding electrode KW - Matching ferritic welding electrode PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1846936 SN - 1362-1718 SP - 1 EP - 7 PB - Taylor & Francis AN - OPUS4-51835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A. A1 - Saiyah, A. A1 - Khafagi, S. A1 - Gumenyuk, Andrey A1 - Gook, Sergej A1 - Rethmeier, Michael T1 - Shielded metal arc welding of 9%Ni steel using matching ferritic filler metal JF - Science and Technology of Welding and Joining N2 - Motivated by the tensile strength loss of 9%Ni steel arc welded joints made using Ni-based austenitic filler metals, the feasibility of maintaining the tensile strength using matching ferritic filler metal has been demonstrated. In comparison with shielded metal arc welded joint made using Ni-based austenitic electrode ENiCrMo-6, higher tensile strength comparable to that of the base metal was obtained using matching ferritic electrode. Besides, sufficient impact toughness energies with much lower mismatch were obtained for weld metal and heat-affected zone. Welded joint with a lower mechanical mismatching is of considerable importance for achieving acceptable combination of tensile strength and impact toughness. A better combination of These mechanical properties is ensured by applying a post weld heat treatment. KW - 9%Ni steel KW - Ni-based austenitic welding electrode KW - Matching ferritic welding electrode KW - Mechanical properties KW - Mechanical mismatching KW - Microstructure KW - SMAW PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1846936 VL - 26 IS - 2 SP - 116 EP - 122 PB - Taylor & Francis AN - OPUS4-52025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Wu, Chuan Song T1 - Sensitivity analysis of the residual stress state in friction stir welding of high strength aluminium alloy JF - Materials testing N2 - In this paper, the friction stir welding process was numerically investigated for 6 mm thick aluminum alloy AA2024-T3. The finite element software COMSOL Multiphysics was used to calculate the transient thermal field during welding and the mechanical reaction depending on different mechanical clamping conditions and hardening models subsequently. A thermal pseudo-mechanical (TPM) heat source was implemented. Softening effects of the material due to precipitation hardening dissolution caused by the frictional heat were accounted for. The transient temperature evolution measured by thermocouple elements at various locations was compared to the numerical results. A good agreement was found for the thermal field. A sensitivity study of the mechanical models showed the strong influence of the clamping conditions and the softening model. PY - 2016 DO - https://doi.org/10.3139/120.110809 SN - 0025-5300 VL - 58 IS - 1 SP - 20 EP - 26 PB - Hanser CY - München AN - OPUS4-35269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - El-Sari, B. A1 - Rethmeier, Michael A1 - Finus, F. T1 - Schweißen unter Zug – LME-Eingangsprüfung für die Autoindustrie JF - Blechnet N2 - Der Trend zum Leichtbau und die Transformation zur E-Mobilität in der Automobilindustrie befeuern die Entwicklung neuer hochfester Stähle für den Karosseriebau. Derartige Werkstoffe sind beim Widerstandspunktschweißen besonders rissanfällig (LME). Das Schweißen unter Zug stellt eine effektive Methode um die LME-Anfälligkeit unterschiedlicher Werkstoffe qualitativ zu bestimmen. KW - Automobilindustrie KW - Widerstandspunktschweißen KW - Liquid Metal Embrittlement KW - Zinkbeschichtung KW - Hochfester Stahl PY - 2021 IS - 6 SP - 54 EP - 55 AN - OPUS4-54057 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Rethmeier, Michael ED - Rethmeier, Michael T1 - Schicht für Schicht Auftragsschweißen dreidimensionaler Körper JF - Futur N2 - Die Anwendung der additiven Fertigung nimmt stark zu. Eine neue Designfreiheit erlaubt es hier den Konstrukteurinnen und Konstrukteuren, die Bauteilfunktion in den Vordergrund der Entwicklungen zu stellen. Leichtbaustrukturen sowie Funktionsintegration machen es möglich, vormals Bauteile aus vielen Einzelkomponenten jetzt in einem einzigen Bauteil zu vereinigen. Experten am Fraunhofer IPK qualifizieren das Laser-Pulver-Auftragschweißen für die additive Fertigung und legen dabei besonderen Wert auf die Automatisierung des Verfahrens. KW - Laser-Pulver-Auftragsschweißen PY - 2016 SN - 1438-1125 IS - 1 SP - 18 EP - 19 AN - OPUS4-38746 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Saldabilita di lamiere in acciaio inossidabile austenico ed austeno-ferritico ad alto contenuto di manganese con processo laser JF - Rivista Italiana della Saldatura N2 - Manganese alloyed stainless steels represent a cost-effective alternative to conventional CrNi- stainless steels due to strong fl uctuations of the market prices for nickel seen during the last years. In CrMnNi steels, nickel is partially replaced by lower-cost manganese and small amounts of nitrogen for stabilization of the austenitic phase. This also brings benefi ts regarding the mechanical properties, as it results in an increased material strength. Laser beam welding of such materials was investigated for direct comparison with Standard CrNi steels. Main emphasis was laid on fi nding adequate process parameters to achieve a stable welding process and obtain a good weld quality. Two different laser sources, a 4.4 kW Nd:YAG and a 5 kW CO2 laser, were used to weld 1.5 mm stainless steel sheets in continuous wave mode. A high-Mn austenitic (1.4376) and a lean duplex (1.4162) steel, as well as the standard austenitic (1.4301) and duplex (1.4362) grades were selected as test materials. Both butt and lap joint confi gurations were studied. Experiments were carried out systematically, varying the welding speed, laser power and focal point position in order to determine adequate process windows. The infl uence of the shielding gas type and fl ow rate on the process stability and the weld quality were investigated. The effects of weld edge preparation on the weld appearance and quality levels attained were also examined. The obtained welded joints were subjected to radiographic tests for detection of internal imperfections. Also a metallurgical characterization of the samples regarding the resulting phase composition or balance and hardness depending on the welding process parameters was conducted. Furthermore, tensile and potentiodynamic tests were performed to evaluate the mechanical and corrosion properties, respectively. The results provide an insight into the advantages and limitations of the laser beam welding process for joining high-manganese alloyed stainless steels. Conditions for the production of defect-free and corrosion-resistant welds having good mechanical properties could be determined. KW - Weldability KW - Austenitic stainless steels KW - Corrosion KW - CO2 lasers KW - Duplex stainless steels KW - Laser welding KW - Manganese KW - Mechanical properties KW - Shielding gases KW - YAG lasers PY - 2016 SN - 0035-6794 VL - 68 IS - 1 SP - 33 EP - 43 AN - OPUS4-38100 LA - ita AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fu, B. A1 - Shen, J. A1 - Suhuddin, U. A1 - Pereira, A. A1 - Maawad, E. A1 - dos Santos, J. A1 - Klusemann, B. A1 - Rethmeier, Michael T1 - Revealing joining mechanism in refill friction stir spot welding of AZ31 magnesium alloy to galvanized DP600 steel JF - Materials & Design N2 - The application of magnesium (Mg) inevitably involves dissimilar welding with steel. A novel solid state spot welding method, refill friction stir spot welding (refill FSSW), was utilized to weld AZ31 Mg alloy to galvanized DP600 steel. Although Mg/Fe is an immiscible alloy system, defect-free welds with high strength were successfully obtained in a wide parameter window. The results of microstructure, interfacial reactions, and mechanical properties are reported to reveal the underlying joining mechanism. Due to the melting of Zn coating and subsequent Mg-Zn reactions, Mg-Zn eutectic and intermetallic compounds were detected within welds. Heterogeneous interfacial reactions occur along Mg/steel interface, and the relationship between interfacial structure and fracture behavior was investigated. The joining mechanism is associated with Zn coating and Fe-Al layer: 1) the presence of Zn coating is beneficial for achieving high-quality welding between Mg and steel, it protects the interface from oxidation and contributes to brazing of the weld; 2) the Al present in Mg alloy reacts with Fe, resulting in the growth of Fe-Al layer, which contributes to the diffusion bonding in the interface. The overall results clearly show that Refill FSSW is a competitive welding method for joining Mg and galvanized steel. KW - Refill friction stir spot welding KW - Multi-materials joining KW - Magnesium alloy KW - Galvanized steel KW - Mechanical properties KW - Microstructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536878 DO - https://doi.org/10.1016/j.matdes.2021.109997 SN - 0264-1275 VL - 209 SP - 109997 PB - Elsevier Ltd. AN - OPUS4-53687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A. A1 - Elkousy, M. A1 - Al-Rahman, A. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Gook, S. T1 - Retaining Mechanical Properties of GMA-Welded Joints of 9%Ni Steel Using Experimentally Produced Matching Ferritic Filler Metal JF - materials N2 - Motivated by the loss of tensile strength in 9%Ni steel arc-welded joints performed using commercially available Ni-based austenitic filler metals, the viability of retaining tensile strength using an experimentally produced matching ferritic filler metal was confirmed. Compared to the austenitic Ni-based filler metal (685 MPa), higher tensile strength in gas metal arc (GMA) welded joints was achieved using a ferritic filler metal (749 MPa) due to its microstructure being similar to the base metal (645 MPa). The microstructure of hard martensite resulted in an impact energy of 71 J (-196 °C), which was two times higher than the specified minimum value of _>34 J. The tensile and impact strength of the welded joint is affected not only by its microstructure, but also by the degree of its mechanical mismatch depending on the type of filler metal. Welds with a harder microstructure and less mechanical mismatch are important for achieving an adequate combination of tensile strength and notched impact strength. This is achievable with the cost-effective ferritic filler metal. A more desirable combination of mechanical properties is guaranteed by applying low preheating temperature (200 °C), which is a more practicable and economical solution compared to the high post-weld heat treatment (PWHT) temperature (580 °C) suggested by other research. KW - 9%Ni steel KW - Ni-based austenitic filler metal KW - Mechanical mismatching KW - Microstructure KW - Post-weld heat treatment KW - Preheating KW - Matching ferritic filler metal PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564610 DO - https://doi.org/10.3390/ma15238538 SN - 1996-1944 VL - 15 IS - 23 SP - 1 EP - 14 PB - MDPI AN - OPUS4-56461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwenk, C. A1 - Kannengießer, Thomas A1 - Rethmeier, Michael T1 - Restraint conditions and welding resiudal stresses in self-restrained cold cracking test N2 - In the last decade, high-strength fine grained steels and welding consumables have gained a strong raise of application ranging from mobile cranes to bridge constructions. However, the cracking susceptibility of these steels increases significantly in correspondence with the achieved improvements in yield strength and the loss in plastic deformation reserves. In order to determine this behavior a series of different standardized cold cracking tests has been developed. One remaining major problem of these tests is the uncertainty about the quantitative intensity of the restraint conditions as well as the corresponding welding residual stresses. Consequently, the comparison of different tests and welding conditions as well as the transferability of the results onto real parts is difficult at best. The main topic of this paper is the analysis of the restraint conditions and their link with the welding induced residual stresses. The importance of the given standardized selfrestrained tests and first results about the transferability of results onto real parts are discussed. The influence of the test specimen geometry on the restraint conditions of the test is investigated for a selected test with numerical Simulation using commercial FEA software. Additionally, the residual stresses caused by the welding process are measured and linked with the restraint conditions which are defined mainly by the geometry parameters. Finally the transferability of the selected cold cracking test results is validated experimentally. The test results of a multilayer weld on high-strength fine grained steel of real size weldments are investigated. For these experiments a 16 MN large scale testing facility is used which is capable of applying the high reaction forces and clamping conditions found at large scale demonstrator parts. The results show the importance of the quantitative knowledge of the restraint conditions and the welding residual stresses on the cold cracking resistance. T2 - 8th International Conference on Trends in Welding Research CY - Pine Mountain, USA DA - 01.06.2008 KW - Cold Cracking Test KW - Intensity of Restraint PY - 2008 DO - https://doi.org/10.1361/cp2008twr766 SP - 766 EP - 771 PB - ASM international AN - OPUS4-47623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Resistance spot welding under external load for evaluation of LME susceptibility of zinc coated advanced high strength steel sheets N2 - Some zinc coated advanced high strength steels (AHSS), under certain manufacturing conditions, are known to be prone to liquid metal embrittlement (LME) during resistance spot welding. LME is an undesired phenomenon, which can cause both surface and internal cracks in a spot weld, potentially influencing its strength. An effort is made to understand influencing factors of LME better, and evaluate geometry-material combinations regarding their LME susceptibility. Manufacturers benefit from such knowledge because it improves the processing security of the materials. The experimental procedure of welding under external load is performed with samples of multiple AHSS classes with strengths up to 1200 MPa, including dual phase, complex phase and TRIP steels. This way, externally applied tensile load values are determined, which cause liquid metal embrittlement in the samples to occur. In the future, finite element simulation of this procedure gives access to in-situ stress and strain values present during LME formation. The visualization improves the process understanding, while a quantification of local stresses and strains allows an assessment of specific welded geometries. T2 - ESDAD 2019 CY - Dusseldorf, Germany DA - 24.06.2019 KW - RSW KW - LME KW - Advanced high strength steel KW - Testing method KW - Zinc coated steel PY - 2019 AN - OPUS4-49079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Schafner, A. A1 - Raute, J. A1 - Rethmeier, Michael T1 - Relative density prognosis for directed energy deposition with the help of artificial neural networks JF - Material Testing N2 - Additive manufacturing, and therefore directed energy deposition, is gaining more and more interest from industrial users. However, quality assurance for the components produced is still a challenge. Machine learning, especially using artificial neuronal networks, is a potential method for ensuring a high-quality standard. Based on process Parameters and monitoring data, part quality can be predicted. A further advantage is the ability to constantly learn and adopt to slight process changes. First tests using artificial neural networks focus on the prediction of track geometry. The results show that even a small data set is enough to provide high accuracy in the predictions. In this work, an artificial neural network for the predictive analysis of relative density in laser powder cladding has been developed. A central composite experimental design is used to generate 19 data sets. Input variables are laser power, feed rate and powder mass flow. Cubes are built up where density is considered as a target value. Several neural networks are trained and evaluated with these data sets. Different topologies and initial weights are considered. The best network reaches a confidence level of around 90 % for the prediction of relative density based on the process parame� ters. Finally, the optimization of the generalization performance is investigated. To this purpose, methods of variation in error limit as well as cross-validation are applied. In this way, density is predictable by an artificial neural network with an accuracy of about 95 %. KW - Directed energy deposition KW - Artificial neural network PY - 2021 DO - https://doi.org/10.1515/mt-2020-0004 SN - 0025-5300 VL - 63 IS - 1 SP - 41 EP - 47 PB - DE Gruyter CY - Berlin AN - OPUS4-52690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Hirthammer, Volker A1 - Rethmeier, Michael T1 - Recommendations for an Open Science approach to welding process research data JF - Welding in the World N2 - The increasing adoption of Open Science principles has been a prevalent topic in the welding science community over the last years. Providing access to welding knowledge in the form of complex and complete datasets in addition to peer-reviewed publications can be identified as an important step to promote knowledge exchange and cooperation. There exist previous efforts on building data models specifically for fusion welding applications; however, a common agreed upon implementation that is used by the community is still lacking. One proven approach in other domains has been the use of an openly accessible and agreed upon file and data format used for archiving and sharing domain knowledge in the form of experimental data. Going into a similar direction, the welding community faces particular practical, technical, and also ideological challenges that are discussed in this paper. Collaboratively building upon previous work with modern tools and platforms, the authors motivate, propose, and outline the use of a common file format specifically tailored to the needs of the welding research community as a complement to other already established Open Science practices. Successfully establishing a culture of openly accessible research data has the potential to significantly stimulate progress in welding research. KW - Welding KW - Research data management KW - Open science KW - Digitalization KW - Weldx KW - Open source PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529332 DO - https://doi.org/10.1007/s40194-021-01151-x SN - 1878-6669 SN - 0043-2288 SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-52933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Häberle, Nicolas A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Rechenzeitersparnis bei der numerischen Lösung der nicht- linearen transienten 3D-Wärmeleitungsgleichung durch explizite Zeitintegration T2 - 37. Assistentenseminar Füge- und Schweißtechnik N2 - Die transiente nichtlineare 3D-Wärmeleitungsgleichung wurde zur numerischen Lösung mittels der Finite-Elemente-Methode im Ort und mittels explizitem Eulerschema in der Zeit diskretisiert. Der resultierende Algorithmus wurde in ein Computerprogramm überführt wobei besonderer Wert auf paralleles Rechnen gelegt wurde. Das Programm wurde auf die numerische Berechnung eines schweißtypischen transienten Temperaturfelds angewandt. Die Rechenzeit und Skalierbarkeit des Computerprogramms bezüglich der Anzahl verwendeter CPU Kerne wurde untersucht und mit dem kommerziellen FEM Programm Abaqus 6.14 verglichen. Die Anwendung der expliziten Zeitintegration resultiert in verbesserter Skalierbarkeit bezüglich der Anzahl verwendeter CPU Kerne und Rechenzeitersparnis gegenüber der in Abaqus implementierten impliziten Zeitintegrationsmethode. T2 - 37. Assistentenseminar Füge- und Schweißtechnik CY - Päwesin, Germany DA - 5. September 2016 KW - Schweißsimulation PY - 2017 SN - 978-3-96144-025-2 VL - 339 SP - 115 EP - 120 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-44282 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Javaheri, E. A1 - Kumala, V. A1 - Javaheri, A. A1 - Rawassizadeh, R. A1 - Lubritz, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Quantifying Mechanical Properties of Automotive Steels with Deep Learing Based Computer Vision Algorithms JF - Metals N2 - This paper demonstrates that the instrumented indentation test (IIT), together with a trained artificial neural network (ANN), has the capability to characterize the mechanical properties of the local parts of a welded steel structure such as a weld nugget or heat affected zone. Aside from force-indentation depth curves generated from the IIT, the profile of the indented surface deformed after the indentation test also has a strong correlation with the materials’ plastic behavior. The profile of the indented surface was used as the training dataset to design an ANN to determine the material parameters of the welded zones. The deformation of the indented surface in three dimensions shown in images were analyzed with the computer vision algorithms and the obtained data were employed to train the ANN for the characterization of the mechanical properties. Moreover, this method was applied to the images taken with a simple light microscope from the surface of a specimen. Therefore, it is possible to quantify the mechanical properties of the automotive steels with the four independent methods: (1) force-indentation depth curve; (2) profile of the indented surface; (3) analyzing of the 3D-measurement image; and (4) evaluation of the images taken by a simple light microscope. The results show that there is a very good Agreement between the material parameters obtained from the trained ANN and the experimental uniaxial tensile test. The results present that the mechanical properties of an unknown steel can be determined by only analyzing the images taken from its surface after pushing a simple indenter into its surface. KW - Deep learning KW - Computer vision KW - Artificial neural network KW - Clustering KW - Mechanical properties KW - High strength steels KW - Instumented indentation test PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503038 DO - https://doi.org/10.3390/met10020163 VL - 10 IS - 2 SP - 163 PB - MDPI AN - OPUS4-50303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals JF - Applied Sciences N2 - The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries. KW - DED KW - Artificial neural network KW - Process monitoring KW - Quality assurance KW - Data preparation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547039 DO - https://doi.org/10.3390/app12083955 VL - 12 IS - 8 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals JF - Applied Sciences N2 - The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries. KW - DED KW - Artificial neural network KW - Data preparation KW - Quality assurance KW - Process monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555063 DO - https://doi.org/10.3390/app12083955 SN - 2076-3417 VL - 12 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Quality improvement of laser welds on thick duplex plates by laser cladded buttering T2 - Lasers in Manufacturing (LiM) 2019 - Proceedings N2 - Because of its excellent corrosion resistance, high tensile strength and high ductility, duplex stainless steel 2205 offers many areas of application. Though laser beam welding accompanied by high cooling rates, duplex steels tend to perform higher ferrite contents in weld metal as the base metal, which leads to a reduction of ductility and corrosion resistance of the weld joint. To overcome this problem, a solution, based on buttering the plate edges by laser metal deposition (LMD) with material containing higher Ni concentrations prior to laser welding was suggested. In this context different process parameters for LMD process were investigated. In a second step the possibility of welding those edges defect free while achieving balanced austenite-ferrite ratio was verified with metallographic analysis, Electron Backscatter Diffraction (EBSD) and impact testing according to Charpy. T2 - Lasers in Manufacturing (LiM) 2019 CY - Munich, Germany DA - 24.06.2019 KW - Laser Metal Deposition; Laser Beam Welding; Duplex; Stainless Steel PY - 2020 SP - We_A31_4_4-1 EP - We_A31_4_4-6 PB - WLT (Wissenschaftliche Gesellschaft für Lasertechnik) AN - OPUS4-50143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rethmeier, Michael A1 - Biegler, M. T1 - Qualifizierung der Schweißstruktursimulation für die wirtschaftliche Bearbeitung additiver fertigungstechnischer Fragestellungen am Beispiel des Laserpulverauftragschweißens T2 - Forschungsvereinigung Stahlanwendung e. V. N2 - Additive Fertigungsverfahren, speziell das selektive Laserschmelzen sowie das Laserpulverauftragsschweißen, ermöglichen eine enorme Steigerung der Flexibilität und erlauben Kleinserienteile mit hoher Genauigkeit und geringen Kosten herzustellen. Für den erfolgreichen wirtschaftlichen Einsatz dieser neuartigen Fertigungsverfahren spielt die Einhaltung des First-time-right-Prinzips eine entscheidende Rolle: Bauteile sollten bereits im ersten Versuch allen Anforderungen genügen. Aufgrund der jungen Geschichte dieses Fertigungszweigs und der damit einhergehenden fehlenden Erfahrungen und Richtlinien ist diese elementare Forderung heute nur in wenigen Fällen realisierbar. Die geforderten Qualitätsstandards können aktuell nur über experimentelle Iterationsschleifen eingehalten werden, sodass das große Potential einer flexiblen und schnellen Fertigung in erheblichem Maß reduziert wird. Die Komplexität der gefertigten Bauteile und die des Prozesses an sich lassen eine erfahrungsbasierte Vorhersage der Verzüge und Eigenspannungen kaum zu. Zudem werden auch in Zukunft Richtlinien und Normen nicht das komplette Anwendungsspektrum abbilden können. Die eigenspannungsbedingten Verzüge spielen demnach eine bedeutende Rolle und stellen zusammen mit dem Erreichen der Maßhaltigkeit eine entscheidende technologische Herausforderung beim Einsatz additiver Fertigungsverfahren dar. Die numerische Simulation ermöglicht die Vorhersage von Bauteilverzügen und –spannungen und kann durch virtuelle Abprüfung von Herstellstrategien die Anzahl von Experimente reduzieren. Bisherige numerische Betrachtungen von zusatzwerkstoffbasierten Verfahren, zu denen unter anderem das Laserpulverauftragschweißen (LPA) gehört, beschränkten sich primär auf akademische Beispiele mit geringer Komplexität. Für die Simulation von konkreten Anwendungsfällen auf Bauteilebene liegen bisher keine validierten, numerischen Methoden und Ansätze vor, die eine wirtschaftliche Anwendung der Schweißsimulation ermöglichen. Dieses Projekt wird Simulationsmodelle zur numerischen Betrachtung komplexer additiv gefertigter Bauteile entwickeln. Dafür wird der Prozess in vereinfachten Simulationen nachgebildet und anhand von Experimenten validiert. Anschließend werden Methoden zur automatisierten Pfadgenerierung für komplexe Bauteile erprobt und in der Simulation implementiert. Schließlich werden zur Reduktion der Rechenzeit verschiedene Methoden zur Vereinfachung evaluiert und verglichen. Das Ziel ist die Steigerung der Verlässlichkeit in der Simulation, um prädiktive Aussagen über die Qualität additiv gefertigter Bauteile zu ermöglichen. KW - Schweißstruktursimulation KW - LPA KW - Additive Manufacturing PY - 2019 SN - 978-3-96780-042-5 SP - 1 EP - 106 PB - Forschungsvereinigung Stahlanwendungen AN - OPUS4-57321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rethmeier, Michael A1 - Biegler, M. A1 - Javaheri, E. T1 - Qualifizierung der instrumentierten Eindringprüfung zur Kennwertermittlung für hochfeste Stähle mit Schweißungen T2 - Forschungsvereinigung Stahlanwendung e. V. N2 - Der Einsatz von hochfesten Stählen im Karosseriebereich des Automobilbaus hat während der letzten Jahre stark zugenommen. Hierzu zählen Dual- und Komplexphasenstähle, welche durch Kombination unterschiedlicher Gefügebestandteile auch deren Vorteile kombinieren, sowie TRIP (TRansformation Induced Plasticity) und Mangan-Bor Stähle, welche sehr gute Umformeigenschaften mit hohen Festigkeiten durch Martensitbildung bei der Umformung kombinieren. TWIP (Twinning Induced Plasticity) Stähle erreichen ähnliche Effekte durch forcierte Zwillingsbildung. Die Ursachen für den Einsatz dieser Stähle liegen in dem Potential dieser Materialien zur Gewichts- und Kostenreduzierung, bei gleichzeitiger Erhöhung der Fahrgastsicherheit. Auf Grund der prinzipiell gegebenen Schweißeignung dieser Stähle, werden die klassischen Fügeverfahren im Karosseriebau wie das kostengünstige und effektive Widerstandspunktschweißen, das Metall-Schutzgas (MSG)-Schweißen oder das Laserschweißen angewendet. Allerdings treten teilweise Herausforderungen, beispielsweise durch Gefügeveränderungen in den Fügestellen auf, die zu ungewollten Aufhärtungen oder Erweichungen führen. In diesem Projekt wird ein Verfahren entwickelt, mit welchem die lokalen Werkstoffeigenschaften von im Automobilbau typischen Werkstoffen und deren Fügestellen bestimmt werden können. Relevante Kennwerte sind in erster Linie das SpannungsDehnungs-Verhalten der verschiedenen Zonen einer Schweißverbindung; relevante Zonen wiederum sind neben dem Grundwerkstoff die Wärmeeinflusszone und das Schweißgut. Zu diesem Zweck wird das Verfahren der instrumentierten Eindringprüfung für den Einsatz bei hochfesten Stählen weiterentwickelt. Zunächst werden hierzu Zugversuche an einfachen Grundwerkstoffgeometrien durchgeführt. Im Anschluss wird die optische Dehnungsfeldmessung an stark taillierten, geschweißten Zugversuchsproben durchgeführt. Die Taillierung dient dem Zweck, die WEZ auch mittels WPS über den gesamten Querschnitt der Probe erzeugen zu können, bzw. im Versuch auch Dehnungen in den relevanten Bereichen herbeizuführen. Das im Projekt angewendete Auswerteverfahren, welches auf nichtlinearen Regressionsmodellen in Form von künstlichen, neuronalen Netzwerken beruht, ermöglicht die Vorhersage des Festigkeitsverhaltens des Werkstoffes anhand der gemessenen Krafteindringwegdaten. KW - Eindringprüfung KW - Hochfester Stahl KW - Prüfverfahren PY - 2020 SN - 978-3-946885-98-6 SP - 1 EP - 164 PB - Forschungsvereinigung Stahlanwendungen AN - OPUS4-57322 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Prognose von Qualitätsmerkmalen durch Anwendung von KI-Methoden beim Directed 10 Energy Deposition JF - Schweißen und Schneiden N2 - Dieser Beitrag enthält die Ergebnisse eines im Rahmen der DVS Forschung entwickelten Ansatzes zur Qualitätssicherung im Directed Energy Deposition. Es basiert auf der Verarbeitung verschiedener während des Prozesses gesammelter Sensordaten unter Anwendung Künstlicher Neuronale Netze (KNN). So ließen sich die Qualitätsmerkmale Härte und Dichte auf der Datenbasis von 50 additiv gefertigten Probenwürfel mit einer Abweichung < 2 % vorhersagen. Des Weiteren wurde die Übertragbarkeit des KNN auf eine Schaufelgeometrie untersucht. Auch hier ließen sich Härte und Dichte hervorragend prognostizieren (Abweichung < 1,5 %), sodass der Ansatz als validiert betrachtet werden kann. KW - Kl KW - Directed Energy Depositio KW - Qualitätssicherung PY - 2022 SN - 0036-7184 VL - 74 IS - 10 SP - 672 EP - 679 PB - DVS Media CY - Düsseldorf AN - OPUS4-56284 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Process Setup and Boundaries of Wire Electron Beam Additive Manufacturing of High-Strength Aluminum Bronze JF - metals N2 - In recent years, in addition to the commonly known wire-based processes of Directed Energy Deposition using lasers, a process variant using the electron beam has also developed to industrial market maturity. The process variant offers particular potential for processing highly conductive, reflective or oxidation-prone materials. However, for industrial usage, there is a lack of comprehensive data on performance, limitations and possible applications. The present study bridges the gap using the example of the high-strength aluminum bronze CuAl8Ni6. Multi-stage test welds are used to determine the limitations of the process and to draw conclusions about the suitability of the parameters for additive manufacturing. For this purpose, optimal ranges for energy input, possible welding speeds and the scalability of the process were investigated. Finally, additive test specimens in the form of cylinders and walls are produced, and the hardness profile, microstructure and mechanical properties are investigated. It is found that the material CuAl8Ni6 can be well processed using wire electron beam additive manufacturing. The microstructure is similar to a cast structure, the hardness profile over the height of the specimens is constant, and the tensile strength and elongation at fracture values achieved the specification of the raw material. KW - Wire electron beam additive manufacturing KW - Aluminum bronze KW - Wire-based additive manufacturing KW - EBAM KW - DED-EB PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580890 DO - https://doi.org/10.3390/met13081416 VL - 13 IS - 8 SP - 1 EP - 16 PB - MDPI AN - OPUS4-58089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhne, Chr. A1 - Meschut, G. A1 - Biegler, M. A1 - Frei, J. A1 - Rethmeier, Michael T1 - Prevention of liquid metal embrittlement cracks JF - Science and technology of welding and joining N2 - Advanced high strength steels are usually coated by a zinc layer for an increased resistance against corrosion. During the resistance spot welding of zinc coated steel grades, liquid metal embrittlement (LME)mayoccur. As a result, cracking inside and around the spot weld indentation is observable. The extent of LME cracks is influenced by a variety of different factors. In this study, the impact of the used electrode geometry is investigated over a stepwise varied weld time. A spot welding finite element simulation is used to analyse and explain the observed effects. Results show significant differences especially for highly increased weld times. Based on identical overall dimensions, electrode geometries with a larger working plane allow for longer weld times, while still preventing LME within the investigated material and maintaining accessibility. KW - Liquid metal embrittlement KW - Crack KW - Advanced high strength steels KW - Resistance spot welding KW - Electrode geometry PY - 2019 DO - https://doi.org/10.1080/13621718.2019.1693731 VL - 25 IS - 4 SP - 303 EP - 310 PB - Taylor & Francis AN - OPUS4-49833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Schmidt, M. ED - Vollertsen, F. ED - Schmidt, B. M. T1 - Preliminary study to investigate the applicability of optical strain measurement technique for the detection of hot cracks in laser metal deposited layers JF - Procedia CIRP N2 - Laser metal deposition (LMD) as an additive manufacturing technique became increasingly important in recent years and thus the demand for component safety. This is the reason, for the need for reliable in-situ defect detection techniques. For laser beam weld seams an optical measurement technique based on an optical flow algorithm was successfully used to define the critical straining conditions that lead to hot cracking. This algorithm was adapted for bead-on-plate weld seams on LMD deposited layers of IN718 alloy while performing external strain on the specimen in an externally loaded hot cacking test facility. The resulting transversal hot cracks along the weld seam were localized via X-Ray inspection and the type of cracking confirmed by Scanning Electron Microscopy (SEM). The strain distribution was measured in the vicinity of the solidification front and correlated to the detected hot cracks. Based on the results this technique could be adopted for LMD experiments. T2 - 12th CIRP Conference on Photonic Technologies [LANE 2022] CY - Fürth, Germany DA - 04.09.2022 KW - Laser Metal Deposition (LMD) KW - Strain measurement KW - Optical flow KW - Critical strain PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556445 DO - https://doi.org/10.1016/j.procir.2022.08.034 VL - 111 SP - 335 EP - 339 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-55644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Raute, J. A1 - Linaschke, D. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Porosity of LMD manufactured parts analyzed by Archmimedes method and CT JF - Materials Testing N2 - Pores in additive manufactured metal parts occur due to different reasons and affect the part Quality negatively. Few investigations on the origins of porosity are available, especially for Ni-based super alloys. This paper presents a new study to examine the influence of common processing Parameters on the Formation of pores in parts built by laser metal Deposition using Inconel 718 powder. Further, a comparison between the computed tomography (CT) and the Archimedes method was made. The Investigation Shows that CT is able to identify different kinds of pores and to give further Information about their distribution. The identification of some pores as well as their shape can be dependent on the Parameter Setting of the Analysis tool. Due to limited measurement Resolution, CT is not able to identify correctly pores with Diameters smaller than 0.1 mm, which leads to a false decrease on Overall porosity. The applied Archimedes method is unable to differentiate between gas porosity and other Kinds of holes like internal cracks or lack of Fusion, but it delivered a proper value for Overall porosity. The method was able to provide suitable data for the statistical Evaluation with design of Experiments, which revealed significant Parameters ont he Formation of pores in LMD. KW - Laser metal deposition KW - Additive manufacturing KW - Density measurement KW - Porosity KW - Design of experiments PY - 2018 DO - https://doi.org/10.3139/120.111232 SN - 0025-5300 VL - 60 IS - 11 SP - 1055 EP - 1060 PB - Hanser CY - Berlin AN - OPUS4-47094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, Chunliang A1 - Yan, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Phase-field simulation of the dendrite growth in aluminum alloy AA5754 during alternating current electromagnetic stirring laser beam welding JF - International Journal of Heat and Mass Transfer N2 - Electromagnetic stirring is known to promote material flow, reduce porosity, uniform elements distribution, and refine grain in laser beam welding (LBW), which enhances the applicability of LBW in various industries. In this study, a phase-field model of dendrite growth in AA5754 Al alloy electromagnetic stirring laser beam welding was established. The model considered the thermal electromagnetic Lorentz force resulting from the interaction between the electric field generated by the Seebeck effect and the magnetic field, as well as the temperature gradient and solidification rate of the solidification interface obtained from the computational fluid dynamics electromagnetic stirring LBW model. The variation rules of dendrite growth with different magnetic parameters and effects are analyzed. Comprehensively, the magnetic field promotes the solidification rate, thus promoting interfacial instability and a large magnetic flux density leads to a faster interface instability. The solidification rate as well as the temperature gradient affect the growth rate, and the accelerated growth caused by the so lidification rate with a high frequency and a large magnetic flux density effectively inhibits the slow growth caused by the temperature gradient. The thermal electromagnetic Lorentz force is the main factor for the branch increment at low frequencies, while both thermal electromagnetic Lorentz force and temperature gradient in crease the number of branches at high frequencies. The calculated average branch numbers considering various factors in the stable stage under different magnetic parameters were consistent with the results of the scanning electron microscope tests. KW - Laser beam welding KW - Electromagnetic KW - Aluminum alloys KW - Phase field method KW - Dendrite growth PY - 2024 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2023.124754 SN - 0017-9310 VL - 218 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-58489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, J. A1 - Rethmeier, Michael T1 - Overview and new developments in research on resistance spot welding of advanced high strength steels T2 - The 5th International Conference on Steels in Cars and Trucks N2 - The safe joining of new, freshly developed steel types keeps challenging the industry–and is assumed to go on in doing so. In the body-in-white production, these materials are mainly joined using resistance spot welding. During the past ten years, various investigations on resistance spot welding of advanced high strength steels have been carried out at Fraunhofer IPK and the Federal Institute for Materials Research and Testing (BAM). This paper aims to give an overview about both the top former and recent studies and results. The investigated topics are the influences of manufacturing conditions as initial gaps and restraints on spot welds, their impact on the fatigue strength of a joint and the cracking-wise safe weldability of AHSS. Caused by non-ideal manufacturing conditions, cracks in spot welds (e.g. caused by liquid metal embrittlement) are still regarded as a potential risk in industrial practice. Therefore, a method to evaluate the safe weldability regarding the cracking susceptibility was developed for AHSS. The method is easy to perform, even without expensive laboratory equipment. It allows the end user to establish a material ranking regarding the cracking susceptibility of the handled steels. Recently, coupled thermo-mechanical finite element modelling has been used to describe critical stress-strain conditions responsible for the occurrence of liquid metal embrittlement, and to improve the understanding of the process. T2 - The 5th International Conference on Steels in Cars and Trucks CY - Amsterdam-Schiphol, The Netherlands DA - 19.06.2017 KW - Advanced high strength steels KW - Resistance spot welding KW - Cracking susceptibility KW - Liquid metal embrittlement KW - Material ranking KW - Fatigue strength KW - Gaps KW - Finite element method PY - 2017 SP - 1 EP - 8 AN - OPUS4-43189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Orbital hybrid laser-arc welding using a high-power fibre laser for pipeline construction JF - Global Nuclear Safety N2 - Recently developed fibre lasers provide multi-kilowatt beam power with high quality at impressive energy efficiency. Combined with gas metal arc welding (GMAW) equipment these lasers can be used in a hybrid process to weld thick-walled constructions single-pass, that are currently welded using multi-pass techniques. The main benefits are a reduction of heat induced distortions, due to the low heat input, as well as savings in filler material and process time. Probable applications can be found in power generation, ship building and pipeline constructions. An orbital (girth) laser-hybrid process using a 20 kW fibre laser and a GMAW torch is currently examined at the BAM, Berlin. The aim of this research is to obtain a stable and crack free girth welding process and to demonstrate its application in pipeline construction. The experiments are carried out on 16 mm thick plates as well pipe rings with 36" (914 mm) pipe diameter of X65. Particular welding parameters, such as welding speed, GMAW power, arc length are varied and their influence on the appearance of the weld in the different welding positions is analyzed. Even though issues remain that demand further research it could already be shown that the rings can be welded using a girth hybrid process that is divided into two half girth processes in downward direction. KW - High-power fibre laser KW - Thick plates KW - Laser-hybrid welding KW - Pipeline PY - 2018 UR - http://gns.mephi.ru/en/issues/2018-126?art=418 SN - 2499-9733 SN - 2305-414X VL - 1 IS - 26 SP - 47 EP - 57 PB - National Research Nuclear University "MEPhI" CY - Volgodonsk AN - OPUS4-45046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Fabry, Çağtay A1 - Hirthammer, Volker A1 - Rethmeier, Michael T1 - Open Science in der Schweißtechnik N2 - Darstellung der aktuellen Situation sowie des Potenzials von Forschungsdatenmanagement und OpenScience in der Schweißtechnik. T2 - WelDX - Open Science Seminar CY - BAM Berlin, Germany DA - 04.03.2020 KW - Digitalisierung KW - Schweißtechnik KW - OpenScience KW - Forschungsdatenmanagement PY - 2020 UR - https://www.bam.de/Content/DE/Veranstaltungen/2020/2020-03-09-weldx-open-science-seminar.html AN - OPUS4-51857 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding T2 - ICALEO 2018 - The International Congress on Applications of Lasers & Electro-Optics (Proceedings) N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO®) CY - Orlando, USA DA - 14.10.2018 KW - Bulging effect KW - High power laser beam welding KW - Numerical modelling KW - Solidification cracking PY - 2019 SP - 1 EP - 8 AN - OPUS4-47139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding JF - AIP Journal of Laser Applications N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. KW - Bulging effect KW - High power laser beam welding KW - Process simulation KW - Solidification KW - Hot cracking PY - 2019 DO - https://doi.org/10.2351/1.5096133 SN - 1042-346X SN - 1938-1387 VL - 31 IS - 2 SP - 022413-1 EP - 022413-7 PB - AIP Publishing AN - OPUS4-47848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Karkhin, V. A1 - Rethmeier, Michael T1 - On the relationship between the bulge effect and the hot cracking formation during deep penetration laser beam welding JF - Procedia CIRP N2 - Recent studies have confirmed the widening of the weld pool interface, known as a bulge effect, during deep penetration high power laser beam welding. The link between such geometric particularities of the weld pool shape and the hot cracking phenomena is significant. The present work seeks to extend the level of understanding by investigating their relationship. A coupled multiphysics, multiscale numerical framework is developed, comprising a series of subsequent analyses. The study examines the influences of the bulge on the three most dominant effects causing hot cracking, namely the thermal cycles, the mechanical loading, and the local microstructure. The bulge in the weld pool shape forms approximately in the middle of the plate, thus correlating with the location of hot cracking. It increases the hot cracking susceptibility by enhancing the three dominant effects. The numerical results are backed up by experimental data. T2 - 11th CIRP Conference on Photonic Technologies [LANE 2020] KW - Hot cracking KW - Bulge effect KW - Numerical modelling KW - Laser beam welding KW - Deep penetration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512783 DO - https://doi.org/10.1016/j.procir.2020.09.002 SN - 2212-8271 VL - 94 SP - 5 EP - 10 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-51278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Observation of the weld pool shape in partial penetration welding and its influence on solidification crack formation for high-power laser beam welding T2 - Lasers in Manufacturing Conference 2021 N2 - In this study, steel-glass experiments were conducted to observe the melt pool geometry using a high-speed camera. The high-speed recordings and optical flow analysis show that two main flows take place in form of vortices. The lower vortex drives the melt backwards from the front keyhole wall and thus causes an extension of the melt pool, which is called bulging. This bulging promotes solidification cracking by forming a closed area filled with melt and the accumulation of impurities in the final solidification phase, resulting in low-melting phases which are under tensile stress at the end of solidification. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Laser beam welding KW - Weld pool shape KW - Solidification craking KW - Partial penetration PY - 2021 SP - 1 EP - 5 AN - OPUS4-53587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Numerische Simulation im 3D-Druck JF - Stahl und Eisen N2 - Die numerische Simulation hilft, Probleme bei additiven Bauprozessen früh zu erkennen und Optimierungspotentiale auszuschöpfen. Ziel ist, im additiven Auftragschweißen (DED) die Zahl der nötigen Versuche durch Vorhersagen zu verringern und Prozessgrößen zu visualisieren. Eine besondere Anwendung der Simulation ist die Generierung verzugskompensierter Geometrien: Durch die Berechnung des Bauteilverzugs kann die Geometrie vor dem Bauen so verändert werden, dass sie mit Verzug die gewünschte Toleranz erreicht. So kann Zerspanvolumen und Aufmaß reduziert werden. KW - Schweißsimulation KW - FEM KW - Auftragschweißen KW - Additive Fertigung KW - Verzug PY - 2020 IS - 4 SP - 45 EP - 48 AN - OPUS4-51097 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Sari, B. A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Numerische Simulation einer AM-Prozesskette im DED Auftragschweißen T2 - RoundTable Simulating Manufacturing 20 N2 - Das DED Auftragschweißen ist ein additives Fertigungsverfahren für Metalle, bei dem das Material schichtweise auf ein Substrat aufgetragen wird. Die schnellen Temperaturzyklen rufen Spannungsgradienten im Bauteil hervor. Der schichtweise Aufbau der Bauteile verursacht eine anisotrope Mikrostruktur. Mittels nachgelagerter Wärmebehandlung können diese Effekte verringert werden. Im anschließenden Schritt der Prozesskette wird das additiv hergestellte Bauteil mittels Drahterodieren von dem Substrat abgetrennt. In diesem Beitrag wird eine thermo-mechanische Simulation der gesamten Prozesskette vorgestellt, welche den additiven Aufbau, Wärmebehandlung und das Abtrennen vom Substrat beinhaltet. Anstelle der in der Literatur üblichen schichtweisen Modellierungsstrategie für die DED Simulation wird das gesamte Bauteil in einem Stück vernetzt und der vollständig transiente, schichtweise Materialauftrag über Elementgruppen realisiert. Im Gegensatz zu früheren Simulationen muss der nichtlineare Kontakt zwischen den Schichten nicht berücksichtigt werden, was die Rechenzeiten deutlich verkürzt. Das Modell wurde validiert mittels Abgleiches des Verzugs aus Simulation und Experiment. Die Proben, bestehend aus DIN 1.4404 (AISI 316L), wurden nach jedem Prozessschritt 3D gescannt um den Verzug zu quantifizieren. Zusätzlich wurden Querschnitte und Härtetests nach Vickers von unterschiedlich behandelten Proben durchgeführt, um den Effekt der Wärmebehandlung auf die Mikrostruktur und die Härte des Bauteils zu untersuchen. T2 - 20. Roundtable Simulating Manufacturing CY - Marburg, Germany DA - 22.05.2019 KW - Numerische ISmulation KW - DED KW - AM KW - Laser-Pulver-Auftragschweißen PY - 2019 SP - 1 EP - 14 AN - OPUS4-50046 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study on the formation of a bulging region in partial penetration laser beam welding T2 - Mathematical Modelling of Weld Phenomena 13 N2 - A transient three-dimensional thermo-fluid dynamics numerical model was developed to study the formation of a bulging region in partial penetration laser beam welding. The model accounts for the coupling between the fluid flow, the heat transfer, and the keyhole dynamics by considering the effects of multiple reflections and Fresnel absorption of the laser beam in the keyhole, the phase transitions during melting and evaporating, the thermo-capillary convection, the natural convection, and the phase-specific and temperature-dependent material properties up to the evaporation temperature. The validity of the model was backed up by experimentally obtained data, including the drilling time, the weld pool length, the local temperature history outside the weld pool, the process efficiency, and a range of metallographic crosssections. The model was applied for the cases of partial penetration laser beam welding of 8 mm and 12 mm thick unalloyed steel sheets. The obtained experimental and numerical results reveal that the bulging region forms transiently depending on the penetration depth of the weld, showing a tendency to transition from a slight bulging to a fully developed bulging region between penetration depths of 6 mm and 9 mm, respectively. T2 - 13th International Seminar "Numerical Analysis of Weldability" CY - Seggau, Austria DA - 04.09.2022 KW - Laser beam welding KW - Deep penetration KW - Bulge formation KW - Numerical modeling PY - 2023 SN - 978-3-85125-968-1 SN - 978-3-85125-969-8 SN - 2410-0544 VL - 13 SP - 101 EP - 126 PB - Verlag der Technischen Universität Graz AN - OPUS4-58802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Rethmeier, Michael T1 - Numerical study of the bulging effect in deep penetration laser beam welding T2 - Numerical study of the bulging effect in deep penetration laser beam welding N2 - This article is devoted to the study of the bulging effect in deep penetration laser beam welding. The numerical results of the investigations are based upon experimental results from previous studies to reveal the relationship between the bulging effect and the hot cracking formation, as well as the mixing of alloying elements in the weld pool. The widening of the molten pool in its center area can be observed in full penetration as well as in partial penetration welds on 8 mm and 12 mm thick structural steel plates, respectively. The weld pool shape is extracted from the simulations to evaluate the extent of the necking of the solidification line as well as the bulging phenomena and its influence on the hot cracking phenomena. Relying on an earlier numerical study utilizing a fixed keyhole, simulation models considering a dynamic keyhole are developed thereto. Additionally, the mixing behavior of alloying elements during partial penetration is investigated. The link between the bulge and the studied phenomena is found to be significant. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Deep penetration laser beam welding KW - Welding simulation KW - Solidification cracking KW - Bulging effect PY - 2021 SP - 1 EP - 8 AN - OPUS4-52848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study of additional element transport in wire feed laser beam welding JF - Procedia CIRP N2 - The transport phenomena in the wire feed laser beam welding are investigated numerically. A three-dimensional transient heat transfer and fluid flow model coupled with free surface tracing and element transport is developed. A ray-tracing method with local grid refinement algorithm is used to calculate the multiple reflections and Fresnel absorption on the keyhole wall. The filler material flows backward along the lateral side of the weld pool, and subsequently flows forward along the longitudinal plane. The occurrence of the bulging phenomenon may further prevent the downward transfer of the additional elements to the root of the weld pool. KW - Laser beam welding KW - Element transport KW - Filler wire KW - Numerical modelling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513271 DO - https://doi.org/10.1016/j.procir.2020.09.129 VL - 94 SP - 722 EP - 725 PB - Elsevier B.V. AN - OPUS4-51327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -