TY - JOUR A1 - Üstündag, Ö. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser arc welding of thick high-strength piepline steels of grade X120 with adapted heat input JF - Journal of Materials Processing Tech. N2 - The influence of heat input and welding speed on the microstructure and mechanical properties of single-pass hybrid laser arc welded 20mm thick plates of high-strength pipeline steel X120 were presented. The heat Input was varied in the range of 1.4 kJ mm−1 to 2.9 kJ mm−1, while the welding speed was changed between 0.5m min−1 and 1.5m min−1. A novel technique of bath support based on external oscillating electromagnetic field was used to compensate the hydrostatic pressure at low welding velocities. A major advantage of this technology is, that the welding speed and thus the cooling time t8/5 can be variated in a wide parameter window without issues regarding the weld root quality. The recommended welding thermal cycles for the pipeline steel X120 can be met by that way. All tested Charpy-V specimens meet the requirements of API 5 L regarding the impact energy. For higher heat inputs the average impact energy was 144 ± 37 J at a testing temperature of −40 °C. High heat Input above 1.6 kJ mm−1 leads to softening in the weld metal and heat-affected-zone resulting in loss of strength. The minimum tensile strength of 915 MPa could be achieved at heat inputs between 1.4 kJ mm−1 and 1.6 kJ mm−1. KW - High-strength low-alloy steel KW - Hybrid laser-arc welding KW - Mechanical-technological properties KW - Microstructure KW - Toughness KW - Pipeline steel of grade X120 PY - 2020 DO - https://doi.org/10.1016/j.jmatprotec.2019.116358 SN - 0924-0136 VL - 275 SP - 116358 PB - Elsevier B.V. AN - OPUS4-50008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - Investigation of the mechanical properties of single-pass hybrid laser-arc welded thick X120 pipeline steel plates N2 - High heat input leads to grain coarsening and softening in WM and HAZ; the tensile strength is reduced. Low heat input leads to inadmissible hardening in the WM; the impact strength is reduced. The proposed t8/5-time of 3 s to 15 s could be achieved through the reduced welding velocity. The concept of electromagnetic weld pool support system allowed single-pass welds in flat position without gravity drop-outs even for reduced welding speeds; in this way the heat input can be controlled. The adaptation of the electromagnetic weld pool support system to laser and laser hybrid welding process can dramatically increase the potential field of application of these technologies for real industrial implementation. T2 - 14th Pipeline Technology Conference 2019 CY - Berlin, Germany DA - 18.03.2019 KW - Toughness KW - Hybrid laser-arc welding KW - Pipeline steel X120 KW - Electromagnetic weld pool support KW - Mechanical properties PY - 2019 AN - OPUS4-49894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -