TY - JOUR A1 - Resch-Genger, Ute A1 - Carl, F. A1 - Grauel, Bettina A1 - Pons, Monica A1 - Würth, Christian A1 - Haase, M. T1 - LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals N2 - We developed a procedure to prepare luminescent LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with a size of approximately 40 nm revealing luminescence decay times of the dopant ions that approach those of high-quality laser crystals of LiYF4:Yb (Yb:YLF) and LiYF4:Yb,Er (Yb,Er:YLF) with identical doping concentrations. As the luminescence decay times of Yb3+ and Er3+ are known to be very sensitive to the presence of quenchers, the long decay times of the core/shell nanocrystals indicate a very low number of defects in the core particles and at the core/shell interfaces. This improvement in the performance was achieved by introducing two important modifications in the commonly used oleic acid based synthesis. First, the shell was prepared via anewly developed method characterized by a very low nucleation rate for particles of pure LiYF4 shell material. Second, anhydrous acetates were used as precursors and additional drying steps were applied to reduce the incorporation of OH− in the crystal lattice, known to quench the emission of Yb3+ ions. Excitation power density (P)-dependent absolute measurements of the upconversion luminescence quantum yield (Φ,UC) of LiYF4:Yb,Er/LiYF4 core/shell particles reveal a maximum value of 1.25% at P of 180 W·cm−2. Although lower than the values reported for NaYF4:18%Yb,2%Er core/shell nanocrystals with comparable sizes, these Φ, UC values are the highest reported so far for LiYF4:18%Yb,2%Er/LiYF4 nanocrystals without additional dopants. Further improvements May nevertheless be possible by optimizing the dopant concentrations in the LiYF4 nanocrystals. KW - Nano KW - Crystal KW - Quantum yield KW - LiYF4 KW - Synthesis KW - Lifetime KW - Fluorescence KW - NIR KW - Photoluminescence KW - Lanthanide KW - Upconversion nanoparticle KW - Nanomaterial PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515395 DO - https://doi.org/10.1007/s12274-020-3116-y SN - 1998-0124 VL - 14 IS - 3 SP - 797 EP - 806 PB - Springer AN - OPUS4-51539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Borcherding, H. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Lifetime encoding in flow cytometry for bead‑based sensing of biomolecular interaction N2 - To demonstrate the potential of time-resolved flow cytometry (FCM) for bioanalysis, clinical diagnostics, and optically encoded bead-based assays, we performed a proof-of-principle study to detect biomolecular interactions utilizing fluorescence lifetime (LT)-encoded micron-sized polymer beads bearing target-specific bioligands and a recently developed prototype lifetime flow cytometer (LT-FCM setup). This instrument is equipped with a single excitation light source and different fluorescence detectors, one operated in the photon-counting mode for time-resolved measurements of fluorescence decays and three detectors for conventional intensity measurements in different spectral windows. First, discrimination of bead-bound biomolecules was demonstrated in the time domain exemplarily for two targets, Streptavidin (SAv) and the tumor marker human chorionic gonadotropin (HCG). In a second step, the determination of biomolecule concentration levels was addressed representatively for the inflammation-related biomarker tumor necrosis factor (TNF-α) utilizing fluorescence intensity measurements in a second channel of the LT-FCM instrument. Our results underline the applicability of LT-FCM in the time domain for measurements of biomolecular interactions in suspension assays. In the future, the combination of spectral and LT encoding and multiplexing and the expansion of the time scale from the lower nanosecond range to the longer nanosecond and the microsecond region is expected to provide many distinguishable codes. This enables an increasing degree of multiplexing which could be attractive for high throughput screening applications. KW - Fluorescence KW - Sensor KW - Assay KW - Protein KW - Multiplexing KW - Flow cytometry KW - Barcoding KW - Lifetime KW - Dye KW - Bead KW - Bead-based assay KW - Method KW - Quantification PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516007 DO - https://doi.org/10.1038/s41598-020-76150-x VL - 10 IS - 1 SP - 19477 PB - Nature AN - OPUS4-51600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Introduction to Fluorescence Spectroscopy N2 - A brief introduction to fluorescence spectroscopy will be provided, ranging from typically measured fluorescence quantities over instrument-specific contributions to measured fluorescence signals to selected applications. In this context, an overview of the photoluminescence properties of molecular and nanoscale luminescence reporters will be given including a brief insight into their photophysics and fluorescence standards designed by division Biophotonics for the calibration and instrument performance validation of fluorescence measuring devices will be presented. T2 - Analytical Academy CY - Berlin, Germany DA - 13.01.2020 KW - Linearity KW - Fluorescence KW - Dye KW - Quality assurance KW - Nnano particle KW - Method KW - Measurement uncertainty KW - Quantification PY - 2020 AN - OPUS4-51618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Introduction to Fluorescence Spectroscopy N2 - A brief introduction to fluorescence spectroscopy will be provided, ranging from typically measured fluorescence quantities over instrument-specific contributions to measured fluorescence signals to selected applications. In this context, an overview of the photoluminescence properties of molecular and nanoscale luminescence reporters will be given including a brief insight into their photophysics and fluorescence standards designed by division Biophotonics for the calibration and instrument performance validation of fluorescence measuring devices will be presented. T2 - Analytical Academy BAM CY - Online meeting DA - 17.11.2020 KW - Fluorescence KW - Quality assurance KW - Quantification KW - Linearity KW - Measurement uncertainty KW - Method KW - Nano particle KW - Dye PY - 2020 AN - OPUS4-51619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Zeyat, M. A1 - Hübner, Oskar A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Kutter, M. A1 - Paskin, A. A1 - Uhlig, J. A1 - Lentz, D. A1 - Eigler, S. T1 - Substitution Pattern-Controlled Fluorescence Lifetimes of Fluoranthene Dyes N2 - The absorption and emission properties of organic dyes are generally tuned by altering the substitution pattern. However, tuning the fluorescence lifetimes over a range of several 10 ns while barely affecting the spectral features and maintaining a moderate fluorescence quantum yield is challenging. Such properties are required for lifetime multiplexing and barcoding applications. Here, we show how this can be achieved for the class of fluoranthene dyes, which have substitution-dependent lifetimes between 6 and 33 ns for single wavelength excitation and emission. We explore the substitution-dependent emissive properties in the crystalline solid state that would prevent applications. Furthermore, by analyzing dye mixtures and embedding the dyes in carboxyfunctionalized 8 μm-sized polystyrene particles, the unprecedented potential of these dyes as labels and encoding fluorophores for time-resolved fluorescence detection techniques is demonstrated. KW - Fluorescence KW - Label KW - Fluoranthene KW - Quantum yield KW - Reporter KW - Crystal KW - Encoding KW - Multiplexing KW - Particle KW - Bead KW - Lifetime KW - Dye KW - Barcoding PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.0c08851 SN - 1520-5207 VL - 125 IS - 4 SP - 1207 EP - 1213 PB - American Chemical Society AN - OPUS4-52087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Michaelis, Matthias A1 - Prinz, Carsten A1 - Würth, Christian T1 - Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings† N2 - We demonstrate the potential of time-resolved luminescence spectroscopy for the straightforward assessment and in situ monitoring of the stability of upconversion nanocrystals (UCNPs). Therefore, we prepared hexagonal NaYF4:Yb3+,Er3+ UCNPs with various coatings with a focus on phosphonate ligands of different valency, using different ligand exchange procedures, and studied their dissolution behaviour in phosphate-buffered saline (PBS) dispersions at 20 °C and 37 °C with various analytical methods. The amount of the released UCNPs constituting fluoride ions was quantified by potentiometry using a Fluoride ion-sensitive electrode and particle disintegration was confirmed by transmission electron microscopy studies of the differently aged UCNPs. In parallel, the luminescence features of the UCNPs were measured with special emphasis on the lifetime of the sensitizer emission to demonstrate its suitability as Screening parameter for UCNP stability and changes in particle composition. The excellent correlation between the changes in luminescence lifetime and fluoride concentration highlights the potential of our luminescence lifetime method for UCNP stability screening and thereby indirect monitoring of the release of potentially hazardous fluoride ions during uptake and dissolution in biological systems. Additionally, the developed in situ optical method was used to distinguish the dissolution dynamics of differently sized and differently coated UCNPs. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - TEM PY - 2020 DO - https://doi.org/10.1039/d0nr02931a VL - 12 IS - 23 SP - 12589 EP - 12601 PB - Royal Society od Chemistry AN - OPUS4-52088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meierhofer, F. A1 - Dissinger, F. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Waldvogel, S. R. A1 - Voss, T. T1 - Citric-Acid-Based Carbon Dots with Luminescence Quantum Yields > 50%: spectral tuning of the luminescence by ligand exchange and pH adjustment N2 - We report the synthesis and characterization of carbon nanodots (CDs) with high quantum yield (>50%) and tailored optical absorption as well as emission properties. A well-described protocol with polyethyleneimine (PEI) as amine precursor is used as a reference to a new CD system which is stabilized by aromatic 2,3-diaminopyridine (DAP) molecules instead. The DAP stabilizer is installed in order to red-shift the absorption peak of the n-π* electron transition allowing efficient radiative recombination and light emission. Size, shape, and chemical composition of the samples are determined by (HR)TEM, EDX and FTIR-spectroscopy. Optical parameters are investigated using UV-VIS, PL and QY measurements. Several parameters such as concentration, excitation wavelength and pH are studied. Zeta-potential analysis indicate that pH-induced (de-)protonation processes of functional moieties directly affect the n-π* energy bands. This results in unique pH-dependent absorption and emission characteristics which are discussed on the specific chemical composition of each CD system. T2 - MRS 2019 CY - Boston, MA, USA DA - 03.12.2019 KW - Nanoparticle KW - Carbon dot KW - Surface chemistry KW - Fluorescence KW - PH KW - Ligand KW - FTIR KW - Synthesis KW - Characterization PY - 2019 AN - OPUS4-49968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Resch-Genger, Ute T1 - Spectral and Lifetime Encoding of Polymer Particles with Cd-free Ternary Semiconductor Nanocrystals for Flow Cytometry with Time Resolved Fluorescence Detection N2 - Multiplexed encoding schemes of nano- and micrometer sized particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. The fluorescence parameter lifetime has been, however, barely exploited. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the excitation and emission wavelength, thus reducing instrument costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically < 10 ns, the fluorescence LTs of ternary semiconductor QDs that represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This present a time region that can be barely covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed and the encoded particles will be then used for fluorescence assays for the analysis of several targets in parallel. Therefor the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs In one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Bad Honnef Physics School Exciting nanostructures: Characterizing advanced confined systems CY - Bad Honnef, Germany DA - 21.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maisuls, I. A1 - Wang, Cui A1 - Gutierrez Suburu, M. E. A1 - Wilde, S. A1 - Daniliuc, C.-G. A1 - Brunink, D. A1 - Doltsinis, N. L. A1 - Ostendorp, S. A1 - Kösters, J. A1 - Resch-Genger, Ute A1 - Strassert, C. A. T1 - Ligand-controlled and nanoconfinement-boosted luminescence employing Pt(II) and Pd(II) complexes: from color-tunable aggregation-enhanced dual emitters towards self-referenced oxygen reporters N2 - In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(II) and Pt(II) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields (FL) and long excited state lifetimes (s) at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal–metal-to-ligand charge-transfer (3MMLCT) excimers acting as red-shifted Energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(II) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of These complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced FL up to about 80% and extended s exceeding 100 ms. Additionally, these nanoarrays constitute rare examples for selfreferenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching). KW - Fluorescence KW - Multiplexing KW - Lifetime KW - Bead KW - Particle KW - Dye KW - Barcoding KW - Encoding KW - Quantum yield KW - Label KW - Reporter KW - Pd(II) KW - Pt(II) KW - Complex KW - NMR KW - X-ray KW - Sythesis KW - Aggregation KW - Monomer KW - Color PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525288 DO - https://doi.org/10.1039/d0sc06126c VL - 12 IS - 9 SP - 3270 EP - 3281 PB - Royal Society of Chemistry AN - OPUS4-52528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fidan, Z. A1 - Wende, A. A1 - Resch-Genger, Ute T1 - Visible and red emissive molecular beacons for optical temperature measurements and quality control in diagnostic assays utilizing temperature-dependent amplification reactions N2 - Quality control requirements imposed on assays used in clinical diagnostics and point-of-care-diagnostic testing (POCT), utilizing amplification reactions performed at elevated temperatures of 35 to 95 °C are very stringent. As the temperature of a reaction vessel has a large impact on the specificity and sensitivity of the amplification reaction, simple tools for local in situ temperature sensing and monitoring are required for reaction and assay control. We describe here a platform of stem-and-loop structured DNA hairpins (molecular beacons, MBs), absorbing and emitting in the visible and red spectral region, rationally designed for precise temperature measurements in microfluidic assays for POCT, and their ap-plication for temperature measurements in a common DNA-based molecular biological assay utilizing thermophilic helicase-dependent amplification (tHDA). Spectroscopic studies of these MBs, rationally designed from DNA se-quences of different thermal stabilities, chosen not to interact with the DNA probes applied in the nucleic acid amplification assay, and temperature-dependent fluorescence measurements of MB-assay mixtures revealed the suitability of these MBs for temperature measurements directly in such an assay with a temperature resolution of about 0.5 °C without interferences from assay components. Combining two spectrally distinguishable MBs provides a broader response range and an increase in temperature sensitivity up to 0.1 °C. This approach will find future application for temperature monitoring and quality control in commercialized diagnostics assays using dried reagents and microfluidic chips as well as assays read out with tube and microplate readers and PCR detection systems for temperature measurements in the range of 35 to 95 °C. KW - Miniaturization KW - Fluorescence KW - Temperature KW - Sensor KW - Assay KW - Microfluidics KW - DNA KW - Dye KW - Molecular beacon KW - Molecular diagnostics PY - 2016 DO - https://doi.org/10.1007/s00216-016-0088-6 SN - 1618-2642 VL - 409 IS - 6 SP - 1519 EP - 1529 PB - Springer CY - Heidelberg AN - OPUS4-39589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Geissler, D. A1 - Wegmann, M. A1 - Gaponik, N. A1 - Eychmüller, A. T1 - Semiconductor nanocrystals with VIS and NIR/IR emission - spectroscopy properties and surface chemistry N2 - Semiconductor nanocrystals with a spherical (QDs) core and a spherical or a rod-shaped Shell, u.a., so-called Quantum dot-Quantum rods (QDQRs) are increasingly used as fluorescent Reporters or optically active components in the life and material science, e.g., in solid state lightening including Plasma Displays. (1,2) Morever, there is an increasing interest in materials with emission >800 nm for bioanalysis, medical diagnostics, and safety barcodes. Prerequisites for the mechanistic understanding of nonradiativ decay channels needed for the rational design of improved nanomaterials and the comparison of material Performance are reliable fluorescence measurements and validated methods for the assessment of their surface chemistry. (3,4) The latter is of particular importance for nanocrystalline Emitters, where surface states and the accessibility of emissive states by quenchers largely control photoluminescence properties. (5) Here, we present results from systematic spectroscopic studies including absolutely measured photolumunescence Quantum yields of different vissible and NIR emisisve QD and QDQRs Systems of varying particle architecture size and surface chemistries in Dispersion and embedded in salt crystals. (6,7) T2 - MCare 2017 CY - Jeju, South Korea DA - 20.02.2017 KW - Semiconductor quantum dot KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Photophysics KW - Quantum yield KW - Single particle PY - 2017 AN - OPUS4-43133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Pilch, A. A1 - Würth, Christian A1 - Kaiser, Martin A1 - Wawrzynczyk, D. A1 - Kurnatowska, M. A1 - Arabasz, S. A1 - Prorok, K. A1 - Samoc, M. A1 - Strek, W. A1 - Bednarkiewicz, A. T1 - Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core-shell ß-NaYF4 nanoparticles by dopant distribution and spacing N2 - At the core of luminescence color and lifetime Tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the Impact of the particle architecture for commonly used sensitizer (S) and activator (A) Ions. In this respect, a series of core@Shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@..., ...@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-Shell NPs. As refealed by quantitative steady-state and time-resolved luminescence studies, the relative spatial Distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical Impact on ther luminescence characteristics. Although the increased amount of Yb3+ Ions boosts UCNP Performance by amplifying the Absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy Migration to the surface, thereby reducing the Overall energy Transfer Efficiency to the activator ions. The results provide yet another proof that UC Phosphor chemistry combined with materials Engineering through intentional core@shell structures may help to fine-tune the luminescence Features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and Display technologies. KW - Fluorescence KW - Upconversion KW - NIR KW - Nonlinear KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Ho(III) KW - Yb(III) KW - Mechanism KW - Absolute flourescence KW - Excitation power density dependence PY - 2017 DO - https://doi.org/10.1002/smll.201701635 SN - 1613-6810 VL - 13 IS - 47 SP - 1701635, 1 EP - 13 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-43629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Ren, J. A1 - Weber, F. A1 - Choudhury, S. A1 - Weigert, Florian A1 - Ritter, E. A1 - Cao, D. A1 - Bande, A. A1 - Puskar, L. A1 - Schade, U. A1 - Aziz, E. F. A1 - Petit, T. T1 - Effect of surface chemistry on optical, chemical and electronic properties of blue luminescent graphene quantum dots N2 - Due to their unique physical properties, particularly their electronic and luminescent properties, graphene quantum dots (GQDs) are expected to be suitable for a wide range of applications in bioimaging, electro-optical and photonic materials or energy harvesting among others.1 Tuning the surface chemistry provides an efficient approach to modulate the fluorescence and distinct electronic properties of GQDs.2 Nevertheless, the role of surface chemistry on the electronic structure of GQDs remains poorly understood. In this presentation, we will compare systematically the electronic and chemical structures of GQDs functionalized with carboxylic and aminated groups to those of non-functionalized GQDs, combining theoretical and experimental approaches, here various photon-based spectroscopies. First, the electronic structure of GQDs was characterized by soft X-ray absorption (XA) and X-ray emission (XE) spectroscopies, probing unoccupied and occupied electronic states, respectively, at the carbon K edge for the first time. The interpretation of the XA/XE spectra was done based on theoretical calculations. Then, the chemical structure of the GQDs was characterized in situ by ATR-FTIR in water, thereby accounting for the importance of the interface between GQDs and water believed to play a central role in the chemical reactivity and the optical properties. We previously demonstrated that monitoring the OH vibrations of water molecules during exposure to humid air was a powerful method to probe H-bonding environment around carbon nanomaterials.3 For GQDs, clear surface-dependent water adsorption profiles are observed and discussed. Finally, UV/Vis absorption and photoluminescence measurements were done to characterize the optical properties of these GQDs. Our results suggest that the surface chemistry of the GQDs affects significantly their electronic structure and optical properties. These findings will contribute to an improved understanding of the structure–activity relationship of GQDs and other carbon nanomaterials with surface modifications. T2 - MRS Fall Meeting 2017 CY - Boston, USA DA - 26.11.2017 KW - Carbon KW - Nanoparticle KW - Fluorescence KW - NIR KW - IR KW - Surface chemistry KW - Deactivation pathways KW - Lifetime KW - Size KW - Giant carbon dot KW - Quantum yield PY - 2017 AN - OPUS4-43494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martynenko, Irina A1 - Litvin, A.P. A1 - Purcell-Milton, F. A1 - Baranov, A. V. A1 - Fedorov, A.V. A1 - Gun´ko, Y.K. T1 - Application of semiconductor quantum dots in bioimaging and biosensing N2 - In this review we present new concepts and recent progress in the application of semiconductur quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing. We analyze the biologically relevant properties of QDs focusing on the following topics: QD surface treatment and stability labeling of cellular structures and receptors with QDs, incorporation of QDs in living cells, cytotoxicity of QDs and influence of the biolocical environment on the biological and optical properties of QDs. Initially, we consider utilization of QDs as agants in high-resolution bioimaging techniques that can provide information at the molecular levels. The deverse range of modern live-cell QD-based imaging techniques with resolution far beyond the diffraction limit of light is examined. In each technique, we discuss the pros and cons of QD use and deliberate how QDs can be further engineered to facilitate their application in the respective imaging techniques and to produce significant improvements in resolution. Then we review QD-based point-of-care bioassays, bioprobes, and biosensors designed in different formats ranging from analytic biochemistry assays and ELISA, to novel point-of-care smartphone integrated QD-based biotests. Here, a wide range of QD-based fluorescence bioassays with optical transduction, electrochemiluminescence and photoelectrochemical assays are discussedc. Finally, this review provides an analysis of the prospects of application of QDs in selected important Areas of biology. KW - Fluorescence KW - Semiconductor quantum dot KW - Imaging KW - Quantification KW - Nanoparticle KW - NIR KW - IR KW - Quantum yield KW - Method KW - Microscopy KW - Assay KW - Bioconjugate PY - 2017 DO - https://doi.org/10.1039/c7tb01425b VL - 5 IS - 33 SP - 6701 EP - 6727 PB - Royal Society of Chemistry AN - OPUS4-43027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kraft, Marco A1 - Kaiser, Martin T1 - Absolute Fluorescence Measurements > 800 nm - Setup Design, Challenges, and Characterization of Semiconductor and Lanthanide-based Nanocrystals N2 - There is an increasing interest in optical reporters like semiconductor and lanthanide-based nanocrystals with emission > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, and safety barcodes. Mandatory for the comparison of different emitter classes and the rational design of the next generation of reporters for the short wavelength infrared (SWIR) region are reliable and quantitative photoluminescence measurements in this challenging wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as for upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Such measurements are currently hampered by the lack of suitable methods and standards for instrument calibration and validation as well as by the lack of quantum yield standards with emission > 800 nm and especially > 1000 nm. In this respect, we present the design of integrating sphere setups for absolute and excitation power densitydependent measurements of emission spectra and quantum yields in the wavelength region of 650 to 1650 nm including calibration strategies and first candidates for potential fluorescence standards. Subsequently, the photoluminescence properties of different types of nanocrystals are presented and discussed including absolute photoluminescence measurements of upconversion and down conversion emission in different solvents. T2 - MRS 2017 CY - Boston, MA, USA DA - 26.11.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Semiconductor quantum dot KW - SWIR KW - Quantum yield KW - Energy transfer KW - Size PY - 2017 AN - OPUS4-43202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Martin A1 - Kraft, Marco A1 - Pauli, Jutta A1 - Muhr, V. A1 - Hirsch, T. T1 - Challenges and examples for quantitative fluorescence measurements > 800 nm with semiconductor and lanthanide-doped nanocrystals N2 - There is an increasing interest in molecular and nanoscale with emission > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, bioimaging, and safety barcodes. Mandatory for the comparison of different emitter classes and the rational design of the next generation of reporters for the short wavelength infrared (SWIR) Region are reliable and quantitative photoluminescence measurements in this challenging wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as lanthanide-based upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable photoluminescence quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Such measurements are currently hampered by the lack of suitable methods and standards for instrument calibration and validation and quantum yield standards with emission > 800 nm and especially > 1000 nm. In this respect, we present the design of integrating sphere setups for absolute and excitation power density-dependent measurements of emission spectra and photoluminescence quantum yields in the wavelength Region of 650 to 1650 nm including calibration strategies and first candidates for potential fluorescence standards. Subsequently, the photoluminescence properties of different types of nanocrystals are presented including the upconversion and downconversion emission of differently sized and surface functionalized lanthanide-doped nanoparticles and photoluminescence quenching effects are quantified. T2 - SHIFT 2017 CY - Teneriffa, Spain DA - 13.11.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Semiconductor quantum dot KW - SWIR KW - Quantum yield PY - 2017 AN - OPUS4-43203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, Jutta A1 - Hoffman, Katrin T1 - Instrument Calibration and Standardization of Fluorescence Measurements in the UV/vis/NIR/IR N2 - Comparison of fluorescence measurements performed on different fluorescence instruments, analyte quantification from fluorescence intensities as well as the determination of fluorescence quantum yields require instrument calibration and consideration of the wavelength-dependent instrument-specific quantities spectral photon flux reaching the sample and spectral responsivity. Here, we present guidelines and recommendations for the qualification of fluorescence instruments and introduce suitable chromophore-based reference materials. Moreover, the design concepts of the different BAM fluorescence standards are discussed. T2 - COST 2017 CY - Turku, Finland DA - 03.04.2017 KW - Fluorescence KW - Dye KW - Glass KW - Calibration KW - Fluorescence standard KW - Integrating sphere spectroscopy KW - Fluorescence quantum yield KW - Instrument qualification KW - Quality assurance KW - NIR KW - IR PY - 2017 AN - OPUS4-43174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Kraft, Marco A1 - Würth, Christian A1 - Kaiser, Martin A1 - Muhr, V. A1 - Hirsch, T. T1 - Effect of Particle Size and Excitation Power Density on the Luminescence Efficiency of Upconversion Nanocrystals in Different Dispersion Media N2 - Upconversion nanoparticles (UCNPs) offer new strategies for luminescence-based sensing and imaging. One of the best studied materials are ..-NaYF4 UCNPs doped with 20 % Yb3+ and 2 % Er3+, which efficiently convert 976 nm light to photons emitted at 540 nm, 655 nm, and 845 nm, respectively, reveal long luminescence lifetimes (> 100 µs), are photostable and chemically inert. Their upconversion (UC) luminescence (UCL) properties are, however, strongly influenced by particle size, surface chemistry, and microenvironment. In addition, the multiphotonic absorption processes responsible for UCL render UCL excitation power density (..) dependent. This makes quantitative UCL measurements as well as the determination of UC quantum yields (.UC) very challenging. The rational design of brighter UCNPs particle architectures and the interest in identifying optimum particle architectures for FRET-based sensing and imaging schemes, which often rely on core-only UCNPs to minimize donor-acceptor distances, encouraged us to assess the influence of particle size and P on UCL. Here, we present the photophysical properties of a series of hexagonal NaYF4 UCNPs with sizes from 10 to 43 nm with different surface ligands dispersed in organic solvents and water studied by steady state and time-resolved fluorometry as well as quantitatively by integrating sphere spectrometry with P varied over about three orders of magnitude. Our results underline the need for really quantitative luminescence studies for mechanistic insights and the potential of high P to compensate for UCL quenching due to high energy phonons and surface effects. T2 - 15th Conference on Methods and Applications in Fluorescence CY - Bruges, Belgium DA - 10.09.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Photophysics KW - Quantum yield PY - 2017 AN - OPUS4-43181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Weigert, Florian A1 - Frenzel, Florian A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Martynenko, Irena A1 - Dhamo, Lorena T1 - Photoluminescence Properties of Different Types of Nanocrystals at the Ensemble and Single Emitter Level N2 - Correlating the photoluminescence (PL) properties of nanomaterials like semiconductor nanocrystals (QDs) and upconversion nanocrystals (UCNPs) assessed in ensemble studies and at the single particle level is increasingly relevant for applications of these nanomaterials in the life sciences like bioimaging studies or their use as reporters in microfluidic assays. Here we present a comparison of the spectroscopic properties of ensembles and single emitters for QDs like II/VI QDs and cadmium-free AIS/ZnS QDs as well as different UCNPs. The overall goal of this study was to derive particle architectures well suited for spectroscopic and microscopic applications. T2 - BIOSSPIE CY - San Francisco, CA, USA DA - 02.02.2019 KW - Quantum yield KW - Nanomaterial KW - Photoluminescence KW - Absolute fluorometry KW - Integrating sphere spectroscopy, KW - NIR KW - IR KW - Fluorescence KW - Nanoparticle KW - Semiconductor KW - Quantum dot KW - Single particle spectroscopy KW - Surface chemistry PY - 2019 AN - OPUS4-47358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Martin A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Relative and Absolute Methods for Measuring Photoluminescence Quantum Yields of UV/vis/NIR Emitters N2 - One of the key spectroscopic performance parameters of molecular and particulate emitters is the photoluminescence quantum yield (PL QY) that provides a direct measure for the number of emitted per absorbed photons. This triggered the interest in methods suitable for measuring this property for emitters in various environments in the UV/vis/NIR and above 1000 nm as well as on the ensemble and single emitter level. Moreover, for nonlinear emitters like lanthanide-based upconversion nanocrystals methods including instrumentation for power density-dependent PL QY studies are required. An overview of the research activities in Division Biophotonics of BAM is given and suitable relative and absolute methods for the deter-mination of PL QY of organic dyes and different types of application-relevant nanomaterials in dispersion and in the solid state are presen-ted. This covers also the design and calibration of integrating sphere setups, achievable uncertainties, and candidates for PL QY reference materials. T2 - OSRAM Veranstaltung CY - Regensburg, Germany DA - 09.01.2019 KW - Quantum yield KW - Calibration KW - Reference material KW - Uncertainty KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Nanoparticle KW - Dye PY - 2019 AN - OPUS4-47263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ren, J. A1 - Weigert, Florian A1 - Weber, F. A1 - Wang, Y. A1 - Choudhury, S. A1 - Xiao, J. A1 - Lauermann, I. A1 - Resch-Genger, Ute A1 - Bande, A. A1 - Petit, T. ED - Petit, Tristan T1 - Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots N2 - Carbon dots have attracted much attention due to their unique optical, chemical and electronic properties enabling a wide range of applications. The properties of carbon dots can be effectively adjusted through modifying their chemical composition. However, a major challenge remains in understanding the core and surface contributions to optical and electronic transitions. Here, three blue luminescent carbon dots with carboxyl, amino and hydroxyl groups were comprehensively characterized by UV-vis absorption and emission spectroscopy, synchrotron-based X-ray spectroscopy, and infrared spectroscopy. The influence of the surface functionality on their fluorescence was probed by pH-dependent photoluminescence measurements. Moreover, the hydrogen bonding interactions between water and the surface groups of carbon dots were characterized by infrared spectroscopy. Our results show that both core and surface electronic states of blue luminescent carbon dots contribute to electronic acceptor levels while the chemical nature of the surface groups determines the hydrogen bonding behavior of the carbon dots. This comprehensive spectroscopic study demonstrates that the surface chemistry has a profound influence on the electronic configuration and surface–water interaction of carbon dots, thus affecting their photoluminescence properties. KW - Quantum dots KW - Spectroscopy KW - UV Vis KW - Fluorescence KW - Surface chemistry PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472325 DO - https://doi.org/10.1039/c8nr08595a SN - 2040-3372 VL - 11 IS - 4 SP - 2056 EP - 2064 PB - RSC AN - OPUS4-47232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Mousavi, M. ED - Thomasson, B. ED - Li, M. ED - Kraft, Marco ED - Würth, Christian ED - Andersson-Engels, S. T1 - Beam-profile-compensated quantum yield measurements of upconverting nanoparticles N2 - The quantum yield is a critically important parameter in the development of lanthanide-based upconverting nanoparticles (UCNPs) for use as novel contrast agents in biological imaging and optical reporters in assays. The present work focuses on the influence of the beam Profile in measuring the quantum yield (f) of nonscattering dispersions of nonlinear upconverting probes, by establishing a relation between f and excitation light power density from a rate equation analysis. A resulting 60% correction in the measured f due to the beam profile utilized for excitation underlines the significance of the beam profile in such measurements, and its impact when comparing results from different Setups and groups across the world. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brithtness KW - Quantification KW - Nanoparticle KW - Absolute fluoreometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method PY - 2017 DO - https://doi.org/10.1039/c7cp03785f SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 33 SP - 22016 EP - 22022 PB - Royal Society of Chemistry AN - OPUS4-42583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Otto, S. ED - Scholz, Norman ED - Behnke, Thomas ED - Heinze, K. T1 - Thermo-Chromium: A Contactless Optical Molecular Thermometer N2 - The unparalleled excited-state potential-energy landscape of the chromium(III)-based dye [1]3+ ([Cr(ddpd)2]3+; ddpd=N,N’-dimethyl-N,N’-dipyridin-2-ylpyridin-2,6-diamine) enables a strong dual emission in the near infrared region. The temperature dependence of this dual emission allows the use of [1]3+ as an unprecedented molecular ratiometric thermometer in the 210–373 K temperature range in organic and in aqueous media. Incorporation of [1]3+ in biocompatible nanocarriers, such as 100 nm-sized polystyrene nanoparticles and solutol micelles, provides nanodimensional thermometers operating under physiological conditions. KW - Temperature KW - Sensor KW - Dual emission KW - Fluorescence KW - Cr complex KW - Nano KW - Particle KW - Micelle KW - Probe KW - Environment PY - 2017 DO - https://doi.org/10.1002/chem.201701726 SN - 0947-6539 VL - 23 IS - 50 SP - 12131 EP - 12135 PB - Wiley-VCH AN - OPUS4-42539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Tschiche, Harald Rune A1 - Moldenhauer, Daniel A1 - Resch-Genger, Ute T1 - Broad range ON/OFF pH sensors based on pKa tunable fluorescent BODIPYs N2 - A set of highly fluorescent, pH-responsive boron dipyrromethene dyes covering the pH range of 5-12 is presented for broad range pH measurements in mixed aqueous-organic median and polymer matrices. Readout in the intensity Domain with low cost and miniaturized Instrumentation utilizes reversible protonation induced switching ON of their initially completely quenched flourescence mediated by photoinduced electron Transfer. All dyes, rationally designed to reveal closely matching Absorption and Emission properties, are accessible via facile two-step reactions in Overall yields of up to 20%. By modifying the Substitution pattern of the meso-Aryl substiuent, the pKa values could be fine-tuned from 6 to 11. Integration of these molecules into polymeric films by a simple mixing procedure yielded reversible and longterm stable pH sensors for naked eye detection. KW - Fluorescence KW - Sensor KW - PH KW - Dye KW - BODIPY KW - Synthesis KW - Quantification KW - Film KW - Quantum yield KW - Lifetime KW - PET PY - 2017 DO - https://doi.org/10.1016/j.snb.2017.05.080 SN - 0925-4005 VL - 251 SP - 490 EP - 494 PB - Elsevier AN - OPUS4-41782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Standardization of fluorescence measurements in the UV/vis/NIR/IR N2 - Photoluminescence techniques are amongst the most widely used Tools in the life sciences, with new and exciting applications in medical diagnostics and molecular Imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for Multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from Instrument-dependent effects, which are also time-dependent due to aging of Instrument-components, and difficulties to measure absolute flourescence entensities. Moreover, scattering Systems require Special measurement geometries and the interest in new optical Reporters with Emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material Performance and the rational designg of new flourophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid flourescence Standards for different flourescence paramters including traceable Instrument calibration procedures and the design of integrating spere setups for the absolute measurements of emission spectra and Quantum yields in the wavelength Region of 350 to 1600 nm. Examples are multi-Emitter glasses, spectral flourescence Standards, and quantum yield Standards for the UV/vis/NIR. T2 - Conference on Molecular-Guided Surgery - Molecules, Devices, and Applications III CY - San Francisco, CA, USA DA - 28.01.2017 KW - Fluorescence KW - Reference material KW - Standard KW - Calibration KW - Nanoparticle KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Quantum yield standard KW - Emission standards PY - 2017 SN - 978-1-5106-0539-8 DO - https://doi.org/10.1117/12.2255728 SN - 0277-786X VL - 10049 SP - 1 PB - Proceedings of SPIE AN - OPUS4-41783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Choi, Youungeun A1 - Kotthoff, Lisa A1 - Olejko, L. A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - DNA origami-based Förster resonance energy-transfer nanoarrays and their application as ratiometric sensors N2 - DNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye–dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Förster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pH-responsive acceptor. Our results indicate that the sensitivity of a ratiometric sensor can be improved simply by arranging the dyes into a well-defined array. The dyes used here can be easily replaced by other analyte-responsive dyes, demonstrating the huge potential of DNA nanotechnology for light harvesting, signal enhancement, and sensing schemes in life sciences. KW - DNA origami KW - FRET KW - Sensing KW - Ratiometric sensing KW - Fluorescence PY - 2018 DO - https://doi.org/10.1021/acsami.8b03585 SN - 1944-8244 SN - 1944-8252 VL - 10 IS - 27 SP - 23295 EP - 23302 PB - ACS AN - OPUS4-46002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kraft, Marco A1 - Kaiser, Martin A1 - Grauel, Bettina A1 - Krukewitt, Lisa A1 - Frenzel, Florian A1 - Hirsch, T. A1 - Homann, C. A1 - Haase, M. A1 - Fischer, S. T1 - Quantification of Parameters Affecting the Upconversion Luminescence of Lanthanide-Based Upconversion Nanocrystals N2 - Lanthanide-based upconversion nanoparticles (UCNPs) like hexagonal Beta-NaYF4 UCNPs doped with Yb3+ and Er3+, which efficiently convert 976 nm light to ultraviolet, visible, and near infrared photons, offer new strategies for luminescence-based sensing, barcoding, and imaging. The properties of their upconversion (UC) luminescence (UCL) are, however, strongly influenced by particle size, the concentration and spatial arrangement of the dopant ions, surface chemistry including presence and thickness of surface passivation and shielding shells, microenvironment/presence of quenchers with high energy vibrations, and excitation power density (P). We present here a comprehensive study of the influence of UCNP size and particle architecture for Yb3+ and Er3+ co-doped NaYF4 core-only and core-shell nanostructures in the size range of about 5 nm to 50 nm, which underlines the importance of particle synthesis, surface chemistry, and quantitative luminescence measurements for mechanistic insights and the determination of application-relevant matrix- and P-dependent optimum dopand concentrations. T2 - Materials Challenges in Alternative and Renewable Energy (MCARE) 2018 CY - Vancouver, BC, Canada DA - 20.08.2018 KW - Upconverting nanoparticles KW - Size KW - Energy transfer KW - Fluorescence KW - Absolute fluorescence quantum yield KW - Fluorescence decay kinetics KW - Power density dependence PY - 2018 AN - OPUS4-46393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Michael A1 - Moser, Marko A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative Characterization of Functional Nanomaterials with vis/NIR Emission N2 - The rational design of functional nanomaterials for optical applications in the material and life sciences requires optical-spectroscopic methods for the quantitative characterization of their signal-relevant optical properties. Additionally, methods for the simple and quantitative analysis of the surface chemistry are desired as the chemical nature and number of the surface groups and ligands can affect the optical features and controls the interaction of these nanomaterials with their environment. Here, we present quantitative photoluminescenvce studies of different types of vis/NIR-emissive nanomaterials like semiconductor quantum dots and upconversion nanocrystals will be presented and their relevance for the mechanistic understanding of nonradiative decay channels and the rational design of new nanomaterials will be underpinned. In this respect, also validation concepts for such measurements and absolute fluorometry will be introduced. In addition, the potential of optical spectroscopy for surface group and ligand analysis surface chemistry will be demonstrated exemplarily for semiconductor quantum dots T2 - AK Prof. Voss CY - Uni Brunswick, Germany DA - 03.08.2017 KW - Semiconductor KW - Upconversion KW - Nanoparticle KW - Fluorescence KW - Surface group analysis KW - NIR KW - Absolute fluoreometry KW - Integrating sphare spectroscopy KW - Optical probe KW - Assay KW - Thiol ligand PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-41366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - The European Upconversion Network: From the Design of Photon-upconverting Nanomaterials to (Biomedical) Applications (CM1403) WG1 Materials Research & Photophysical Characterization N2 - Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been in the focus of many research activities in the material and life sciences over the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. In order to fully exploit the application potential of these fascinating nanomaterials, a number of challenges has to be overcome such as the low brightness particularly of small UCNPs and the reliable quantification of the excitation power density (P)-dependent upconversion luminescence (UCL). Here, the need and requirements on the characterization of the optical properties of UCNPs are discussed with special focus on the reliabiliy and comparability of relative and quantitative luminescence measurements and prerequisites for their standardization. T2 - COST Treffen CY - Aveiro, Portugal DA - 26.06.2017 KW - Upconversion KW - Nanoparticle KW - Fluorescence KW - NIR KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - Reference maerial KW - Standardization KW - Quantum yield PY - 2017 AN - OPUS4-41367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Gorris, H.H. T1 - Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies N2 - Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been the Focus of many Research activities in materials and life sciences in the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. To fully exploit the application potential of These facinating nanomaterials, a number of challenges have to be overcome, such as the low brightness, particularly of small UCNPs, and the reliable quantification of the excitation-power-density-dependent upconversion luminescence. In this series of critical Reviews, recent developments in the design, Synthesis, optical-spectroscopic characterization, and application of UCNPs are presented with Special Focus on bioanalysis and the life sciences. Here we guide the reader from the Synthesis of UCNPs to different concepts to enhance their luminescence, including the required optical-spectroscopic assessment to quantify material Performance; surface modification strategies and bioanalytical applications as well as selected examples of the use of UCNPs as reporters in different Assay formats are addressed in part II. Future Trends and challenges in the field of upconversion are discussed with Special emphasis on UCNP Synthesis and material characterization, particularly quantitative luminescence studies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield PY - 2017 DO - https://doi.org/10.1007/s00216-017-0499-z SN - 1618-2650 SN - 1618-2642 VL - 409 IS - 25 SP - 5855 EP - 5874 PB - Springer AN - OPUS4-41665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Martin T1 - Spectroscopic characterization of semiconductor and lanthanide-based nanocrystals with vis and NIR emission N2 - The increasing interest in molecular and nanoscale emitters with photoluminescence > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, bioimaging, and safety Barcodes requires quantitative spectroscopic studies, which are, however still challenging in this long wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as lanthanide-based upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable photoluminescence quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Moreover, nonlinear emitters like lanthanide-based upconversion nanocrystals require also power density-dependent studies of their luminescence spectra, quantum yields, and decay kinetics. Here, we present suitable absolute methods and underline the impact of such measurements on a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different chemical composition and particle architecture. T2 - PCNSPA 2018 - Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications CY - St. Petersburg, Russia DA - 04.06.2018 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Photophysics KW - Modeling PY - 2018 AN - OPUS4-45796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhmert, L. A1 - Sieg, H. A1 - Braeuning, A. A1 - Lampen, A. A1 - Thünemann, Andreas A1 - Kästner, Claudia T1 - Fluorescence labeling study of silver nanoparticles N2 - During the last years, there has been a rapid rise in the use of nanomaterials in consumer products. Especially silver nanoparticles are frequently used because of their well-known optical and antimicrobial properties. However, the toxicological studies focusing on silver nanoparticles are controversial, either claiming or denying a specific nano-efffect. To contribute to localizing nanoparticles in toxicological studies and to investigate the interaction of particles with cells, a fluorescent marker is often used to monitor their transport and possible degradation. A major problem, in this context is the issue of binding stability of a fluorescent marker which is attached to the particle. In order to overcome this problem we provide an investigation of the binding properties of fluorescence-labeled BSA to small silver nanoparticles. Therefore, we synthesized small silver nanoparticles which are stabilized by poly(acrylic acid). The particles are available as reference candidate material and were thoroughly characterized in an earlier study. The ligand was exchanged by fluorescence marked albumin (BSA-FITC). The adsorption of the ligands was monitored by dynamic light scattering (DLS). To verify that the observed effects on the hydrodynamic radius originate from the successful ligand exchange and not from agglomeration or aggregation we used small angle X-ray scattering (SAXS). The fluorescent particles were characterized by UV/Vis and fluorescence spectroscopy. Afterwards, desorption of the ligand BSA-FITC was monitored by fluorescence spectroscopy and the uptake of particles in different in vitro models was studied. The particles are spherical and show no sign of aggregation after successful ligand exchange. The fluorescence intensity is quenched significantly by the presence of the silver cores as expected, but the remaining fluorescence intensity was high enough to use these particles in biological investigations. Half-life of fluorescence labeling on the particle was 21 d in a highly concentrated solution of non-labeled BSA. Thus, a very high dilution and long incubation times are needed to remove BSA-FITC from the particles. Finally, the fluorescence-labeled silver nanoparticles were used for uptake studies in human liver and intestinal cells, showing a high uptake for HepG2 liver cells and almost no uptake in differentiated intestinal Caco-2 cells. In conclusion, we showed production of fluorescence-marked silver nanoparticles. The fluorescence marker is strongly adsorbed to the silver surface which is crucial for future investigations in biological matrices. This is necessary for a successful investigation of the toxicological potential of silver nanoparticles. T2 - NanoTox 2018 - 9th International Conference on Nanotoxicology CY - Neuss, Germany DA - 18.09.2018 KW - Silver nanoparticles KW - Fluorescence KW - Cell imaging KW - Dynamic light scattering PY - 2018 AN - OPUS4-45639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Würth, Christian A1 - Tavernaro, Isabella A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on Absolute Photoluminescence Quantum Yield Measurements of Solid Light Converting Phosphors with Three Commercial Integrating Sphere Setups N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. To identify and quantify the sources of uncertainty of absolute measurements of Φf of scattering samples, the first interlaboratory comparison (ILC) of three laboratories from academia and industry was performed by following identical measurement protocols. Thereby, two types ofcommercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring the Φf of transparent and scattering dye solutions and solid phosphors, namely, YAG:Ce optoceramics of varying surface roughness, used as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While the Φf values of the liquid samples matched between instruments, Φf measurements of the optoceramics with different blanks revealed substantial differences. The ILC results underline the importance of the measurement geometry, sample position, and blank for reliable Φf data of scattering the YAG:Ce optoceramics, with the blank’s optical properties accounting for uncertainties exceeding 20%. KW - Nano KW - Fluorescence KW - Reference material KW - Luminescence KW - Quantitative spectroscopy KW - Particle KW - Quantum yield KW - Quality assurance KW - Phosphor KW - Converter material KW - Lifetime KW - Interlaboratory comparison KW - Method KW - Uncertainty PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600945 DO - https://doi.org/10.1021/acs.analchem.4c00372 SN - 0003-2700 SP - 6730 EP - 6737 PB - ACS Publications AN - OPUS4-60094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, Z. A1 - Musnier, B. A1 - Wegner, Karl David A1 - Henry, M. A1 - Chovelon, B. A1 - Desroches-Castan, A. A1 - Fertin, A. A1 - Resch-Genger, Ute A1 - Bailly, S. A1 - Coll, J.-L. A1 - Usson, Y, A1 - Josserand, V. A1 - Le Gúevel, X. T1 - High-Resolution Shortwave Infrared Imaging of Vascular Disorders Using Gold Nanoclusters N2 - We synthesized a generation of water-soluble, atomically precise gold nanoclusters (Au NCs) with anisotropic Surface containing a short dithiol pegylated chain (AuMHA/TDT). The AuMHA/TDT exhibit a high brightness (QY ∼ 6%) in the shortwave infrared (SWIR) spectrum with a detection above 1250 nm. Furthermore, they show an extended half-life in blood (t1/2ß = 19.54 ± 0.05 h) and a very weak accumulation in organs. We also developed a non-invasive, whole-body vascular imaging system in the SWIR window with high-resolution, benefiting from a series of Monte Carlo image processing. The imaging process enabled to improve contrast by 1 order of magnitude and enhance the spatial Resolution by 59%. After systemic administration of these nanoprobes in mice, we can quantify vessel complexity in depth (>4 mm), allowing to detect very subtle vascular disorders non-invasively in bone morphogenetic protein 9 (Bmp9)-deficient mice. The combination of these anisotropic surface charged Au NCs plus an improved SWIR imaging device allows a precise mapping at high-resolution and an in depth understanding of the organization of the vascular network in live animals. KW - Nanoparticle KW - Nanosensor KW - Fluorescence KW - Metal cluster KW - NIR KW - SWIR KW - Photophysics KW - Ligand KW - Size KW - Surface chemistry KW - Quantum yield KW - Mechanism KW - Lifetime KW - Decay kinetics PY - 2020 DO - https://doi.org/10.1021/acsnano.0c01174 VL - 14 IS - 4 SP - 4973 EP - 4981 PB - ACS Publication AN - OPUS4-50671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Godard, A. A1 - Kalot, G. A1 - Pliquett, J. A1 - Busser, B. A1 - Le Guével, X. A1 - Wegner, Karl David A1 - Resch-Genger, Ute A1 - Russelin, Y. A1 - Coll, J.-L. A1 - Denat, F. A1 - Bodio, E. A1 - Goze, C. A1 - Sancey, L. T1 - Water-Soluble Aza-BODIPYs: Biocompatible Organic Dyes for High Contrast In Vivo NIR-II Imaging N2 - A simple NIR-II emitting water-soluble system has been developed and applied in vitro and in vivo. In vitro, the fluorophore quickly accumulated in 2D and 3D cell cultures and rapidly reached the tumor in rodents, showing high NIR-II contrast for up to 1 week. This very efficient probe possesses all the qualities necessary for translation to the clinic as well as for the development of NIR-II emitting materials. KW - Aza-BODIPY KW - NIR-II Imaging KW - In vivo imaging KW - organic dyes KW - SWIR KW - Cancer KW - Fluorescence PY - 2020 DO - https://doi.org/10.1021/acs.bioconjchem.0c00175 VL - 31 IS - 4 SP - 1088 EP - 1092 PB - ACS Publications AN - OPUS4-50695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Hoffmann, Kristin T1 - Lifetime Barcoding of Polystyrene Beads with Fluorescent Nanocrystals for Fluorescent Lifetime Detection in Flow Cytometry N2 - Multiplexed encoding schemes of nano- and micrometer sized polymer particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the same excitation and emission wavelength, thus reducing instrumental costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically <10ns, the fluorescence LTs of ternary semiconductor QDs which represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This presents a time region that can barely be covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed, and the encoded particles will then be used for fluorescence assays for the analysis of several targets in parallel. Therefore, the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs in one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wegner, Karl David A1 - Dhamo, Lorena A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding for flow cytometry with quantum-dot-encoded beads N2 - Spectral encoding of cells or particles and the discrimination of multiple spectral codes are a critical process in flow cytometry (FCM). Typical issues in spectral encoding are, e.g., the spectral overlap of codes, or the increasing complexity of instruments . The exploitation of the photoluminescence lifetime (LT) as an encoding parameter could be used to circumvent both of these issues, as it adds another dimension to the parameter space, or, when used as a stand-alone parameter, requiring only one excitation light source and one detector. While LT encoding was considered already decades ago it is still not implemented as a routine technique in FCM yet, mainly due to the challenge of very few photons being available within the limited transition time of a cell or particle through the laser spot. Recently, we demonstrated LT-FCM based on luminophores with ns LTs in a compact and low-cost flow cytometer. Measurements on polymer microbeads containing luminophores with distinctly different excited state LTs enabled the complete discrimination of three LT codes and five codes in total could be identified. Now, we have extended our approach towards considerably longer LTs by custom-made polymer microbeads loaded with different ratios of InP/ZnS and AgInS2 quantum dots. The use of these materials significantly expands the usable time range for LT encoding to up to several hundred ns. Our studies demonstrate the possibility to further increase the number of viable LT codes for multiplexing in LT-FCM without the need for extensive hardware modifications. T2 - Visions in Cytometry - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Marquez, R. M. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - Exploring the photoluminescence of gold NCs and Ag2S NPs to boost their SWIR emission N2 - Current challenges and objectives for non-invasive optical bioimaging are deep tissue penetration, high detection sensitivity, high spatial and temporal resolution, and fast data acquisition. A promising spectral window to tackle these challenges is the short-wave infrared (SWIR) ranging from 900 nm to 1700 nm where scattering, absorption, and autofluorescence of biological components are strongly reduced compared to the visible/NIR. At present, the best performing SWIR contrast agents are based on nanomaterials containing toxic heavy-metal ions like cadmium or lead, which raises great concerns for biological applications. Promising heavy-metal free nanoscale candidates are gold nanoclusters (AuNCs) and Ag2S nanoparticles (NPs). The photoluminescence (PL) of both types of nanomaterials is very sensitive to their size, composition of their surface ligand shell, and element composition, which provides an elegant handle to fine-tune their absorption and emission features and boost thereby the size of the signals recorded in bioimaging studies. Aiming for the development of SWIR contrast agents with optimum performance, we dived deeper into the photophysical processes occurring in these nanomaterials, thereby exploring in depth how the environment, surface ligand composition, and the incorporation of transition metals influence the optical properties of AuNCs and Ag2S NPs. We observed a strong enhancement of the SWIR emission of AuNCs upon exposure to different local environments (in solution, polymer, and in the solid state). Addition of metal ions such as Zn2+ to Ag2S based NPs led to a strong PL enhancement, yielding PL quantum yields of about 10% and thus making them highly suitable for non-invasive deep imaging of vascular networks and 3D fluid flow mapping. T2 - NaNaX 10 - Nanoscience with Nanocrystals CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Quantum dots KW - Ag2S KW - Fluorescence KW - SWIR KW - Gold nanocluster KW - Nanomaterial KW - bioimaging PY - 2023 AN - OPUS4-58104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - SWIR luminescent nanomaterials – key chemical parameters for bright probes for in vivo bioimaging N2 - A current challenge for studying physio-pathological phenomena and diseaserelated processes in living organisms with non-invasive optical bioimaging is the development of bright optical reporters that enable deep tissue penetration, a high detection sensitivity, and a high spatial and temporal resolution. The focus of this project are nanomaterials, which absorb and emit in the shortwave infrared (SWIR) between ~900–2500 nm where scattering, absorption, and autofluorescence of the tissue are strongly reduced compared to the visible and NIR. T2 - QD2024 - 12th International Conference on Quantum Dots CY - Munich, Germany DA - 18.03.2024 KW - Quantum dots KW - Advanced nanomaterials KW - Fluorescence KW - Quality assurance KW - Gold nanocluster KW - Shortwave infrared KW - Spectroscopy KW - Bioimaging PY - 2024 AN - OPUS4-59783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Reiss, P. A1 - Carriere, M. A1 - Pouget, S. A1 - Resch-Genger, Ute T1 - Luminescent Quantum dots – the next-generation nano light bulbs N2 - Fluorescent semiconductor nanocrystals, also known as quantum dots (QDs), enabled many advancements in biotechnology, photovoltaics, photocatalysis, quantum computing and display devices. The high versatility of this nanomaterial is based on their unique size-tunable photoluminescence properties, which can be adjusted from the visible to the near-infrared range. In contrast to other nanomaterials, QDs made the transition from a laboratory curiosity to the utilization in commercial products, like the QLED television screen or in smartphone displays. The best investigated QDs are composed of heavy metals like cadmium or lead, which is not the best choice in terms of toxicity and environmental pollution. A more promising material is Indium Phosphide (InP), which is also currently used by Samsung, Sony and co. in the QLED displays. In this contribution, I would like to give you a sneak peek behind the curtains of nanomaterial synthesis and show how this material is produced, how to stabilize their structural properties, and assess their toxicity in environmentally relevant conditions. Furthermore, I would like to present a synthesis method to accomplish the last open challenge in display technology of a blue luminescent LED based on QDs by introducing a new element to the InP QDs. T2 - The Berlin Postdoc Day CY - Berlin, Germany DA - 03.11.2022 KW - InP KW - Quantum dots KW - Fluorescence KW - Aging KW - Doping KW - Nanomaterial KW - Cytotoxicity PY - 2022 AN - OPUS4-56194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chazeau, E. A1 - Fabre, C. A1 - Privat, M. A1 - Godard, A. A1 - Racoeur, C. A1 - Bodio, E. A1 - Busser, B. A1 - Wegner, Karl David A1 - Sancey, L. A1 - Paul, C. A1 - Goze, C. T1 - Comparison of the In Vitro and In Vivo Behavior of a Series of NIR-II-Emitting Aza-BODIPYs Containing Different Water-Solubilizing Groups and Their Trastuzumab Antibody Conjugates N2 - The development of new fluorescent organic probes effective in the NIR-II region is currently a fast-growing field and represents a challenge in the domain of medical imaging. In this study, we have designed and synthesized an innovative series of aza-boron dipyrromethenes emitting in the NIR-II region. We have investigated the effect of different water-solubilizing groups not only on the photophysical properties of the compounds but also on their in vitro and in vivo performance after bioconjugation to the antibody trastuzumab. Remarkably, we discovered that the most lipophilic compound unexpectedly displayed the most favorable in vivo properties after bioconjugation. This underlines the profound influence that the fluorophore functionalization approach can have on the efficiency of the resulting imaging agent. KW - NIR-II KW - In vivo imaging KW - Fluorescence KW - Spectroscopy KW - Antibody conjugates PY - 2024 DO - https://doi.org/10.1021/acs.jmedchem.3c02139 SN - 1520-4804 VL - 67 IS - 5 SP - 3679 EP - 3691 PB - ACS Publications CY - Washington, DC AN - OPUS4-59607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertorelle, F. A1 - Wegner, Karl David A1 - Berkulic, M. P. A1 - Fakhouri, H. A1 - Comby-Zerbino, C. A1 - Sagar, A. A1 - Bernadó, P. A1 - Resch-Genger, Ute A1 - Bonacic-Koutecký, V. A1 - Le Guével, X. A1 - Antoine, R. T1 - Tailoring the NIR-II Photoluminescence of Single Thiolated Au25 Nanoclusters by Selective Binding to Proteins N2 - Atomically precise gold nanoclusters are a fascinating class of nanomaterials that exhibit molecule-like properties and have outstanding photoluminescence (PL). Their ultrasmall size, molecular chemistry, and biocompatibility make them extremely appealing for selective biomolecule labeling in investigations of biological mechanisms at the cellular and anatomical levels. In this work, we report a simple route to incorporate a preformed Au25 nanocluster into a model bovine serum albumin (BSA) protein. A new approach combining small-angle X-ray scattering and molecular modeling provides a clear localization of a single Au25 within the protein to a cysteine residue on the gold nanocluster surface. Attaching Au25 to BSA strikingly modifies the PL properties with enhancement and a redshift in the second near-infrared (NIR-II) window. This study paves the way to conrol the design of selective sensitive probes in biomolecules through a ligand-based strategy to enable the optical detection of biomolecules in a cellular environment by live imaging. KW - Fluorescence KW - Aggregation KW - Signal enhancement KW - Cluster KW - Nano KW - Metal KW - NIRII KW - SWIR KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis KW - Protein KW - Imaging KW - Bioimaging KW - Ligand KW - Gold PY - 2022 DO - https://doi.org/10.1002/chem.202200570 SN - 1521-3765 VL - 28 IS - 39 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Fürstenwerth, Paul A1 - Eitinger, Lina A1 - Resch-Genger, Ute T1 - pH- and O2-Responsive Nanoparticles – The MiGraGen Project N2 - In recent years, the demand for reliable, versatile, fluorescent pH and oxygen sensors has increased rapidly in many biomedical applications since these analytes are important indicators of cell function or certain diseases. Therefore, sensor particles are needed that are small enough to penetrate cells, non-toxic, and allow for close-up optical monitoring. When developing such sensor systems, one must consider the pH and oxygen range detectable by the sensor dye and the matrix material of the used carrier particles. Here, we present the development of pH- and oxygen-responsive polymeric beads functionalized with fluorescent dyad molecules that consist of an analyte-responsive fluorophore and an analyte-inert dye. T2 - MiGraGen Project Meeting 09.08.2023 CY - Online Meeting DA - 09.08.2023 KW - Nano- and microsensors KW - Functionalized silica and polymeric particles KW - pH sensing KW - Oxygen sensing KW - Fluorescence PY - 2023 AN - OPUS4-58071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, J. A1 - Güttler, Arne A1 - Schneider, T. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification N2 - The rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. Main prerequisites for reliable Φf measurements, which are for transparent luminophore solutions commonly done relative to a reference, i.e., a fluorescence quantum yield standard of known Φf, are reliable and validated instrument calibration procedures to consider wavelength-, polarization-, and time-dependent instrument specific signal contributions, and sufficiently well characterized fluorescence quantum yield standards. As the standard’s Φf value directly contributes to the calculation of the sample’s Φf, its accuracy presents one of the main sources of uncertainty of relative Φf measurements. To close this gap, we developed a first set of 12 fluorescence quantum yield standards, which absorb and emit in the wavelength region of 330−1000 nm and absolutely determined their Φf values with two independently calibrated integrating sphere setups. Criteria for standard selection and the configuration of these novel fluorescence reference materials are given, and the certification procedure is presented including homogeneity and stability studies and the calculation of complete uncertainty budgets for the certified Φf values. The ultimate goal is to provide the community of fluorescence users with available reference materials as a basis for an improved comparability and reliability of quantum yield data since the measurement of this spectroscopic key property is an essential part of the characterization of any new emitter. KW - Optical spectroscopy KW - Traceability KW - Reference product KW - Dye KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Certification KW - Quality assurance PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05530 VL - 95 SP - 5671 EP - 5677 PB - American Chemical Society AN - OPUS4-58151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oskolkova, Tatiana O. A1 - Matiushkina, Anna A. A1 - Borodina, Lyubov' N. A1 - Smirnova, Ekaterina S. A1 - Dadadzhanova, Antonina I. A1 - Sewid, Fayza A. A1 - Veniaminov, Andrey V. A1 - Moiseeva, Ekaterina O. A1 - Orlova, Anna O. T1 - FRET‐Amplified Singlet Oxygen Generation by Nanocomposites Comprising Ternary AgInS2/ZnS Quantum Dots and Molecular Photosensitizers N2 - Antibacterial photodynamic therapy (a‐PDT) has emerged as a promising non‐invasive therapeutic modality that utilizes the combination of a photosensitive agent, molecular oxygen, and excitation light to generate reactive oxygen species (ROS), demonstrating remarkable activity against multidrug‐resistant bacterial infections. However, the effective use of conventional photosensitizers is significantly limited by a number of their shortcomings, namely, poor water solubility and low selectivity. Herein, we present a novel biocompatible water‐soluble nanocomposite based on hydrophobic tetraphenylporphyrin (TPP) molecules and hydrophilic ternary AgInS2/ZnS quantum dots incorporated into a chitosan matrix as an improved photosensitizer for a‐PDT. We demonstrated that TPP molecules could be successfully transferred into chitosan solution while remaining primarily in the form of monomers, which are capable of singlet oxygen generation. We performed a detailed analysis of the Förster resonance energy transfer (FRET) between quantum dots and TPP molecules within the nanocomposite and proposed the mechanism of the singlet oxygen efficiency enhancement via FRET. KW - Nano KW - Particle KW - Quantum dot KW - Fluorescence KW - Synthesis KW - Optical spectroscopy KW - Energy transfer KW - Quality assurance KW - Lifetime KW - Quantum yield PY - 2024 DO - https://doi.org/10.1002/cnma.202300469 SN - 2199-692X VL - 10 IS - 3 SP - 1 EP - 11 PB - Wiley AN - OPUS4-59728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Design and Quantitative Characterization of Functional Molecular Chromophores and Nanomaterials with UV/vis/NIR/IR Emission – An Overview of Research Activities in Division Biophotonics N2 - In the focus of division Biophotonics are the design, preparation, analytical and spectroscopic characterization, and application of molecular and nanoscale functional materials, particularly materials with a photoluminescence in the visible, near infrared (NIR) and short-wave infrared (SWIR). This includes optical reporters for bioimaging and sensing, security and authentication barcodes, and materials for solid state lighting, energy conversion, and photovoltaics. For the identification of optimum particle structures quantitative spectroscopic studies are performed under application-relevant conditions, focusing on the key performance parameter photoluminescence quantum yield. In addition, simple, cost-efficient, and standardizable strategies for quantifying functional groups on the surface of nano- and microparticles are developed, here with a focus on optical assays and electrochemical titration methods, cross-validated by more advanced methods such as quantitative NMR. In addition, reference materials and reference products are developed for optical methods, particularly luminescence techniques, and for analytical methods utilized for the characterization of nanomaterials. T2 - Projekttreffen Nile-Chrome 2.0 CY - Mainz, Germany DA - 11.12.2023 KW - Fluorescence KW - Quantum yield KW - Optical spectroscopy KW - Reference material KW - Reference data KW - Quality assurance KW - Dye KW - Reference product KW - NIR KW - SWIR KW - Nano KW - Particle KW - Silica KW - Polymer KW - Surface group analysis KW - Sensor molecules PY - 2023 AN - OPUS4-59123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Behind the Paper - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - In this contribution we highlight the importance of comparison for scientific research while developing a new, functional pH sensor system, and the valuable insights this can provide. KW - Dye KW - Optical Spectroscopy KW - pH probe KW - Silica and Polystyrene Particles KW - Nano KW - Surface groups KW - Safe-by-Design KW - Cell studies KW - Sensors KW - Particle Synthesis KW - Fluorescence PY - 2023 UR - https://communities.springernature.com/posts/dual-color-ph-probes-made-from-silica-and-polystyrene-nanoparticles-and-their-performance-in-cell-studies SP - 1 EP - 2 PB - Springer Nature CY - London AN - OPUS4-59150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Osipova, Viktoriia A1 - Srivastava, Priyanka A1 - Huang, Zixuan A1 - Merei, Rabih A1 - Resch-Genger, Ute T1 - Design of Fluorescent, Amorphous Silica-NPs and their Versatile Use in Sensing Applications N2 - Surface functionalized silica nanoparticles (SiO2-NP) gained great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. They are highly stable, are easily produced and modified on a large scale at low cost and can be labeled or stained with a multitude of sensor dyes. These dye modified particle conjugates have several advantages as compared to conventional molecular probes like enhanced brightness, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, stained nanoparticles can enable the use of hydrophobic dyes in aqueous environments. Here we present our work on multicolored sensors for the measurement of pH, oxygen and saccharides utilizing amorphous SiO2 NPs. T2 - Focus Area Day Analytical Sciences 2023 CY - Berlin, Germany DA - 20.04.2023 KW - Amorphous silica particles KW - Particle Synthesis KW - Nano KW - Ratiometric Sensors KW - Fluorescence KW - pH probe KW - Dye PY - 2023 AN - OPUS4-59151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Ebel, Kenny A1 - Heinze, Katja A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby N2 - Photodynamic therapy (PDT) used for treating cancer relies on the generation of highly reactive oxygen species, for example, singlet oxygen 1O2, by light-induced excitation of a photosensitizer (PS) in the presence of molecular oxygen, inducing DNA damage in close proximity of the PS. Although many precious metal complexes have been explored as PS for PDT and received clinical approval, only recently, the potential of photoactive complexes of nonnoble metals as PS has been discovered. Using the DNA origami technology that can absolutely quantify DNA strand break cross sections, we assessed the potential of the luminescent transition metal complex [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) to damage DNA in an air-saturated aqueous environment upon UV/Vis illumination. The quantum yield for strand breakage, that is, the ratio of DNA strand breaks to the number of absorbed photons, was determined to 1–4%, indicating efficient transformation of photons into DNA strand breaks by [Cr(ddpd)2]3+. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - PDT KW - Singlet oxygen KW - DNA KW - Origami KW - Quantum yield PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573631 DO - https://doi.org/10.1002/chem.202203719 SP - 1 EP - 7 AN - OPUS4-57363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Mota, Berta A1 - Simon, Sebastian A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - C⁠3A passivation with gypsum and hemihydrate monitored by optical spectroscopy N2 - Tricalcium aluminate (C⁠3A) is found with less than 10% wt. of the total composition; however, during hydration, C⁠3A plays an important role in the early hydration of cement in the presence of gypsum as a set retarder. The aim of this investigation is to assess the suitability of optical spectroscopy and a dye-based optical probe to monitor early hydration of C⁠3A in the presence of gypsum and hemihydrate. Optical evaluation was performed using steady-state fluorescence and diffuses reflectance spectroscopy (UV-VisDR). Phase characterization during hydration was done with in-situ X-ray diffraction. UV-VisDR with a cyanine dye probe was used to monitor the formation of metastable phases and was employed together with fluorescence spectroscopy, to follow the Aggregation and disaggregation of the dye during hydration. In conclusion, for the first time, a cyanine dye was identified as a feasible and stable probe to monitor C⁠3A hydration changes in the presence of calcium sulfate. KW - Dye KW - Photoluminescence KW - Fluorescence KW - Reflection spectroscopy KW - Cement KW - Hydration KW - Method development PY - 2020 DO - https://doi.org/10.1016/j.cemconres.2020.106082 VL - 133 SP - 106082 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Ast, S. A1 - Weller, Michael G. A1 - Canning, J. A1 - Rurack, Knut T1 - Development of a lateral flow test for rapid pyrethroid detection using antibody-gated indicator-releasing hybrid materials N2 - The employment of type-I pyrethroids for airplane disinfection in recent years underlines the necessity to develop sensing schemes for the rapid detection of these pesticides directly at the point-of-use. Antibody-gated indicator-releasing materials were thus developed and implemented with test strips for lateral-flow assay-based analysis employing a smartphone for readout. Besides a proper matching of pore sizes and gating macromolecules, the functionalization of both the material's outer surface as well as the strips with PEG chains enhanced system performance. This simple assay allowed for the detection of permethrin as a target molecule at concentrations down to the lower ppb level in less than 5 minutes. KW - Lateral flow test KW - Gated hybrid material KW - Fluorescence KW - Smartphone readout device KW - Pyrethroid KW - Pesticide KW - Insecticide KW - SBA-15 KW - Permethrin PY - 2020 DO - https://doi.org/10.1039/d0an00319k SN - 0003-2654 SN - 1364-5528 VL - 145 IS - 10 SP - 3490 EP - 3494 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Juds, Carmen A1 - Conrad, T. A1 - Weller, Michael G. A1 - Börner, H. G. T1 - Finding peptide binders for polypropylene using phage display and next generation sequencing N2 - Phage display is used to find specific target binding peptides for polypropylene (PP) surfaces. PP is one of the most commonly used plastics in the world. Millions of tons are produced every year. PP binders are of particular interest because so far gluing or printing on PP is challenging due to its low surface energy. A phage display protocol for PP was developed followed by Next Generation DNA Sequencing of the whole phage library. Data analysis of millions of sequences yields promising peptide candidates which were synthesized as PEG conjugates. Fluorescence-based adsorption-elution-experiments show high adsorption on PP for several sequences. T2 - BAM PhD Day CY - Berlin-Adlershof, Germany DA - 31.05.2018 KW - Polymer KW - Glue KW - Amplification KW - Illumina KW - PEG KW - Sanger sequencing KW - SALSA KW - Data analysis KW - Fluorescence PY - 2018 AN - OPUS4-45055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Topical collection: Analytical methods and applications in the materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - 150th anniversary KW - ABC KW - Analysis KW - Analytical sciences KW - BAM KW - Collection KW - Environment KW - Fluorescence KW - Life sciences KW - Limit of detection KW - Material sciences KW - Method KW - Nanoparticle KW - Pollutant KW - Quality assurance KW - Reference material KW - Sensor KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://link.springer.com/journal/216/topicalCollection/AC_16a2ef9b81853377e321ef84d9c4a431 SN - 1618-2642 SN - 1618-2650 VL - 414 SP - 4267 EP - 4529 PB - Springer CY - Berlin AN - OPUS4-55670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Würth, Christian A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Prinz, Carsten T1 - Influence of Surface Chemistry and Size on the Stability of β-NaYF4:Yb,Er Nanocrystals in Various Environments N2 - The use of inorganic lanthanide-doped upconversion nanoparticles (UCNP) in bioimaging and cellular studies requires biocompatible particles. One possible cause of UCNP toxicity is the release of potentially harmful fluoride and lanthanide ions as revealed by dilution studies in aqueous environments, particularly under high dilution conditions. To address this issue, suitable surface coatings preventing such effects in combination with fast screening methods suited for online monitoring and in situ analyses are desired. Here we present systematic studies of differently sized β-NaYF4:Yb,Er UCNP stabilized with different surface coatings and hydrophilic ligands varying in binding strength to the particle surface in various aqueous environments at different temperatures and UCNP concentrations. The concentration of the fluoride and lanthanide ions released upon particle dissolution was quantified electrochemically with a fluoride ion-sensitive electrode and inductively coupled plasma optical emission spectrometry (ICP-OES) and monitored fluorometrically, thereby exploiting the sensitivity of the upconversion luminescence to changes in size and surface chemistry. Moreover, changes in surface chemistry were determined with X-Ray photoelectron spectroscopy (XPS). Based upon our results, we could derive optimum screening parameters for UCNP stability studies and determine conditions and coating procedures and ligands for enhancing UCNP stability in aqueous environments. T2 - UPCON2021 CY - Online meeting DA - 06.04.2021 KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2021 AN - OPUS4-52411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Wang, Shu A1 - Radnik, Jörg A1 - You, Yi A1 - Resch-Genger, Ute T1 - Assessing the protective effects of different surface coatings on NaYF4:YB3+, Er3+, upconverting nanoparticles in buffer and DMEM N2 - We studied the dissolution behavior of β NaYF4:Yb(20%), Er(2%) UCNP of two different sizes in biologically relevant media i.e., water (neutral pH), phosphate buffered saline (PBS), and Dulbecco’s modified Eagle medium (DMEM) at different temperatures and particle concentrations. Special emphasis was dedicated to assess the influence of different surface functionalizations, particularly the potential of mesoporous and microporous silica shells of different thicknesses for UCNP stabilization and protection. Dissolution was quantified electrochemically using a fluoride ion selective electrode (ISE) and by inductively coupled plasma optical emission spectrometry (ICP OES). In addition, dissolution was monitored fluorometrically. These experiments revealed that a thick microporous silica shell drastically decreased dissolution. Our results also underline the critical influence of the chemical composition of the aqueous environment on UCNP dissolution. In DMEM, we observed the formation of a layer of adsorbed molecules on the UCNP surface that protected the UCNP from dissolution and enhanced their fluorescence. Examination of this layer by X ray photoelectron spectroscopy (XPS) and mass spectrometry (MS) suggested that mainly phenylalanine, lysine, and glucose are adsorbed from DMEM. These findings should be considered in the future for cellular toxicity studies with UCNP and other nanoparticles and the design of new biocompatible surface coatings. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515984 DO - https://doi.org/10.1038/s41598-020-76116-z SN - 2045-2322 VL - 10 IS - 1 SP - 19318-1 EP - 19318-11 PB - Springer Nature CY - London AN - OPUS4-51598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Tavernaro, Isabella A1 - Würth, Christian A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. T1 - Absolute Determination of Photoluminescence Quantum Yields of Scattering LED Converter Materials – How to Get it Right N2 - Optical measurements of scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders play an important role in fundamental research and industry. Typical examples are luminescent nano- and microparticles and phosphors of different composition in different matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter for the performance of these materials is the photoluminescence quantum yield QY, i.e., the number of emitted photons per number of absorbed photons. QY of transparent luminophore solutions can be determined relatively to a fluorescence quantum yield standard of known QY. Such standards are meanwhile available as certified reference materials.[1] The determination of QY of scattering liquid and solid samples like dispersions of luminescent nanoparticles, solid phosphors, and optoceramics requires, however, absolute measurements with an integrating sphere setup. Although the importance of reliable absolute QY measurements has been recognized, no interlaboratory comparisons (ILCs) on measurement uncertainties and the identification of typical sources of uncertainty have been yet reported. Also, no scattering reference materials with known QY are available. We present here the results of a first ILC of 3 laboratories from academia and industry performed to identify and quantify sources of uncertainty of absolute QY measurements of scattering samples. Thereby, two types of commercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring QY of transparent and scattering dye solutions and solid phosphors. As representative and industrially relevant solid and scattering samples, YAG:Ce optoceramics of varying surface roughness were chosen, applied, e.g., as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank, utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While matching QY values could be obtained for transparent dye solutions and scattering dispersions, here using a blank with scattering properties closely matching those of the sample, QY measurements of optoceramic samples with different blanks revealed substantial differences, with the blank's optical properties accounting for measurement uncertainties of more than 20 %. Based upon the ILC results, we recommend non-absorbing blank materials with a high reflectivity (>95 %) such as a 2 mm-thick PTFE target placed on the sample holder which reveals a near-Lambertian light scattering behavior, yielding a homogeneous light distribution within the integrating sphere. T2 - e-MRS 2024 CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Phosphor KW - Converter marterial KW - Fluorescence KW - Interlaboratory KW - Comparison KW - Method KW - Uncertainty KW - Reference material PY - 2024 AN - OPUS4-60490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buchholz, Michelle A1 - Gawlitza, Kornelia A1 - Gersdorf, Anna A1 - Gradzielksi, Michael A1 - Rurack, Knut T1 - Dual Fluorescent Molecularly Imprinted Polymers (MIPs) for Detection of the Prevalent Anti-Inflammatory Drug Diclofenac N2 - Ensuring the purity of air and water is essential for the overall well-being of life on earth and the sustainability of the planet's diverse ecosystems. To achieve the goal of zero pollution, as outlined in the 2020 European Green Deal by the European Commission,[1] significant efforts are in progress. A key aspect of this commitment involves advancing more efficient and economically viable methods for treating wastewater. This includes the systematic monitoring of harmful pollutants such as heavy metals, microplastics, pesticides, and pharmaceuticals. One example is the presence of the anti-inflammatory drug diclofenac in water systems, primarily originating from its use as a gel or lotion for joint pain treatment. Diclofenac contamination in surface waters has been detected at approximately 10 μg L-1 (0.03 μM)[2] which is not solely due to widespread usage but also because of the drug's resistance to microbial degradation. Conventional wastewater treatment plants (WWTPs), which rely on biodegradation, sludge sorption, ozone oxidation, and powdered activated carbon treatment, struggle to efficiently remove diclofenac from wastewater.[3],[4] For instance, to enable WWTPs to efficiently monitor and optimize their processes, it would be advantageous to develop on-site detection and extraction methods for persistent pharmaceutical residues in aqueous samples. In this work, a sol-gel process was used to prepare Nile blue-doped silica nanoparticles (dSiO2-NPs) with a diameter of ca. 30 nm that were further functionalized to enable reversible-addition-fragmentation chain-transfer (RAFT) polymerization. To achieve fluorescence detection, a fluorescent monomer was used as a probe for diclofenac in ethyl acetate, generating stable complexes through hydrogen bond formation. The diclofenac/fluorescent monomer complexes were imprinted into thin molecularly imprinted polymer (MIP) shells on the surface of the dSiO2-NPs. Thus, the MIP binding behaviour could be easily evaluated by fluorescence titrations to monitor the spectral changes upon addition of the analyte. Doping the core substrate with Nile blue generates effective dual fluorescent signal transduction. This approach does not solely depend on a single fluorescence emission band in response to analyte recognition. Instead, it enables the fluorescent core to function as an internal reference, minimizing analyte-independent factors such as background fluorescence, instrumental fluctuation, and operational parameters.[5] Rebinding studies showed that the MIP particles have excellent selectivity towards the imprinted template and good discrimination against the competitor ibuprofen, with a discrimination factor of 2.5. Additionally, the limit of detection was determined to be 0.6 μM. Thus, with further optimization of the MIP, there is potential for the development of a MIP-based biphasic extract-&-detect fluorescence assay for simple, sensitive and specific sensing of diclofenac in aqueous samples down to the required concentrations of 0.03 μM. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - Diclofenac KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Pollutant PY - 2024 AN - OPUS4-60439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, J. A1 - Tarábek, J. A1 - Kulkarni, R. A1 - Wang, Cui A1 - Dračínský, M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Resch-Genger, Ute A1 - Bojdys, M. J. T1 - A π-conjugated, covalent phosphinine framework N2 - Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si and S have found their way into their building blocks so far. Here, we expand the toolbox available to polymer and materials chemists by one additional nonmetal, phosphorus. Starting with a building block that contains a λ⁵‐phosphinine (C₅P) moiety, we evaluate a number of polymerisation protocols, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) via Suzuki‐Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g‐1 N2 BET at 77 K) with green fluorescence (λmax 546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h‐¹ g‐¹. Our results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties that might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis. KW - Phosphinine KW - Fully aromatic frameworks KW - Suzuki-Miyaura coupling KW - Polymers KW - Fluorescence KW - Small-angle scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485330 DO - https://doi.org/10.1002/chem.201900281 SP - 2 EP - 10 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reiber, T. A1 - Hübner, Oskar A1 - Dose, C. A1 - Yushchenko, D. A. A1 - Resch-Genger, Ute T1 - Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation N2 - Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels’ fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing. KW - Imaging KW - Quantum yield KW - Quality assurance KW - Antibody KW - Conjugate KW - Cell KW - FLIM KW - PEG KW - Flow cytometry KW - Lifetime KW - Energy transfer KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Fluorescence KW - Dye KW - Amplification KW - Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602197 DO - https://doi.org/10.1038/s41598-024-62548-4 VL - 14 IS - 1 SP - 1 EP - 11 AN - OPUS4-60219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernández García, María Amparo A1 - Rurack, Knut A1 - Bell, Jérémy A1 - Weller, Michael G. T1 - SAF-based optical biosensor with 3D-printed free-form optics for targeted explosives immuno-detection N2 - Guaranteeing safety and security of citizens requires a significant effort and innovative tools from national and international agencies and governments, especially when it comes to the field of explosives detection. The need to detect Improvised Explosive Devices (IEDs) and Home-made Explosives (HMEs) at a point of suspicion, has grown rapidly due to the ease with which the precursors can be obtained and the reagents synthesised. The limited availability of immunoanalytical tools for HME detection presents an opportunity for the development of new devices, which enable a rapid detection and recognise the target analyte with high specificity and sensitivity. In this work, we introduce an optical biosensor for highly specific and sensitive HME detection. The immunoassay system is placed in a hydrogel environment permeable to the analyte and transparent to light interrogating the fluorescently labelled antibodies. The readout of the immunoanalytical system is realized with Supercritical Angle Fluorescence (SAF), an advanced microscopy technique. To accomplish this, we made use of recent, commercial high resolution (< 22 µm) Liquid Crystal Display 3D printers to fabricate a parabolic optical element with high refractive index (RI>1.5) and transmission values (>90%) from photo-resin. Aiming at a new generation of sensors, which not only can meet the requirements of trace detection, but can also be used for substance identification, the combination of immunoanalytical recognition with SAF detection offers a modularity and versatility that is principally well suitable for the measurements of target analytes at trace levels. T2 - 8th International conference in Biosensing Technology CY - Seville, Spain DA - 12.05.2024 KW - 3D printing KW - Biosensor KW - Fluorescence KW - Explosives PY - 2024 AN - OPUS4-60561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegner, Karl David A1 - Fischer, C. A1 - Resch-Genger, Ute T1 - Exploring Simple Particle-Based Signal Amplification Strategies in a Heterogeneous Sandwich Immunoassay with Optical Detection N2 - Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current “gold standard” enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidinfunctionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C- eactive protein (CRP), the analyte sensitivity achievable with optimized PSP ystems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept. KW - Nanoparticle KW - Fluorescence KW - Immunoassay KW - Quality assurance KW - Antibody KW - Polymer KW - Dye KW - Signal enhancement KW - CRP KW - Biosensing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597853 DO - https://doi.org/10.1021/acs.analchem.3c03691 SN - 1520-6882 VL - 96 IS - 13 SP - 5078 EP - 5085 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-59785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, Marc A1 - Geißler, Daniel A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads N2 - Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 μm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials. KW - Optical spectroscopy KW - Particle KW - Optical assay KW - IR spectroscopy KW - Fluorescence KW - Quantum yield KW - Quality assurance KW - Nano KW - Synthesis KW - Surface chemistry KW - Quantification KW - Method KW - Conductometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581502 DO - https://doi.org/10.1038/s41598-023-38518-7 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London AN - OPUS4-58150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel A1 - Wegmann, Marc A1 - Hoffmann, Katrin A1 - Hannemann, M. A1 - Somma, V. A1 - Jochum, T. A1 - Niehaus, J. A1 - Roggenbuck, D. A1 - Resch-Genger, Ute T1 - NanoGenotox - Automatable Determination of the Genotoxicity of Nanoparticles with DNA-based Optical Assays N2 - Nanomaterials are used in many different applications in the material and life sciences. Examples are optical reporters, barcodes, and nanosensors, magnetic and optical contrast agents, and catalysts. Due to their small size and large surface area, there are also concerns about their interaction with and uptake by biological systems. This has initiated an ever increasing number of cyctoxicity studies of nanomaterials of different chemical composition and surface chemistry, but until now, the toxicological results presented by different research groups often do not address or differ regarding a potential genotoxicity of these nanomaterials. This underlines the need for a standardized test procedure to detect genotoxicity.1,2 Aiming at the development of fast, easy to use, and automatable microscopic methods for the determination of the genotoxicity of different types of nanoparticles, we assess the potential of the fluorometric γH2AX assay for this purpose. This assay, which can be run on an automated microscopic detection system, relies on the determination of DNA double strand breaks as a sign for genotoxicity.3 Here, we present first results obtained with broadly used nanomaterials like CdSe/CdS and InP/ZnS quantum dots as well as iron oxide, gold, and polymer particles of different surface chemistry with previously tested colloidal stability. These studies will be also used to establish nanomaterials as positive and negative genotoxicity controls or standards for assay performance validation for users of this fluorometric genotoxicity assay. In the future, after proper validation, this microscopic platform technology will be expanded to other typical toxicity assays. References. (1) Landsiedel, R.; Kapp, M. D.; Schulz, M.; Wiench, K.; Oesch, F., Reviews in Mutation Research 2009, 681, 241-258. (2) Henriksen-Lacey, M.; Carregal-Romero, S.; Liz-Marzán, L. M., Bioconjugate Chem. 2016, 28, 212-221. (3) Willitzki, A.; Lorenz, S.; Hiemann, R.; Guttek, K.; Goihl, A.; Hartig, R.; Conrad, K.; Feist, E.; Sack, U.; Schierack, P., Cytometry Part A 2013, 83, 1017-1026. T2 - 9th International Conference on Nanotoxicology - New tools in risk assessment of nanomaterials CY - Dusseldorf/Neuss, Germany DA - 18.09.2018 KW - Nano KW - Nanotoxicity KW - Fluorescence KW - Quantum dot KW - Surface KW - Passivation shell KW - Automated assay KW - Nanoparticle PY - 2018 AN - OPUS4-47540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -