TY - CONF A1 - Agudo Jácome, Leonardo T1 - Experimental study on M23C6 nucleation and growth mechanisms in Ni-base superalloy single crystals N2 - The addition of carbon to Ni-base superalloy single crystals has been increasingly carried out to improve low angle grain boundary (LAGB) resistance and castability. Consequently, the precipitation of carbides is highly probable during long-term application of components subjected to higher temperatures (> 1000 °C). While the view on the role of carbides as strengthening or detrimental is polemical, their inevitable increased presence in carbon-doped alloys must be addressed. In the present work, the evolution of M23C6 carbides forming in the commercial grade Ni-base superalloy LEK 94 during high-temperature and low-stress creep exposure is assessed. Although carbon is not intentionally added to the LEK 94 alloy, it admits up to 0.1 at. %, which together with the high content of M23C6-forming transition metals, leads to their precipitation. The precipitation is induced here during creep experiments at 1020 °C and a nominal applied stress of 160 MPa along [001]. The correlation of precipitation and external load is carried out by evaluating the carbides in the gage section of parallel and circularly notched cylindrical samples, as well as in their heads. Characterization is made by transmission electron microscopy (TEM). Although primary MC carbides form mostly in interdendritic regions during casting, high temperature exposure induces M23C6 carbide nucleation especially in the γ phase of dendritic regions, where a stronger partitioning of refractory elements is present. The carbides have a needle shape with their main axis on 〈100〉 and a cube-on-cube orientation relationship. They present incoherent {100} facets along their elongated region and semi-coherent {111} facets at their ends. Their nucleation and growth mechanisms are discussed based on microstructural observation under different experimental conditions. T2 - Modelling and Simulation of Superalloys. International Workshop. CY - Bochum, Germany DA - 29.03.2017 KW - Ni-base superalloy KW - Single cystal KW - Creep KW - Carbide KW - Scanning transmission electron microscopy (STEM) PY - 2017 AN - OPUS4-40249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulla, Hannes A1 - Becker, C. A1 - Casati, N. A1 - Paulus, B. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - In situ investigations of a mechanochemical cocrystal formation by X-ray diffraction for two different milling jar materials N2 - Mechanochemistry has become a valuable method for the synthesis of new materials, especially for pharmaceutical cocrystals. The Advantages of fast reactions in high purity and yield face a lack of understanding the underlying mechanism. Therefore, in situ setups to study mechanochemical reactions have been established. Herein, we present an in situ investigation of the mechanochemical cocrystal formation of pyrazinamide (PZA) with pimelic acid (PM) using synchrotron XRD. Two new polymorphs of PZA:PM (1:1) were synthesized by milling the starting materials in milling jars of different materials. While Form I is only obtained using a steel jar, Form II can be obtained purely in jars made of Perspex. In situ XRD experiments reveal a direct formation of Form II in Perspex and an intermediate formation of Form II in steel jars converting to Form I upon further grinding. Heating experiments and DFT calculations predict that Form II is the thermodynamically more stable polymorph. Therefore, the reaction progress in the steel jar contradicts Ostwald’s rules of stages as the more stable Form II converts into the metastable Form I. Hence, mechanochemistry offers the possibility to synthesize new materials that cannot be obtained using conventional methods. T2 - Adlershofer Forschungsforum 2017 CY - HU-Berlin, Erwin-Schrödinger Zentrum, Germany DA - 10.11.2017 KW - Cocrystal KW - Mechanochemistry KW - Polymorph KW - In situ KW - Milling PY - 2017 AN - OPUS4-42956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulte, Petra T1 - Kritische Bewertung der Prüfergebnisse in chemikalienrechtlichen Verfahren: Wie agiert die Behörde? Welche Folgen haben die Ergebnisse für die Rechtsetzung? N2 - Mit nicht-konformen oder schlecht dokumentierten Prüfergebnissen können weder Behörden noch Unternehmen etwas anfangen. Belastbare und eindeutige Informationen aus den Registrierungsdossiers sind entscheidend, damit industrielle und gewerbliche Verwender der Stoffe das Gefahrenpotenzial einschätzen und ggf. Maßnahmen zum Schutz von Menschen und Umwelt treffen können. Darüber hinaus benötigen die Behörden verlässliche Daten aus den Registrierungen, um ihrer Verantwortung bei der Identifizierung regulierungsbedürftiger Stoffe nachkommen zu können. T2 - 13. Fachtagung "Anlagen-, Arbeits- und Umweltsicherheit" CY - Köthen, Germany DA - 16.11.2017 KW - Prüfmethoden KW - Einstufung KW - REACH KW - CLP KW - Registrierungsdossiers KW - SIEF KW - Qulitätssicherung KW - IUCLID KW - ECHA KW - OECD PY - 2017 AN - OPUS4-43081 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Myrach, Philipp A1 - Ziegler, Mathias A1 - Unnikrishnakurup, Sreedhar A1 - Puthiyaveettil, N. A1 - Kruschke, H. A1 - Balasubramaniam, Krishnan T1 - Online Laser-thermografische Rissprüfung an Stahl bei hohen Temperaturen N2 - Die Detektion bzw. Charakterisierung von Oberflächenrissen in Stahl ist eine herausfordernde Aufgabe für die zerstörungsfreie Prüfung. Dies gilt insbesondere, wenn eine solche Prüfung bereits während der Produktion selbst erfolgen soll. Die hier vorgefundenen Randbedingungen, wie z.B. die hohen Probentemperaturen (>700°C) oder Vorschubgeschwindigkeiten von bis zu 0,9 m/min, machen die Anwendung etablierter und vor allem berührender ZfP-Methoden praktisch meist unmöglich. Laser-thermografische Verfahren können hier eine Alternative bieten, da sie berührungslos und schnell arbeiten. Wir stellen die Ergebnisse einer Weiterentwicklung der Laser-thermografischen Prüfung vor, bei der die Anwendbarkeit bzw. die Übertragbarkeit der Methode auf die Bedingungen der Stahlproduktion untersucht wurde. Neben der Simulation der Produktionsbedingungen im Labor und der experimentellen Untersuchung der entscheidenden Einflussgrößen, wurden umfangreiche FEM-Simulationen durchgeführt. Mit Hilfe dieser theoretischen und experimentellen Ergebnisse wurde das Verfahren auch hinsichtlich der Analyse-Algorithmen weiterentwickelt, um eine zuverlässige und schnelle In-Line Prüfung während des Produktionsprozesses zu ermöglichen. Um zudem die Fähigkeiten der Thermografiekamera für schnelle online-Messungen und ihre Integrierbarkeit in verschiedene Anwendungssysteme zu verbessern, wurde die für die Verarbeitung der Detektordaten erforderliche Non-Uniformity Correction der Pixeldaten auf schneller Spezialhardware innerhalb der Kamera implementiert. T2 - Thermografie-Kolloquium 2017 CY - Berlin, Germany DA - 28.09.2017 KW - Rissprüfung KW - Laserthermografie KW - Thermografie KW - Risse PY - 2017 AN - OPUS4-42922 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moldenhauer, Laura A1 - Helmerich, Rosemarie A1 - Köppe, Enrico A1 - Wittmann, Jochen T1 - Experimental modeling approach for determining the moisture damping exponent of a bluetooth low energy signal in moist building material N2 - We investigated, the damped Received Signal Strength Indicator (RSSI) of a Bluetooth Low Energy (BLE) signal, transmitted from the BLE-module embedded in building materials with changing moisture content, Fig. 1. The BLE-module communicates with a mobile Smart Device as tablet via 2.45 GHz-ISM-frequency band where water dipoles start to oscillate, Fig. 2. The damping model demonstrates this damping effect on RSSI by the abstraction of the reality observed in a real system. Through the reproduction of the active relationships, the system behavior is decomposed in such a way that a separate consideration of the required system parameters is possible. T2 - 34th DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics (DAS 2017) CY - Trieste, Italy DA - 18.09.2017 KW - Structural health monitoring KW - Long-term monitoring KW - Bluetooth Low Energy KW - BLE KW - Moisture KW - Network Communication KW - Experimental study KW - Modellierung PY - 2017 AN - OPUS4-42966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Bruno, Giovanni T1 - Damage Analysis in Metal Matrix Composites by means of Synchrotron Radiation Computed Tomography N2 - The damage evolution after compression tests of two types of MMC, consisting of eutectic AlSi12CuMgNi alloy and reinforced with 15vol% of Al2O3 fibers and with 7vol% of Al2O3 fibers+15vol% of SiC particles was studied by synchrotron CT. Internal damage at different pre-strain conditions in eutectic Si, intermetallic phases and Al2O3 fibers was observed, as well as debonding of SiC particles. T2 - HZB User Meeting CY - BESSY II, Berlin, Germany DA - 14.12.2017 KW - Aluminum KW - Metal Matrix Composite KW - Damage Analysis KW - Computed tomography KW - Synchrotron Radiation PY - 2017 AN - OPUS4-43467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Kromm, Arne A1 - Haberland, C. A1 - Bruno, Giovanni T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - Additive Manufacturing (AM) by Selective Laser Melting (SLM) offers ample scope for producing geometrically complex parts in comparison to the traditional subtractive manufacturing strategies. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - HZB User Meeting 2017 CY - Berlin, Germany DA - 15.12.2017 KW - AM KW - SLM KW - IN 718 KW - Neutron diffraction KW - Residual stress KW - Hatch length KW - Microstructure PY - 2017 AN - OPUS4-43475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hampel, Marco A1 - Dimper, Matthias A1 - Schenderlein, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - A new approach for high-resolution analysis of early-stage corrosion processes N2 - The poster presentation summarizes the recent developments on the combination of scanning electrochemical microscopy with multielectrode arrays for the investigation of local corrosion processes. T2 - GfKORR Jahrestagung 2017 CY - Frankfurt am Main, Germany DA - 07.11.2017 KW - Scanning electrochemical microscope (SECM) KW - Multielectrode array sensors KW - Corrosion PY - 2017 AN - OPUS4-43459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dimper, Matthias A1 - Hampel, Marco A1 - Schenderlein, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - Multielectrode array probes for early detection of corrosion processes N2 - Multielectrodes are arrays of single electrodes arranged in a particular geometry. In our work, all the single electrodes are identical stainless steel X5CrNi18-10 (1.4301) wire electrodes. Using a multielectrode analyser all single electrodes are connected via zero resistance ammeters, simulating a galvanically coupled single electrode surface. The advantage of the multielectrode analyser (MMA) is that the currents flowing between single electrodes can be measured. Thus, real-time maps can be generated indicating where anodic and cathodic areas lie on the surface of the multielectrode and how they behave. The combination of the multielectrode analyser with the scanning electrochemical microscopy (SECM) enables the identification of corrosion sites and the detailed electrochemical analysis. T2 - DECHEMA/GfKORR-Fachgruppe "Mikrobielle Materialzerstörung und Materialschutz" CY - Berlin, Germany DA - 04.10.2017 KW - Scanning electrochemical microscope (SECM) KW - Multielectrode array sensors KW - Corrosion PY - 2017 AN - OPUS4-43461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fontana, P. A1 - Miccoli, L. A1 - Meng, Birgit T1 - Healthier life with eco-innovative components for housing constructions N2 - The project has developed a variety of new multifunctional and flexible building components for a healthier indoor environment. [H] house solutions are durable, energy efficient, safe and affordable. They are suitable for use in new buildings and for renovation. [H] house solutions cover aspects of long service life, reduced maintenance and long-term improvement of energy efficiency. T2 - H-House Abschluss-Kolloquium, Dauerausstellung am Demonstrator-Gebäude CY - Warsaw, Poland DA - 23.08.2017 KW - Building materials KW - Beton KW - UHPC PY - 2017 AN - OPUS4-43003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulla, Hannes A1 - Becker, Christian A1 - Casati, Nicola A1 - Paulus, Beate A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ PXRD monitoring of a mechanochemical cocrystal formation in milling jars of different material N2 - We present an in situ PXRD investigation of the mechanochemical cocrystal formation of pyrazinamide with pimelic acid in two milling jar materials. In the steel jar a polymorph transformation presenting an exception of Ostwald’s rule of stages is observed. T2 - BESSY User Meeting 2017 CY - Bessy II (HZB), Berlin, Germany DA - 14.12.2017 KW - In situ KW - XRD KW - Polymorph KW - Cocrystal KW - Milling PY - 2017 AN - OPUS4-43502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kormunda, M. A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Fischer, Daniel T1 - Study of magnetron sputtering deposited ultrathin FeSnOx films for Surface Plasmon Resonance sensors towards gas sensing applications N2 - In this study, series of coatings with the goal of sensitising gold SPR sensors towards CO, NH4, etc. were prepared. To better understand the mechanism behind the sensitizing effect and to enable the targeted production of optimized layers, the wide range of coatings was studied by multiple methods from spectroscopic ellipsometry for their dielectric function, by XPS for chemical composition and SEM, TEM to determine their microscopic structure. The coatings were deposited at inert Ar gas and reactive Ar/O2 gas mixture by RF magnetron sputtering or DC pulsed magnetron sputtering with settable RF bias on the substrates. The plasma processes were monitors by mass spectrometry. The metal oxide coatings in SPR sensors have to be prepared reproducible with thickness about 5 nm therefore lower deposition rate conditions were advantages. T2 - THE 14th INTERNATIONAL SYMPOSIUM ON SPUTTERING & PLASMA PROCESSES,ISSP 2017 CY - Kanazawa, Japan DA - 05.07.2017 KW - Surface Plasmon Resonance KW - Magnetron sputtering KW - FeSnOx PY - 2017 AN - OPUS4-43536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Kulla, Hannes A1 - Wilke, Manuel T1 - In situ investigations of mechanochemical reactions - new insights in formation pathways N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms. We recently introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. In situ Raman spectroscopy coupled with thermography revealed a low temperature increase during milling reactions due to the mechanical impact and clear temperature increases because of the reaction heat. Based on the data, temperature rises as postulated in the magma plasma and hot spot theory can be excluded for soft matter milling syntheses. Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemically synthesized compounds. T2 - Wissenschaftsforum Chemie CY - Berlin, Germany DA - 10.09.17 KW - Mechanochemistry KW - In situ PY - 2017 AN - OPUS4-43563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kelly, U. A1 - Richter, S. A1 - Schladitz, K. A1 - Scheuerlein, C. A1 - Redenbach, C. A1 - Wolf, F. A1 - Ebermann, P. A1 - Lackner, F. A1 - Schoerling, D. A1 - Meinel, Dietmar T1 - Nb3Sn wire shape and cross sectional area inhomogeneity in Rutherford cables N2 - During Rutherford cable production the wires are plastically deformed and their initially round shape is distorted. Using X-ray absorption tomography we have determined the 3D shape of an unreacted Nb3Sn 11 T dipole Rutherford cable, and of a reacted and impregnated Nb3Sn cable double stack. State-of-theart image processing was applied to correct for tomographic artefacts caused by the large cable aspect ratio, for the segmentation of the individual wires and subelement bundles inside the wires, and for the calculation of the wire cross sectional area and shape variations. The 11 T dipole cable cross section oscillates by 2% with a frequency of 1.24 mm (1/80 of the transposition pitch length of the 40 wire cable). A comparatively stronger cross sectional area variation is observed in the individual wires at the thin edge of the keystoned cable where the wire aspect ratio is largest. T2 - 13th European Conference on Applied Superconductivity, EUCAS 2017 CY - Geneva, Switzerland DA - 17.09.2017 KW - X-ray computer tomography KW - Image processing KW - Superconducting KW - CERN KW - µCT PY - 2017 AN - OPUS4-43493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüth, Peter A1 - Brandes, E. A1 - Frost, K. A1 - Kurth, Lutz A1 - Schmidt, Martin A1 - Michael-Schulz, Heike A1 - Uhlig, S. T1 - CEQAT-DGHS Ringversuchsprogramm für die Chemikaliensicherheit – Methodenvalidierung N2 - Bei der Bewertung der Verlässlichkeit der im Labor gewonnenen Prüfergebnisse spielen Ringversuche eine entscheidende Rolle. Die Bundesanstalt für Materialforschung und –prüfung (BAM) unterstützt deshalb den weiteren Ausbau des Ringversuchsprogramms des im Jahr 2007 gegründeten Kompetenzzentrums zur Qualitätssicherung für Prüfungen von Gefahrgütern und Gefahrstoffen auf physikalische Gefahren (Centre for quality assurance for testing of dangerous goods and hazardous substances, CEQAT-DGHS). Bei allen bisher untersuchten Prüfmethoden besteht ein Verbesserungsbedarf. Die RV müssen daher zunächst auf die Methodenentwicklung, -verbesserung und -validierung und auf die Bestimmung der Messunsicherheit der jeweiligen Prüfmethode abzielen und nicht auf Leistungstests. T2 - 13. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 16.11.2017 KW - Gefahrgut KW - Gefahrstoff KW - Ringversuch KW - Prüfmethode KW - Validierung KW - Qualitätssicherung PY - 2017 AN - OPUS4-43301 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - SiO2-haltige organische Beschichtung für geothermische Anwendungen N2 - Geothermieanlage werden teilweise unter extremen Bedingungen mit sehr salzhaltigen Wässern betrieben. Obwohl C-Stahl häufig für die Konstruktion verwendet wird, ist er in einem Hoch-temperatur- und Hochdrucksystem anfällig für gleichmäßige und örtliche Korrosion. Daher soll ein Beschichtungssystem den C-Stahl schützen. Schlussverfolgung Es ist notwendig, die optimale SiO2-Zugabe zur organischen Beschichtung zu untersuchen, damit deren Eigenschaften, wie z.B. Haftfestigkeit, optimale Schichtdicke, und Temperaturbeständigkeit, verbessert werden. Das derzeitige Projekt zielt auf die Zugabe von Polyanilin (PANi) als Wirkstoff zur Verbesserung der Schichteigenschaften für die Erhöhung der Korrosionsbeständigkeit des Systems in stark salzhaltigen Medien bei höheren Temperaturen. T2 - GfKORR Jahrestagung CY - Frankfurt/Main, Germany DA - 07.11.2017 KW - Geothermie KW - Beschichtung KW - Korrosion PY - 2017 AN - OPUS4-43361 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - SiO2-containing organic coatings for geothermal application N2 - Geothermal brine is considered to be an aggressive environment as it contains various dissolved salts. Even though carbon steel is commonly used as a construction material due to its machinability and economical reason, it is susceptible to uniform and localized corrosion in a high temperature and high pressure system. Therefore, a coating system is introduced to protect the carbon steel against corrosion in such environment. -It is necessary to find the optimum composition of SiO2 addition in the organic coatings to enhance the material performance, i.e. coatings adhesion, thickness optimization, thermal resistance. Current project aims at the addition of Polyaniline (PANi) as the active agent to improve the corrosion resistance of materials against a high saline medium at elevated temperatures. T2 - BAM PhD Day CY - Berlin, Germany DA - 21.09.2017 KW - Geothermal KW - Corrosion KW - Coating PY - 2017 AN - OPUS4-43362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina T1 - Methanogenic Archaea N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures. Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g. Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to develop suitable methods for analyzing two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation and transformation. T2 - DECHEMA-GfKORR-Fachgruppe CY - Berlin, Germany DA - 04.10.2017 KW - Biofilm KW - Corrosion KW - Methanogens PY - 2017 AN - OPUS4-43025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raedel, Martina A1 - Bücker, Michael T1 - Research and reconstruction of historic gold mosaics N2 - A research project of reconstructing historical gold mosaics deals with reconstructing weatherproof gold and silver mosaics according to historical models. The gold mosaics examinded originate mainly from germany from 1880 to 1920 and are composed of three parts. They consist of a matching support glass, the gold or silver layer and a cover glass. By examining the morphology and layer thicknesses with the ESEM, and using chemical analysis with the EDX, the relationship of glass composition and damage patterns was established. The glass analysis provided quantitative composition data and made it possible to determine its chemical stability. It supplied the basis for calculating glass characteristics and was referred to when casting suitable historical mosaic glass. The analysis of the qualitative composition of the gold and silver layers also served as a model for reconstruction. After testing selected reconstructed gold mosaics in the climate chamber, the ESEM was used for capturing leaching and other process data and the glass composition was optimized accordingly. Over 100 predominantly historical gold mosaics were analyzed and the results entered into a database which can now be consulted for comparative investigations to determine both origin and date. T2 - What comes to mind when you hear mosaics, conserving mosaics from ancient to modern CY - Barcelona, Spain DA - 15.10.2017 KW - Gold mosaics KW - Leaching process KW - Composition KW - Database PY - 2017 AN - OPUS4-43216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hiller, Th. A1 - Costabel, S. A1 - Müller-Petke, M. A1 - Kruschwitz, Sabine T1 - Evaluation of different laboratory NMR devices in a tripartite round robin test N2 - Nuclear magnetic resonance (NMR) is a well established laboratory / borehole method to characterize the storage and transport properties of rocks due to its direct sensitivity to the corresponding pore fluid saturation (water or oil) and pore sizes. For petrophysical applications there are several different NMR laboratory devices commercially available varying over a wide range of e.g. magnetic field strength / frequency (2 MHz to 30 MHz), applicable measurement protocols (T1, T2, T1-T2, T2-D, etc.) and sample sizes (2.5 cm to 10 cm in diameter). In this work we present NMR measurements, layed out in a round robin like manner, on a set of 20 sandstone samples. We use three different NMR devices containing two standard setups with homogenous magnetic fields (LIAG and RWTH) and one single-sided setup with gradient field (BGR) to measure T1 and T2 relaxation data. In our evaluation we especially focus on the comparison of the individually inverted relaxation time distributions to quantify the differences arising from different laboratory setups. Diverging results can be deduced on the one hand to the inherit differences between homogeneous and gradient fields but on the other hand also due to quality differences between the two homogeneous setups. Additionally, we also examine the influence of the individually chosen inversion parameters (signal processing, distribution sampling points, error weighting, regularization, etc.) to establish a general standardized best practice recommendation for future petrophysical NMR laboratory measurements. T2 - 77. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Potsdam, Germany DA - 27.03.2017 KW - Nuclear Magnetic Resonance KW - Sandstone PY - 2017 AN - OPUS4-43244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Soukka, T. T1 - Upconverting nanoparticle based assays and sensor systems for bacteria/biofilm detection N2 - Results of the short term scientific mission of Sebastian Radunz funded by the european upconversion network. T2 - Short term scientific mission CY - Turku, Finland DA - 09.01.2017 KW - Upconverting nanoparticles KW - Assays PY - 2017 AN - OPUS4-39328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda A1 - Sentker, K. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Structure, Dynamics and Phase Behavior of a Discotic Liquid Crystal Confined in Nanoporous Anodic Aluminum Oxide Membranes N2 - The interest in porous anodic aluminum oxide (AAO) has been rapidly growing due to its numerous applications in separation, catalysis, energy generation and storage, electronics, and sensors. From the scientific point of view, AAO is a topical interest in soft matter fields. Spatial confinement of soft matter in nanoporous media influences its structure, thermodynamics, and mobility. Embedding polymers and liquid crystals into nanopores of AAO results in a 2D nanoconfinement of these materials. This confinement affects their properties, compared to the bulk, such as phase transition temperatures and enthalpies, molecular mobility, and architecture of the crystallization. On the other hand, discotic liquid crystals (DLCs) are a promising class of soft matter for electronic applications. This is due to their ability to organize and stack themselves into columns in a hexagonal columnar mesophase, a mesophase in between the plastic crystalline and isotropic phase, driven by the overlap of the π orbitals of their aromatic core. This leads to a high charge-carrier mobility along the column axis. Further, these columns could then be considered as “molecular nanowires”. In this study, 2,3,6,7,10,11 hexakis[hexyloxy] triphenylene (HAT6), a triphenylene based DLC, was confined into nanoporous AAO membranes. The structure, dynamics and the phase behavior of the confined HAT6 were investigated by broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC). HAT6 was embedded into nanoporous AAO membranes by melt infiltration in the isotropic phase under argon atmosphere. The membranes have parallel aligned cylindrical nanopores, with pore diameter of 10, 20, 25, 40, 80, 120 and 180 nm. The filling degree for each sample was checked by thermogravimetric analysis (TGA) in order to ensure complete filling. Bulk HAT6 forms a hexagonal columnar phase; in between the isotropic phase above 371 K and the plastic crystalline phase below 340 K. Unlike the bulk, the confined HAT6 split the plastic crystalline-to-hexagonal columnar phase transition in two, which might be interpret as two different phase structures; close to the wall and at the pore center. Moreover, the isotropic-to-columnar transition of the confined HAT6 shifted, with decreasing pore diameter, to lower temperatures. Furthermore, pore surfaces of a series of membranes were chemically modified, resulting in a more hydrophobic pore surface than the unmodified ones. HAT6 was embedded into the modified membranes by the same aforementioned preparation. The influence of the changed host-guest-interaction, on the structure, dynamics, and the phase behavior of HAT6 confined in the modified membranes, was also investigated by BDS and DSC. T2 - 9th International Conference on Porous Media & Annual Meeting CY - Rotterdam, The Netherlands DA - 08.05.2017 KW - Nanoporous media KW - Anodic Aluminum Oxide KW - Discotic Liquid Crystal PY - 2017 AN - OPUS4-40089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Lüchtenborg, Jörg A1 - Hlavácek, Petr A1 - Günster, Jens A1 - Kühne, Hans-Carsten T1 - Additive manufacturing of geopolymers by selective laser curing N2 - Additive manufacturing (3D printing) of ceramics and other materials offers significant advantages compared to conventional production processes for several applications. While ceramics have been extensively investigated in this regard, additive manufacturing of geopolymers have received much less attention to date. In the present contribution we study a ‘standard’ metakaolin-based geopolymer, a fly ash-based geopolymer and a silica-based one-part geopolymer regarding their suitability for additive manufacturing via selective laser curing. Model geometries such as bars and cuboids could be produced by this route. After selective laser curing the specimens were additionally cured at 80 °C for 24 h. The specimens were studied by means of scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). SEM showed that the precursors in all geopolymers had reacted partially and geopolymeric gel had formed. XRD confirmed these results and additionally revealed that the crystalline byproducts (zeolites) in the one-part geopolymer differed from the byproducts observed in conventionally produced samples. This indicates that also the geopolymerization reactions differ between the two synthesis routes. The mechanical strength after selective laser curing and 80 °C-curing appeared to be highest for the metakaolin-based geopolymer. However, SEM also showed that a significant volume of macropores remained in most regions of all specimens, while some regions in the metakaolin-based geopolymer appeared to be significantly denser. These preliminary results demonstrate that selective laser curing offers potential for the production of geopolymers, but more research has to be undertaken to optimize the process. T2 - 92. DKG Jahrestagung CY - Berlin, Germany DA - 19.03.2017 KW - Geopolymers KW - Inorganic polymers KW - Additive manufacturing KW - 3D printing KW - Selective laser curing PY - 2017 AN - OPUS4-39514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Sameith, Janin T1 - Effect of surface degradation on high-density polyethylene for biofilm formation N2 - Renewable resources become more and more relevant to maintain energy demands for an increasing global population. Biosynthetic fuels like biodiesel might replace conventional petrochemical fuels. In this study the influence of microbial growth on biodiesel and diesel on the storage tank systems were investigated. Polymeric fuel storage tanks for diesel and biodiesel provide suitable environmental conditions for a broad spectrum of fungi and various bacteria, including cyanobacteria and aerobic heterotrophic, and even anaerobic, fermentative Bacteria. However, the questions whether and how ageing of the materials is affected by biofouling processes have not been answered so far. Therefore, a model system for biofilm formation was established to study the initial attachment phase of bacteria in dependency of ageing, quality and surface modification of thermoplastic polymers used for storage tank systems. The microbial survey is closely connected with a detailed characterization of the material’s properties and its ageing processes. A widely applied plastic used for fuel storage tanks is high-density polyethylene (PE-HD), which is available with various additives to increase UV-light stability and even for the storage of biodiesel. These materials were aged under UV-light and temperature using a defined climate chamber set-up. Further, the repeated filling of fuels was mimicked for such storage tanks, as this has an important impact on the life-cycle length for the storage Container. The aged polymers showed a significant change in the material’s characteristics, including surface characteristics (e.g. hydrophobicity) and carbonyl groups. The effect of the changed material properties on the biofilm formation are studied using bacterial isolates, previously obtained from a “dieselpest”, and as a model-reference E. coli. The unaged polymers showed already some significant differences for the initial attachment of E. coli K12. Polyethylene with additives was colonized faster than the reference material (without additives) although the final biofilm coverage was not impaired. Likewise, the settlement of a kerosene-isolated Bacillus species on the unaged materials independently of additives was only minor interfered. In future, our results should give stakeholders in industry and public authorities a better estimation of the life-cycle security for fuel storage tank systems and on the fuel quality. Further, our results could help to test and develop new materials or additives to prevent biofouling processes. T2 - VAAM Jahrestagung CY - Würzburg, Germany DA - 05.03.2017 KW - PE-HD KW - Biofilm KW - MIC KW - Degradation PY - 2017 AN - OPUS4-39457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane A1 - Emmerling, Franziska T1 - Depth dependent phase identification of corrosion zones in ferritic alloys by micro-X-ray absorption near edge structure spectroscopy N2 - Ferritic steels with chromium contents up to 13 wt% are used as materials for power plant components as boiler materials (< 2 wt% Cr) and super heater tubes (> 9 wt% Cr). These materials are subject to aggressive corrosion caused by hot gases such as CO2, H2O, O2 and SO2. Especially SO2 causes fatal corrosion even as a minor component. To examine sulfurous corrosion mechanisms, experiments with pure SO2 were conducted. A proper analysis of the material changes requires phase identification and quantification with a high lateral resolution within the corrosion scale. T2 - ANAKON2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Corosion KW - Steel KW - XANES PY - 2017 AN - OPUS4-40415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Welter, T. A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Marzok, Ulrich A1 - Müller, Ralf T1 - Glass structures with low helium and hydrogen permeability N2 - An efficient energy provision using fuel cells is linked to effecitve hydrogen storage capabilities. Because of its low intrinsic hydrogen permeability, glass has a huge potential in modern concepts of hydrogen storage. Previous studies on oxidic glasses showed an empirical connection between glass composition and gas permeation, which was mainly derived from the behavior of silica glass. In this study we focus on the relationship between topologic (free volume; network polymerization) and thermodynamic (configurational entropy) parameters. The comparison of three glasses within the meta (earth-) alkaline alumino silicate system to silica glass shows that an increase of the atomic packing factor (APF) does not necessarily decrease the permeability. Furthermore, the results suggest a connection between ΔCp at Tg and hydrogen permeability of the glass. All experiments were performed assuming that chemical hydrogen solubiltity in glass is negligible at temperatures well below the glass transition temperature. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Hydrogen permeability KW - Glass composition KW - Atomic packing factor KW - Configurational entropy KW - Diffusion coefficient PY - 2017 AN - OPUS4-40488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schadow, Florian A1 - Gaal, Mate A1 - Bartusch, Jürgen T1 - Sende-Empfangs-Prüfköpfe auf Ferroelektret-Basis für Luftultraschall-Anwendungen N2 - Leichtbaustrukturen aus Verbundwerkstoffen stellen einen immer größeren Anteil im Flugzeug- und Automobilbau dar. Hiermit steigt die Nachfrage nach zuverlässigen, zerstörungsfreien Prüfmethoden, welche an solche Strukturen angepasst sind. Besonders Luftultraschall (LUS) eignet sich für diese Aufgabe, da hier kein Koppelmedium benötigt wird. Derzeit wird für diese Methode jedoch oft ein beidseitiger Bauteilzugang für eine Prüfung in Durchschallung vorausgesetzt. Handelsübliche Prüfköpfe für Luftultraschallanwendungen nutzen zudem meist Anpassschichten um den Impedanzunterschied zwischen Schwinger und Luft zu reduzieren. Sowohl Signal-Rausch-Abstand als auch die Bandbreite der resultieren-den Prüfköpfe ist für viele Anwendungen jedoch nicht ausreichend. Durch den Einsatz von Ferroelektreten wie zellulärem Polypropylen (zPP) kann hingegen vollständig auf Anpassschichten verzichtet werden. Hierbei handelt es sich um polarisierte, zelluläre Polymerschichten mit sehr geringer Dichte, Steifigkeit und Schallgeschwindigkeit. In diesem Beitrag stellen wir drei verschiedene Sende-Empfangs-Prüfköpfe vor, welche auf zellulärem Polypropylen basieren. Anhand von Schallfeld, Signal-Rausch-Abstand und Sendepegel werden diese Prüfköpfe charakterisiert. Die Ergebnisse werden mit den Ergebnissen von Referenzprüfköpfen ohne Sende-Empfangs-Charakteristik verglichen. Bei den Referenzprüfköpfen werden sowohl handelsübliche LUS-Prüfköpfe, sowie bisher entwickelte Prüfköpfe aus zellulärem Polypropylen berücksichtigt. T2 - DGZFP Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - Sende-Empfangs Prüfkopf KW - Ferroelektret KW - Zelluläres Polypropylen KW - Charakterisierung KW - Luftultraschall PY - 2017 AN - OPUS4-40430 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Tagle, R. T1 - SEM and Micro-XRF analysis to investigate stained glass windows N2 - Several restoration projects of stained-glass windows have been performed in Poland since 2010.Chemical analysis of glass samples was performed with SEM/EDX on a FEI ESEM-XL 30, (EDX-EDAX) and with Micro-XRF (M4 Tornado, Bruker).The chemical composition of medieval glass samples and of glass samples of the 19th Century have been determined. T2 - Technart2017 CY - Bilbao, Spain DA - 02.05.2017 KW - SEM KW - Micro-XRF KW - Glass composition PY - 2017 AN - OPUS4-40435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Schwarzer, Stefanie A1 - Eiben, Mario T1 - Suitable test method for the determination of the environmental stress cracking behaviour of polyethylene terephthalate as material for dangerous goods packagings N2 - The chemical industry has expressed great interest in using polyethylene terephthalate (PET) as material for packagings for the transport of dangerous goods. Due to the high strength and stiffness of PET, the wall thickness and weight of packagings can be reduced. The aim of this work was to find a laboratory test method for the determination of the stress cracking resistance of PET. One test method is the Full Notch Creep Test (FNCT), which was developed for polyethylene (PE) and is described in the standards EN ISO 13274 and EN 15507. It was investigated whether testing specimens made of PET with a full coplanar notch around the middle of the specimens show weakening after the impact of a tensile force in a wetting solution at 50°C. Unfortunately, this method couldn’t be used for PET because the specimens broke during notching due to the high brittleness of PET. The molding of the sheets and the following temper process for twelve hours are very time-consuming, Another possibility is laid down in BAM’s Dangerous Goods Rule BAM-GGR 015. This test was carried out with 1l PET bottles, which were filled with a 5% wetting solution and mounted with a clamping tool for 28 days at 40°C. Tensile test specimens were cut out afterwards from the middle of the bottles in the deformed areas. The tensile properties of the PET specimens couldn’t be determined due to the hardness of the material. In conclusion, the only way to provide information about the stress cracking resistance of PET was to perform stacking tests with PET design types of packagings. 1l bottles made of PET were filled with a 5% wetting solution and stored with a stacking load for 28 days at 40°C according to EN ISO 16495. The test bottles of PET passed the stacking tests. T2 - Fifth International Symposium Frontiers in Polymer Science CY - Seville, Spain DA - 17.05.2017 KW - Polyethylene terephthalate KW - Stress cracking resistance KW - Laboratory method KW - Dangerous goods packaging PY - 2017 AN - OPUS4-40438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Gaber, Martin A1 - Reinsch, Stefan A1 - Welter, T. A1 - Deubener, J. T1 - Measurement of H2 permeability of glasses with VHE powder method N2 - The development of glassy hydrogen barriers requires the determination of low H2 permeabilities. Previous studies and numerical simulations have shown that the VHE powder method (vacuum hot extraction with mass spectrometric gas detection) is suitable for this purpose. The measured isothermal gas emission is fitted to a classical diffusion model for spherical particles from which the diffusion coefficient of the glass is calculated. The H2 permeability is determined by means of the solubility determined from the same measurement data. This presentation is referring to the optimization of the method regarding sample preparation and measurement data evaluation using suitable experimentally determined particle size distributions is reported. For quartz glass, it is shown that the accuracy of classical measuring methods is achieved with the VHE powder method. Furthermore, other examples of substantially gas-tighter glasses are given. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Hydrogen permeation KW - Glass KW - Vacuum hot extraction KW - Powder method KW - Diffusion coefficient PY - 2017 AN - OPUS4-40441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Reetz, R. A1 - Lauven, G. T1 - 3D High-temperature laser profilometry during sintering N2 - Most crucial for components of complex shape or heterogeneous micro structure, precise control of sintering has decisive influence on dimensional accuracy, mechanical integrity and reliability of sintered components. In these cases, only in situ 3D high-temperature shape screening during shrinkage would allow revealing temporary sinter warpage and hereby caused potential defects. Against this background, nokra Optische Prüftechnik und Automation GmbH, HTM Reetz GmbH and BAM developed a testing device for in situ 3D shape screening for ceramic and glass-ceramic tapes up to 1000°C by means of high-temperature laser profilometry. The local repeatability of the sample-sensor distance (sample height profile) is 10 µm at 1000°C. Current work is focused on dropping these restrictions in sample shape and temperature. In a second testing device, currently being in development, samples up to 5 cm x 5 cm x 5 cm can be measured at temperatures up to 1500°C.The presentation illustrates the current state of this work and possible applications of the method. T2 - 92. DKG Jahrestagung CY - Berlin, Germany DA - 19. 03. 2017 KW - Laser profilometry KW - 3D High-temperatue shape screening KW - Sintering PY - 2017 AN - OPUS4-40449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Bruno, Giovanni T1 - Residual stress analysis in selective laser melted parts of superalloy IN718 N2 - Additive Manufacturing (AM) by Selective Laser Melting (SLM) offers ample scope for producing geometrically complex parts in comparison to the traditional subtractive manufacturing strategies. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - 19th HERCULES Specialized Course CY - Grenoble, France DA - 15.05.2017 KW - Additive manufacturing KW - Selective laser melting KW - Residual stresses KW - Distortion KW - Microstructure PY - 2017 AN - OPUS4-40388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kabelitz, Anke A1 - Dinh, Hoang An A1 - Emmerling, Franziska T1 - A02: Time-resolved WAXS studies on the crystallization of Al13 keggin clusters N2 - Polynuclear aluminium species (Al13 keggin cluster) find application in different areas like water purification, contaminant transport, and as pilling clays with high specific surface areas, due to their strong binding ability to aggregates and high positive charge. In the present contribution, we report on the in situ investigation of the Al13 sulfate synthesis by synchrotron wide-angle X-ray scattering (WAXS). Al13 cluster were crystallized by precipitating hydrolyzed aluminum solutions by the addition of sodium sulfate. The measurements were performed using a custom-made acoustic levitator as sample holder. The study provides information about the intermediates during the crystallization process. From the data, a mechanism was derived indicating the influence of the crystallization process. T2 - International Symposium of the CRC 1109 CY - Berlin, Germany DA - 19.02.2017 KW - WAXS KW - In situ KW - Crystallization PY - 2017 AN - OPUS4-39367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NbC) as cutting tools and for wear protection N2 - Niobium is today largely available. NbC grades displayed lower dry sliding friction over WC grades. The softer Ni- and NiMo-bondes NbC1.0-grades have a higher abrasive wear resistance (ASTM G65), even with lower toughnesses, as the tougher WC-Co grades. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Cutting tools KW - Hardness PY - 2017 AN - OPUS4-40512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Steinborn, Gabriele A1 - Woydt, Mathias T1 - Colloidal processing of metal bonded niobium carbide (NbC-Ni) N2 - The manufacturing of NbC with Ni binder with addition of titanium carbide by using a colloidal process for blending the different powders without a milling step were investigated. The the sintering process and formation of the resulting microstructures, the phase relations and the hardness of the produced cermet materials are characterized. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Cermets KW - Hardness PY - 2017 AN - OPUS4-40513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wagner, Sabine A1 - Carrasco, S. A1 - Benito-Peña, E. A1 - Moreno-Bondi, M. C. A1 - Rurack, Knut T1 - Detection of antibiotics by combining fiber-optic array with microparticles coated with fluorescent molecularly imprinted polymers N2 - The widespread use of antibiotics in livestock farming leads to trace residues in food products and wastewater, potentially entailing antimicrobial resistance in food-borne pathogens. The determination of antibiotics in aqueous environments and foodstuff is thus of major concern. We have been developing optical sensors based on molecularly imprinted polymers (MIPs) due to the low production costs, stability, format adaptability and the possibility to imprint and thus their ability to recognize a wide variety of target analytes. As a fluorescently responding moiety in the polymer matrix a tailor-made fluorescent indicator cross-linker for direct transfer of the binding event into an optical signal was used. If such a cross-linker is integrated into a thin MIP-shell on microspheres such core/shell particles can be readily used in advanced multiplexing sensory fiber-optic microarrays. Here, we propose such a fiber-optic microarray based on fluorescent MIP microspheres for antibiotics. The binding behavior and the selectivity of a microarray using these silica core/MIP shell beads were examined and compared with a non-imprinted polymer (NIP) control, employing the target molecules and other structurally closely related antibiotics. T2 - APME2017 CY - Ghent, Belgium DA - 21.05.2017 KW - Molecularly imprinted polymers KW - Multiplexing sensory fiber-optic microarrays KW - Antibiotics PY - 2017 AN - OPUS4-40583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Knabe, Nicole A1 - Toepel, J. T1 - Organic surface coatings on medieval stained glass and microbiological investigation N2 - Mediaeval stained glass has been treated with Polymethylmetacrylate coatings by Kwiatkowski in Poland during the 1950th. Such treated panels were found in the Johannis Church of Toruń (without protective glazing), in the Cathedral of Włocławek (behind a protective glazing), and on glass kept in exhibition cases in the museum of Toruń. Surface coatings have been detected and analyzed. There was no extensive contamination by fungi or bacteria if the glass was either coated or not. T2 - Glass Science in Art and Conservation 2017 CY - Lisbon, Portugal DA - 06.06.2017 KW - Microbiological investigation KW - Medieval stained glass KW - SEM analysis PY - 2017 AN - OPUS4-40573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uhlmann, E. A1 - Kropidlowski, K. A1 - Woydt, Mathias A1 - Sammler, F. T1 - Cutting tools made from niobium carbide N2 - The Federal Institute for Materials Research and Testing (BAM) and the Institute for Machine Tools and Factory Management (IWF) of the Technical University Berlin analyzed the suitability of various NbC types in comparison to tungsten carbide (WC) for use as a tool in cutting processes. The focus was placed on the optimization of the functional profile of NbC-based cutting materials with reproducible industrial production. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Tungsten carbide (WC) KW - Cutting material PY - 2017 AN - OPUS4-40515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taparli, Ugur Alp A1 - Jacobsen, L. A1 - Griesche, Axel A1 - Michalik, K. A1 - Mory, D. A1 - Kannengießer, Thomas T1 - Time- and space-resolved in situ LIBS measurements of chemical compositions during TIG-welding N2 - An in situ monitoring of chemical compositions in the weld pool and the heat affected zone (HAZ) can enable the control of the welding process through the regulation of the welding parameters, and thus can prevent possible weld defects. The most critical parameter for hot cracking -from a metallurgical point of view- is the chemical composition of the weld pool. Chemical composition can be measured and quantified during the welding process with the LIBS technique having the appropriate calibration measurements. T2 - ICWAM 2017 CY - Metz, France DA - 17.05.2017 KW - Chemical compositions KW - TIG-welding KW - In situ measurement KW - LIBS PY - 2017 AN - OPUS4-40313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Bärbel A1 - Rabe, Torsten A1 - Salehi, Mahdi T1 - High-temperature stability of ceramic springs N2 - Metallic springs undergo oxidation and creep at elevated temperatures and their use is limited to temperature of about 650°C. Therefore, there is a need for stable materials which can easily withstand temperatures up to 1000°C for long periods in different atmospheres. Ceramic materials have been drawing attention due to their excellent properties. This work aimed at investigating the high-temperature stability of zirconia and alumina ceramic springs at elevated temperatures under different atmospheres (air, N2 and H2) in order to determine the limitation of use of these ceramic springs. T2 - DKG 2017 CY - Berlin, Germany DA - 20.03.2017 KW - Ceramic spring KW - High-temperature stability KW - Harsh environments KW - Spring constant PY - 2017 AN - OPUS4-40289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Gohlke, Dirk A1 - Meinig, Silvia A1 - Kaszemeikat, T. T1 - Hochauflösende Reinheitsgradbestimmung – Fertigung von Referenzfehlern N2 - Regelwerke zur zerstörungsfreien Bestimmung des Reinheitsgrades wie das SEP 1927 und die ASTM E588 erreichen ihre Vergleichbarkeit unter Anwendung von - vergleichsweise einfachen - Referenzfehlern. Hinsichtlich Realisierbarkeit wird somit der Kompromiss zwischen Herstellung des Referenzfehlers und der erreichbaren Nachweisgrenze gefunden. Zur Weiterentwicklung über die Grenzen der SEP1927 hinaus, wurde der Versuch unternommen Fehler kleiner 500 μm herzustellen - welche aufgrund der geringen geometrischen Ausdehnung fertigungsbedingt schwierig zu realisieren sind. Bei den vergleichenden Untersuchungen kristallisierten sich zwei Fertigungsverfahren, Funkenerosion (EDM: electrical discharge maching) und die Fertigung der Bohrungen unter Verwendung eines Hochleistungslasers, als vielversprechend heraus. Zunächst wurden die Fehler mit beiden Verfahren in unterschiedlichen Größen (100, 250 und 100 μm) und Tiefen (1, 1,5 und 2 mm) unter Anwendung von computertomographischen Verfahren der Röntgenprüfung, die Geometrie der eingebrachten Fehlstellen und anschließend durch hochauflösende Tauchtechnikmessungen das Reflektionsverhalten charakterisiert. T2 - DGZfP Jahrestagung CY - Koblenz, Germany DA - 22.05.2017 KW - Materialcharakterisierung KW - Reinheitsgradbestimmung KW - Ultraschalltauchtechnik PY - 2017 AN - OPUS4-40353 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czarnecki, Sebastian A1 - Hackelbusch, Sebastian A1 - Bertin, Annabelle T1 - Synthesis of hybrid inorganic/organic homopolymers via ATRP and RAFT: A practical comparison N2 - The synthesis of hybrid inorganic/organic copolymers, using reversible deactivation radical polymerization (RDRP) techniques, has been an intensively studied research topic over recent years. A plethora of hybrid inorganic/organic copolymers were synthesized, including hybrid inorganic/organic block copolymers as well as random copolymers,[1–4] that showed great potential in fabricating hybrid (nano)materials with tailored properties [5]. Two widely employed RDRP techniques to prepare such hybrid inorganic/organic copolymers are atom transfer radical polymerization (ATRP) [1,2] and reversible addition-fragmentation chain transfer (RAFT) polymerization [3,4]. In order, to afford hybrid inorganic/organic copolymers with narrow dispersity, high conversions and precise structures, it is required to choose proper reaction conditions. Due to the importance of both ATRP and RAFT in the preparation of such hybrid polymers, we aim to compare both RDRP techniques by preparing 2-acetoxyethyl methacrylate (AcEMA) and 3-(triethoxysilyl)propyl methacrylate (TESPMA) based homopolymers. For this purpose, AcEMA and TESPMA were polymerized in 1,4-dioxane at 60 °C mediated by CuBr/N,N,N',N'-pentamethyldiethylenetriamine (PMDETA) and 2-(2-carboxylethylsulfanylthiocarbonyl-sufanyl) propionic acid (TTC) as well as cumyl dithiobenzoate (CDB) to evaluate the suitability and reliability of ATRP and RAFT to prepare such hybrid (co)polymers. T2 - Berlin Chemie Symposium 2017 CY - TU Berlin, Berlin, Germany DA - 06.04.2017 KW - Hybrid inorganic/organic copolymers KW - ATRP KW - RAFT PY - 2017 UR - https://bcs.jcf-berlin.de/BCS2017/BoA2017.pdf AN - OPUS4-40280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Lyamkin, Viktor A1 - Pelkner, Matthias A1 - Wimpory, Robert A1 - Boin, Mirko A1 - Pittner, Andreas A1 - Kreutzbruck, Marc A1 - Bruno, Giovanni T1 - Evaluation magneto-mechanischer Effekte in hochauflösenden Magnetfeldmessungen durch Neutronendiffraktion N2 - Die mechanische Spannung ist ein maßgeblicher Parameter ferromagnetischer Materialien. Wird ein solches Material unter die Curie Temperatur abgekühlt, zerfällt es spontan in nahezu selbstgesättigte magnetische Domänen. Diese Magnetisierung führt gleichzeitig zu einer Verformung der mit ihr gekoppelten Kristallgitter. Ein Effekt der auch reziprok gilt: wird die Gitterverformung durch eine Spannung behindert ändert sich zwangsweise der magnetische Zustand. Man kann annehmen, dass zwischen unterschiedlichen, für sich aber homogen verspannten Werkstoffbereichen, lokale magnetische Streufelder auftreten, weil magneto-mechanische Effekte eine Inkompatibilität der Domänenstruktur induzieren. Bekanntlich bilden sich Spannungsgradienten nach Schweißprozessen durch ungleichmäßigen Wärmeeintrag, thermischer Dehnung, und unterschiedlichen Abkühlraten aus. Unter dieser Prämisse untersuchen wir Wolfram-Inertgas geschweißte Blindnahtproben (250x100x4,8 mm^3) aus einem hypereutektoiden Baustahl. Der Spannungszustand der Proben wurde anhand von Neutronendiffraktometrie (ND) am Instrument E3 am Reaktor BERII (Helmholzzentrum Berlin, HZB) charakterisiert. ND ist ein Referenzverfahren für die quantitative Bestimmung von elastischen Dehnungen in kristallinen Materialien, deren Gitter selbst der Messmaßstab ist. Die Auswertung zeigt hohe Längsspannungen mit lokalen Maxima in Größenordnung von 600 MPa, die von umgebenen Druckspannungszonen kompensiert werden. Zur Detektion der magnetischen Kleinststreufelder verwenden wir speziell designte GMR-Sensorik (GMR - Giant Magneto Resistance), die aufgrund der geringen Größe ihrer aktiven Sensorelemente hohe Ortsauflösung mit Sensitivität vereint. Die Visualisierung der Messergebnisse lässt eine klare magnetische Mikrostruktur der Schweißnähte erkennen, in der die Streufelder lateral in Größenordnung des Erdmagnetfeldes variieren (~50 µT). Wir zeigen durch einen Vergleich beider Messverfahren, dass lokale magnetische Streufeldmaxima in hohem Maße mit den Spannungsgradienten übereinstimmen. T2 - DGZfP-Jahrestagung CY - Koblenz, Germany DA - 22.05.2017 KW - WIG-Blindschweißnaht KW - GMR-Sensorik KW - Neutronendiffraktion KW - Eigenspannungen PY - 2017 AN - OPUS4-40370 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiesholler, L. M. A1 - Grauel, Bettina A1 - Himmelstoß, S. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Baeumner, A. J. A1 - Hirsch, T. T1 - Core-shell- Nd3+ - doped upconversion nanoparticles with enhanced luminescence properties for bioanalytical applications N2 - Upconversion nanoparticles are characterized by their ability to convert low energy near-infrared excitation in high energy emissions in the visible range. This is enabled by sequential absorption of two or more photons via energy transfer from the sensitizer lanthanide ion Yb3+ to an activator lanthanide ion, e.g. Er3+. Yb3+ sensitation has the advantage of 980 nm excitation achieved by commercial available low power cw laser modules. Nevertheless, for some applications, especially in aqueous media, which is predominantely in bioanalytical applications, there is the drawback of a local Absorption maximum of water at this wavelength. Sample heating can occur, and excitation power density is strongly distance dependent. To overcome this issue, the idea is to shift the excitation wavelength to 808 nm. This can be achieved by a tandem-excitation using Nd3+ and Yb3+ ions. Nd3+ gets excited by 808 nm irradiation and transfers the energy to Yb3+, which triggers the upconversion emission of the Er3+ ions. Therefore, it is mandatory to separate Nd3+ and Er3+ by core-shell architecture for reducing the energy backtransfer from Er3+ to Nd3+. To further enhance the upconversion luminescence an additional inert shell formed by the host material NaYF4 reduces the quenching effects caused by surface defects and dangling bonds. T2 - MRS Spring Meeting CY - Phoenix, Arizona, USA DA - 17-21. April KW - Core-shell KW - Upconversion KW - Nd3+ PY - 2017 AN - OPUS4-40035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sentker, Kathirn A1 - Yildirim, Arda A1 - Lippmann, M. A1 - Hoffmann, T. A1 - Seeck, O. A1 - Kityk, A. A1 - Schönhals, Andreas A1 - Huber, Patrick T1 - Fabrication of organic nanowires by melt infiltration of a discotic liquid crystal: A combined X-ray diffraction and optical birefringence study N2 - Optical polarimetry and angle dependent X-ray scattering in employed to study the structure of a discotic liquid crystal confined into nanochannels. The pore size dependence of the obtauned data are discussed in detail. T2 - DPG Spring Meeting 2017 CY - Dresden, Germany DA - 20.03.2017 KW - Discotic Liquid Crystals KW - Nanoconfinement PY - 2017 AN - OPUS4-39591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Genga, R. M. A1 - Cornish, L. A. A1 - Rokebrand, P. A1 - Glaser, D. A1 - Woydt, Mathias A1 - Janse van Vuuren, A. A1 - Polese, C. T1 - Microstructure and wear behavior of improved NbC cermets for (BS-1452) grey cast iron machining N2 - Tungsten carbide (WC) and cobalt (Co) based cermets are the most successful commercial cermets beacuse of the good combination of physical, mechanical and behavioral properties. Niobium carbide (NbC) has good mechanical and physical properties, such as high hardness, very high melting point and low density. SPS refined the NbC grains and increased the hardness, while substitution of Co with Ni improved the fracture toughness. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermets KW - Grey cast iron machining KW - Tungsten carbide (WC) KW - Niobium carbide (NbC) KW - Wear PY - 2017 AN - OPUS4-40603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisermann, René A1 - Rohwetter, Philipp A1 - Hicke, Konstantin T1 - Reducing sensitivity fading in C-OTDR by use of enhanced scattering fiber segments N2 - We have shown that for C-ODTR based DAS two UV-inscribed scattering segments within an optical fiber have a significant influence on the local sensitivity Fading characteristics. This method was experimental proven to be suitable for distributed dynamic strain measurement in a thermally unstable environment. Signal-to-noise ratio analyses for detecting a signal peak within the time-dependent spectra were performed. Results show an increase in SNR and additionally that the occurrence of total loss of sensitivity (SNR <1) could be decreased by a factor of six when compared to an untreated standard fiber. T2 - 25th International Conference on Optical Fiber Sensors CY - Jeju-City, Jeju, Republic of Korea DA - 24.04.2017 KW - Coherent Rayleigh OTDR KW - Distributed acoustic sensing KW - Distributed vibration sensing KW - Fiber sensors KW - Quasi-distributed sensing KW - Rayleigh scattering PY - 2017 AN - OPUS4-40643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Effect of carbon content on the microstructure and mechanical properties of NbC-Ni based cermets N2 - The aim of this work was to correlate the carbon content in NbC-Ni starting powders with the resulting microstructure, hardness and fracture toughness of Ni-bonded NbC cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Liquid phase sintering KW - Microstructure KW - Hardness KW - Carbon PY - 2017 AN - OPUS4-40647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Kupsch, Andreas A1 - Mueller, Bernd R. A1 - Lange, Axel T1 - X-ray refraction 2D and 3D techniques N2 - X-ray refraction techniques represent a very promising, yet not so wide-spread, set of X-ray techniques based on refraction effects. They allow determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with nanometric detectability. While they are limited by the X-ray absorption of the material under investigation, we demonstrate showcases of ceramics and composite materials, where understanding of microstructural features could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. T2 - ICTMS 2017 CY - Lund, Sweden DA - 26.06.2017 KW - X-ray refraction KW - Composites KW - Damage KW - Cracks KW - Cearmics PY - 2017 AN - OPUS4-41042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lange, Thorid A1 - Hielscher, Stefan A1 - Hidde, Gundula A1 - Beck, Uwe T1 - Mehr-Proben-Kleb-Vorrichtung (MPKV) zur Validierung der Klebfestigkeit N2 - Mit der Verfügbarkeit der Mehr-Proben-Prüfung von bis zu 8 Klebverbunden mittels CAT-Technologie (CAT: centrifugal adhesion testing) wurde im Forschungsvorhaben OKTETT ein durchgehendes Mehr-Proben-Konzept zur Validierung der Klebfestigkeit angewendet. Dazu gehört ein universeller Probenteller (Abb.1) zur Mehr-Proben-Handhabung bei Vorbehandlung, Lagerung, Transport und Klebung. Für das Mehr-Proben-Kleben wurde die MSB-Technologie (MSB: multiple sample bonding) unter Verwendung einer instrumentierten hydraulischen Mehr-Proben-Kleb-vorrichtung entwickelt. Damit kann der Klebandruck für bis zu 8 Prüfkörper über einen Drucksensor definiert eingestellt und die gesamte Vorrichtung beim Kleben Temperaturen von bis zu 180°C ausgesetzt werden. T2 - 12. Thementage Grenz- und Oberflächentechnik (ThGOT) und das 5. Kolloquium Dünne Schichten in der Optik CY - Zeulenroda, Gemany DA - 14.03.2017 KW - Zentrifugentechnologie KW - Mehr-Proben-Kleben (MSB) KW - Mehr-Proben-Prüfen (CAT) KW - Haftfestigkeit KW - Verbundfestigkeit PY - 2017 AN - OPUS4-41291 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piedada, F. M. A1 - Simöes, R. G. A1 - Bernardes, C.E.S. A1 - Joseph, A. A1 - Kraus, Werner A1 - Diogo, H. A1 - Emmerling, Franziska A1 - da Piedada, M. E. M. T1 - Polymorphism in Simvastatin: A Single Crystal X-ray Diffraction, Themodynamic, and MDSimulation Study N2 - Simvastatin is a prominent member of the statin family, a class of antilipidemic drugs widely used in the treatment of high plasma cholesterol levels, and thus in the prevention of atherosclerosis and cardiovascular diseases. Simvastatin is typically employed as a solid and it is well known that, in this case, the detection and characterization of polymorphism is of considerable importance. Polymorphs differ by their packing arrangements and also, occasionally, by the conformations of the molecules in the crystal lattice. These structural variations are normally reflected by differences in physical properties, such as solubility and dissolution rate in a given media, which may significantly affect the bioavailability of a drug. The lack of control of polymorphism can, therefore, play havoc with the safe use of a drug. T2 - COST Action CM1402 CY - Lincoln, United Kingdom DA - 26.06.2017 KW - Polymorphism KW - X-ry Diffraction PY - 2017 AN - OPUS4-41252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - New device for inert sub-critical crack growth: measurements in crystallized glasses N2 - Compared to its intrinsic strength, the practical strength of glasses is substantially lowered by microscopic flaws. Their sub critical growth from the surface is strongly affected by ambient humidity. A new device was designed to enable the observation of sub critical crack growth (SCCG) in vacuum and controlled atmosphere. It allows measurements in transparent and semi-transparent materials in double cantilever beam (DCB) geometry. The aim of the present work is to study the effect of crystals on crack growth. T2 - 12th International Symposium on Crystallization in Glasses and Liquids CY - Segovia, Spain DA - 10.09.2017 KW - Double cantilever beam KW - DCB KW - Crack intensity factor KW - Crack growth velocity KW - Glass KW - Glass ceramic PY - 2017 AN - OPUS4-41995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreier, Andy A1 - Jeschke, T. A1 - Petermann, K. A1 - Wosniok, Aleksander A1 - Krebber, Katerina T1 - Analytical model for mode-based insertion loss in ball-lensed coupling of graded-index silica and polymer fibres N2 - Analytical model for ball-lensed couplers to calculate the insertion loss for each optical mode. The basis for the calculation are commercial perfluorinated polymer optical (PFGI-POFs) and silica based fibres (SOFs). The modal power distribution for given misalignments are presented as well as the reflection-based losses at all optical interfaces. Additionally, the ball-lensed interconnection between PFGI-POF and SOF was theoretically demonstrated. T2 - POF 2017: 26th International Conference on Plastic Optical Fibres CY - Aveiro, Portugal DA - 13.09.2017 KW - Polymer optical fibre KW - Optical connector PY - 2017 AN - OPUS4-41974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kirner, Sabrina V. A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures on steel for tribological applications N2 - Laser-induced periodic surface structures (LIPSS) can be generated by irradiation of almost any material with linearly polarized laser beams, particularly when using ultrashort laser pulses. Within this work, different types of steel were irradiated at optimized conditions for the processing of large surface areas. For these nanostructured surfaces, the coefficient of friction (COF) using different lubricants was determined and the corresponding wear tracks were characterized by scanning electron microscopy (SEM). Our experiments provide a qualification of the tribologicalperformance of the fs-LIPSS on different steel surfaces, which are relevant for technical applications. T2 - International Conference on Laser Ablation (COLA) CY - Marseille, France DA - 3.09.2017 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Friction and wear KW - Steel PY - 2017 AN - OPUS4-42358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - LiNaBioFluid Laser-induced nanostructures as biomimetic model of fluid transport in the integument of animals N2 - Laser-induced Nanostructures as Biomimetic Model of Fluid Transport in the Integument of Animals”, aims on laser-fabrication of biomimetic surfaces with unique wetting properties, which are inspired by the hierarchical micro- and/or nano- structures of animal body surfaces. LiNaBioFluid is a Research and Innovation Action funded by the European Commissions’ Horizon 2020 - FET Open Programme, which supports early-stage research on any idea for a new technology (Grant Agreement no: 665337). It brings together 7 partners from 4 different countries and is strongly interdisciplinary combining renowned experts from the fields of zoology, physics, mechatronics, life sciences, materials sciences, laser-matter interaction, production technology, tribology, and biomimetics. www.laserbiofluid.eu/ T2 - Science Sets Sail CY - Baltic Sea DA - 2.08.2017 KW - Laser-induced periodic surface structures (LIPSS) KW - EU H2020 project KW - Biomimetics KW - Wetting KW - Tribology KW - Friction and wear KW - Laser ablation PY - 2017 AN - OPUS4-42359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Modersohn, W. T1 - Einfluss der Schweißnaht-Nachbehandlung auf die Korrosionsbeständigkeit von nichtrostenden Duplexstählen N2 - Der Duplexstahl 1.4062 (X2CrNiN22-2) hat sich im Bauwesen als Werkstoffalternative zu den nichtrostenden Austeniten etabliert. Die Korrosionsbeständigkeit von Schweißverbindungen wird, neben dem Grundwerkstoff, dem Schweißzusatzwerkstoff und dem Schweißverfahren, auch sehr stark von der Oberflächennachbehandlung der Schweißnaht beeinflusst. Je nach zukünftigem Anwendungsbereich und geforderter Optik sowie Korrosionsbeständigkeit wird der Schweißnahtbereich anschließend geschliffen, gebeizt, elektropoliert, oder gestrahlt, um die beim Schweißen entstehenden Zunderschicht zu entfernen. Gestrahlte Oberfläche sind in der industriellen Praxis häufig anzutreffen, da sie deutlich einfacher und kostengünstiger herzustellen sind als gebeizte oder elektropolierte Oberflächen. Die Auswahl des Strahlmittels bestimmt auch die Prozesskosten, wobei das Strahlen mit Korund effektiver als das Strahlen mit Glasperlen ist. In den letzten Jahren wurden bei nichtrostenden Stählen korrosionsanfällige Oberflächen beobachtet, wenn diese mit Korund geschliffen wurden. Daher wird nun auch beim Strahlen kritisch hinterfragt, ob das Strahlmittel die Korrosionsbeständigkeit verändert. Diese Fragestellung wird beantwortet indem geschliffene, gebeizte, mit Korund gestrahlte und mit Glasperlen gestrahlte Schweißverbindungen vergleichend untersucht werden. Die Ergebnisse der REM-Untersuchungen von den Strahlmitteln und den gestrahlten Oberflächen werden dazu mit den Ergebnissen verschiedener Korrosionsuntersuchungen (KorroPad-Indikatortest, Potentialmessungen und Bestimmung der kritischen Lochkorrosionspotentiale) korreliert und vorgestellt. T2 - Werkstoffwoche 2017 CY - Dresden, Germany DA - 27.09.2017 KW - Duplexstahl KW - Korrosion KW - Nichtrostender Stahl KW - Oberflächenbearbeitung KW - Schweißen KW - Strahlen PY - 2017 AN - OPUS4-42830 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin A1 - Reinemann, Steffi A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Einfluss von Korundschleifprozessen auf die Korrosionsbeständigkeit nichtrostender Stähle N2 - Das Poster stellt aktuelle Eregbnisse des AiF-Vorhabens 18823 N/1 zum Einfluss von Schleifprozessen auf die Korrosionsbeständigkeit nichtrostender Stähle vor. T2 - Jahrestagung 2017 der GfKORR CY - Frankfurt a. M., Germany DA - 07.11.2017 KW - Korrosion KW - Corrosion KW - Korundschleifen KW - Corundum grinding KW - Nichtrostende Stähle KW - Stainless Steels PY - 2017 AN - OPUS4-42773 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. T1 - Wärmebehandlung und Korrosionsbeständigkeit druckaufgestickter nichtrostender Stähle N2 - Gefüge und Eigenschaften nichtrostender Stählen werden maßgeblich von ihrer chemischen Zusammensetzung und der Wärmebehandlung bestimmt. Eine spezielle Werkstoffgruppe der austenitischen nichtrostenden Stähle enthält ca. 19 Gew.-% Mangan und 0,8 Gew.-% Stickstoff, um das austenitische Gefüge ohne das Legieren mit Nickel sicherzustellen. Die herausragenden mechanischen Eigenschaften dieser Werkstoffe (Rm von 900 2.000 MPa, A5 > 50 %, Av > 350 J) werden nach der Wärmebehandlung (Lösungsglühen und Abschrecken) durch gezielte Kaltverfestigung eingestellt. Das Lösungsglühen beseitigt vorhandene Kaltverfestigung und unerwünschte Ausscheidungsphasen (Cr2N, M23C6 und Sigma-Phase) und bewirkt die homogene Verteilung der Legierungselemente (insbesondere Stickstoff) im Austenit. Dies ist zur Erzielung der Korrosionsbeständigkeit von entscheidender Bedeutung. Im Poster werden systematische Untersuchungen zur Korrosionsbeständigkeit dieser vielversprechenden Werkstoffklasse vorgestellt und die Interaktion zwischen Legierungszusammensetzung, Wärmebehandlung, Gefüge und Korrosionsbeständigkeit dargestellt. Insbesondere der Einfluss von Warmauslagerungsversuchen nach dem Abschrecken wird dabei charakterisiert. Die vom Gefüge bedingten Veränderungen der Korrosionsbeständigkeit werden durch verschiedene Methoden (EPR, KorroPad, Lochkorrosionspotentiale) ermittelt und interpretiert. T2 - Werkstoffwoche 2017 CY - Dresden, Germany DA - 27.09.2017 KW - Wärmebehandlung KW - Korrosion KW - Nichtrostender Stahl KW - EPR KW - KorroPad KW - Sensibilisierung KW - Stickstoff KW - ThermoCalc PY - 2017 AN - OPUS4-42831 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Harnisch, K. A1 - Rosemann, Paul A1 - Halle, T. T1 - Gefüge- und Phasenanalyse biokompatibler Co-Cr-Mo-Legierung N2 - Co-Cr-Mo-Werkstoffe sind im Bereich der Biomaterialien weit verbreitet und werden für Endoprothesen eingesetzt. Deren Lebensdauer ist jedoch durch tribologische und korrosive Dauerbelastung begrenzt. Um die Anzahl operativer Eingriffe am Patienten zu minimieren, ist es notwendig den Werkstoff hinsichtlich Verschleißbeständigkeit und Korrosionsbeständigkeit zu optimieren. Hierfür ist ein umfassendes Verständnis der legierungsabhängigen Phasenbildung und –entwicklung während Herstellung und Wärmebehandlung notwendig. An einer speziellen Co-Cr-Mo Legierung werden verschiedene Untersuchungen zur Gefügecharakterisierung durchgeführt. Dabei werden die auftretenden Phasen thermodynamisch berechnet, mittels XRD nachgewiesen, die Phasenmorphologie durch EBSD analysiert, die Elementverteilung durch EDX-Analyse ermittelt und die Ergebnisse durch Farbätzen verifiziert. Das Ziel der Untersuchungen ist es, Optimierungspotentiale bei Herstellung und Wärmebehandlung zu identifizieren. T2 - Werkstoffwoche 2017 CY - Dresden, Germany DA - 27.09.2017 DA - 29.09.2017 KW - CoCrMo KW - Gefüge KW - ThermoCalc KW - EBSD KW - Farbätzen PY - 2017 AN - OPUS4-42832 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, C. A1 - Rosemann, Paul T1 - Wärmebehandlung und Korrosionsbeständigkeit druckaufgestickter nichtrostender Stähle N2 - Gefüge und Eigenschaften nichtrostender Stählen werden maßgeblich von ihrer chemischen Zusammensetzung und der Wärmebehandlung bestimmt. Eine spezielle Werkstoffgruppe der austenitischen nichtrostenden Stähle enthält ca. 19 Gew.-% Mangan und 0,8 Gew.-% Stickstoff, um das austenitische Gefüge ohne das Legieren mit Nickel sicherzustellen. Die herausragenden mechanischen Eigenschaften dieser Werkstoffe (Rm von 900 2.000 MPa, A5 > 50 %, Av > 350 J) werden nach der Wärmebehandlung (Lösungsglühen und Abschrecken) durch gezielte Kaltverfestigung eingestellt. Das Lösungsglühen beseitigt vorhandene Kaltverfestigung und unerwünschte Ausscheidungsphasen (Cr2N, M23C6 und Sigma-Phase) und bewirkt die homogene Verteilung der Legierungselemente (insbesondere Stickstoff) im Austenit. Dies ist zur Erzielung der Korrosionsbeständigkeit von entscheidender Bedeutung. Im Poster werden systematische Untersuchungen zur Korrosionsbeständigkeit dieser vielversprechenden Werkstoffklasse vorgestellt und die Interaktion zwischen Legierungszusammensetzung, Wärmebehandlung, Gefüge und Korrosionsbeständigkeit dargestellt. Die vom Gefüge bedingten Veränderungen der Korrosionsbeständigkeit werden durch verschiedene Methoden ermittelt und interpretiert. T2 - GfKORR-Jahrestagung 2017 CY - Frankfurt a. M., Germany DA - 07.11.2017 KW - Wärmebehandlung KW - Korrosion KW - Nichtrostender Stahl KW - EPR KW - KorroPad KW - Sensibilisierung KW - Stickstoff KW - ThermoCalc PY - 2017 AN - OPUS4-42833 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul T1 - Sensibilisierungsverhalten vom nichtrostenden Lean-Duplexstahl 1.4062 N2 - Der nichtrostende Lean-Duplexstahl 1.4062 (X2CrNiN22-2) verbindet die hohe Festigkeit des Ferrits mit der Duktilität und Zähigkeit des Austenits in einem zweiphasigen Gefüge mit sehr hoher Korrosionsbeständigkeit. Die höchste Korrosionsbeständigkeit wird erreicht, wenn das ferritisch-austenitische Gefüge frei von weiteren Sekundärphasen ist. Dies wird durch ein gezieltes Lösungsglühen bei 1050 °C mit anschließender Abschreckung in Wasser erreicht. Durch thermische Beeinflussung (z.B. beim Schweißen) können Sekundärphasen ausgeschieden und die Korrosionsbeständigkeit des Werkstoffs gesenkt werden. Dies wurde durch eine isotherme Warmauslagerung bei 500 °C bis 900 °C für 0,1 h bis zu 72 h simuliert. Die Veränderung der Korrosionsbeständigkeit wurde mit dem DL-EPR-Verfahren und durch die angepasste KorroPad-Prüfung ermittelt. Die ermittelten Anfälligkeitsbereiche wurden miteinander Verglichen und in zwei Sensibilisierungsschaubildern zusammengefasst. T2 - GfKORR-Jahrestagung CY - Frankfurt a. M., Germany DA - 07.11.2017 KW - Duplexstahl KW - Nichtrostender Stahl KW - Wärmebehandlung KW - Korrosion KW - EPR KW - KorroPad KW - Sensibilisierung PY - 2017 AN - OPUS4-42834 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sahre, Mario A1 - Mitzkus, Anja A1 - Beck, Uwe A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Basedau, Frank A1 - Hofmann, Detlef A1 - Gong, Xin A1 - Schukar, Vivien T1 - Electroplated magnetostrictive actuator layer enabling the external diagnosis of strain sensors N2 - Embedded fibre-opticaloptical strain sensors are suitable for structural health monitoring. In order to validate long-term performance (e.g.sensors integrated in airplane wings or wind power turbine blades) an external diagnostics is required. A strain-detecting region of the optical fibre, the fibre Bragg grating (FBG, is encased by a magnetostrictive layer system serving as actuator. For the validation of the correct sensor function, an external magnetic field introduces mechanical strain resulting in a defined shift of the Bragg wavelength. The layer system is realized by acombined PVD /ECD process optimized regarding magnetostrictive and mechanical properties. The long -term stability of layer adhesion and actuator function has been verified. T2 - 12. Thementage Grenz- und Oberflächentechnik (ThGOT) und das 5. Kolloquium Dünne Schichten in der Optik CY - Zeulenroda, Germany DA - 14.03.2017 KW - Magnetostrictive actuator layer KW - PVD /ECD process KW - Magnetostrictive layer KW - Strain sensors PY - 2017 AN - OPUS4-41800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dörfel, Ilona A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Schulz, Wencke A1 - Saliwan Neumann, Romeo A1 - Hesse, Rene A1 - Meyer, Christian A1 - Kranzmann, Axel T1 - Microstructure of alumina coating on steel P92 after thermal cycling N2 - 1. Introduction Alumina coatings are one possibility to increase the corrosion resistance, lifetime and application range of thermally loaded steel components, e.g. in modern power plants where the use of the Oxy-fuel technology corrosive fuel gas (H2O-CO2-O2-SO2 at 650 °C) affects the steel parts. In previous investigations the efficacy of protective alumina coatings on steel P 92 under those conditions was demonstrated. A shutdown and re-start of power plants or parts of them causes thermal stresses of the components which can cause detrimental effects like microstructural changes in the steel itself, changes in its oxidation behavior, delamination or microstructural changes in the coating. All those effects can lead to failure of the components, resulting in lifetime reduction. 2. Objectives As a first step, we concentrate on the influence of thermal cycling tests and observe the impact on the microstructure of the coating and the interface in laboratory air. These investigations will help understanding the processes which occur, show directions of potentially necessary changes of the coating due to improved thermal stress behaviour. 3. Materials & methods P 92 is a ferritic-martensitic steel, containing 9% Cr which forms protective Cr-oxide-rich scales in dry environments and non-protective ones in water-containing environments. Coupons of P 92, having ground surfaces, were dip-coated via a sol-gel process and subjected to thermal cycling for 500 h (1000 cycles) in laboratory air in a temperature range between room temperature and 660° C. The resulting mass loss was determined by weighing. Samples for TEM investigations were produced as cross sections normal to the sample surface by FIB preparation (Quanta 3D, (FEI)). The TEM/STEM investigations were performed using a JEM2200FS (JEOL) operated at 200 kV. The microstructure of the coating and the interface after cycling tests was characterized via TEM, HREM, and STEM images, electron diffraction as well as EDX and EFTEM methods. 4. Results At steep edges in the surface profile the coating was imperfect and cracks have formed during the thermal cycling. Flat surface regions are well-covered. The whole interface region between the steel and the coating shows a dense Cr-oxide-rich zone, which can form protective regions in case of local failure. The Cr-oxide zone is followed by a region of mixed oxides, containing Cr, Mn, Fe, and Al in variable composition, to which a porous δ-Al2O3 zone is joined. 5. Conclusions • Alumina coatings promote the formation of dense, Cr-rich zones at the interface, which makes the system self-healing. • These zones are stable during thermal stresses, even in regions with cracked coatings. • They cause reduction of outward diffusion and mass loss during thermal cycling. T2 - MC2017 CY - Lausanne, Switzerland DA - 21.08.2017 KW - Coating KW - Thermal cycling KW - TEM PY - 2017 UR - https://www.mc2017.ch/general-information/downloads/ AN - OPUS4-41724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - The use of time-of-flight secondary ion mass spectrometry for the investigation of hydrogen-induced effects in austenitic steel AISI 304L N2 - In the course of the energy transformation from fossil fuels to renewable energy sources, the use of hydrogen as fuel and energy storage can play a key role. This presents new challenges to industry and scientific community alike. The storage and transport of hydrogen, which is nowadays mainly realised by austenitic stainless steels, remains problematic. That is due to the degradation of mechanical properties and the possibility of phase transformation by hydrogen diffusion and accumulation. Development of materials and technologies requires a fundamental understanding of these degradation processes. Therefore, studying the behaviour of hydrogen in austenitic steel contributes to an understanding of the damage processes which is crucial for both life assessment and safe use of components in industry and transportation. As one of the few tools that is capable of depicting the distribution of hydrogen in steels, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was conducted after electrochemical charging. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed. Gathered data of chemical composition and topography was treated employing data fusion, thus creating a comprehensive portrait of hydrogen-induced effects in the austenite grade AISI 304L. Specimens were electrochemically charged with deuterium instead of hydrogen. This arises from the difficulties to distinguish between artificially charged hydrogen and traces existing in the material or the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw conclusions from the experiments. T2 - SIMS21 CY - Krakau, Poland DA - 11.09.2017 KW - Austenitic stainless steel KW - ToF-SIMS KW - Hydrogen PY - 2017 AN - OPUS4-42315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griepentrog, Michael A1 - Reinstädt, Philipp A1 - Wollschläger, Nicole A1 - Zeigmeister, U. T1 - Size effects in electrodeposited Ni-coatings N2 - Polycrystalline Ni materials with grain sizes less than 100 nm (nano crystalline NC) and with grain sizes in the micrometer range (micro crystalline MC) in form of thin films have become important in many technologies due to their improved physical, chemical and mechanical properties. Usual the mechanical properties of such coatings are described by a Hardness value and a Young´s modulus measured by Instrumented Indentation Testing (IIT).The behavior of such coatings during indentation test is influenced by different size effects having their representative length scale – grain size, coating thickness, length that characterizes the depth dependence of the hardness (Indentation Size Effect ISE). To estimate realistic values for the intrinsic coating Hardness and Young´s modulus all size effects have to be considered. For this work thin nano crystalline Ni – coatings (average grain size 30 nm) with thickness from 1 μm to 5 μm were electrodeposited on brass substrates. Indentation tests in the continuous stiffness measurement (CSM) mode were provided on as prepared Ni – coatings using a G200 Nanoindentation system (Fa. Keysight). For estimation of the intrinsic hardness of the coatings from composite hardness values calculated from the measured force –displacement curve using the Oliver & Pharr method, the model described by Z.S. Ma [1] was used. It was found that the experimental data can be well described by the model. The fitted values for the intrinsic hardness and the fitting parameters will be given. The different values of intrinsic hardness and of length characterizing depth dependence of the hardness for different coating thickness are discussed as results of changes in the coating structure because of changes in deposition parameters. [1] Z.S. Ma, Y.C. Zhou, S.G. Long, C. Lu: On the intrinsic hardness of a metallic film/substrate system: Indentation size and substrate effects. International Journal of Plasticity 34 (2012) 1-11. This work is supported by European Metrology Program for Innovation and Research (EMPIR) (JRP 14IND03 Strength – ABLE) T2 - Conference: Nanomechanical Testing in Materials Research and Development CY - Dubrovnik, Croatia DA - 01.10.2017 KW - Size effect KW - Substrate effect KW - Electrodeposited Ni - coatings KW - Instrumented indentation testing PY - 2017 AN - OPUS4-42664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stajanca, Pavol A1 - Pötschke, Samuel A1 - Krebber, Katerina T1 - Post-fabrication cladding doping of commercial PMMA polymer optical fiber N2 - Possibility of post-fabrication doping of commercial PMMA fibers using well-known solution doping technique is presented. The cladding of 1 mm PMMA fiber is doped with Rhodamine B with the help of methanol-mediated diffusion of the dye molecules into the fiber material. Doping of the fiber core was not possible even at extended doping times. The proposed method represents rather simple and cheap way for preparing custom cladding-doped POFs with high flexibility of dopant choice and fiber length. Produced cladding-doped fibers have potential for various sensing or lighting applications. T2 - 26th International Conference on Plastic Optical Fibres (POF 2017) CY - Aveiro, Portugal DA - 13.09.2017 KW - Polymer optical fibers KW - Fluorescent dyes KW - Solution doping KW - Polymethyl methacrylate PY - 2017 AN - OPUS4-42321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena A1 - Wachtendorf, Volker T1 - Self-healing silicone rubber for F-POF partial discharge sensors in HV cable accessories N2 - To avoid a catastrophic failure of insulation in high-voltage (HV) applications, a monitoring of partial discharges (PD) is necessary. Fluorescently labelled polymer optical fibres (F-POF) offer an electrically passive method for PD detection in HV facilities. F-POF could be embedded into HV cable insulation material, which are usually made of silicone rubber. Due to the difficult accessibility of HV cable accessories, a self-healing silicone rubber, based on incorporated capsules, with prolonged service life after PD detection represents an attractive material design for HV electrical insulation. T2 - 26th International Conference on Plastic Optical Fibres CY - Aveiro, Portugal DA - 13.09.2017 KW - Fluorescent polymer optical fibres KW - Partial discharge detection KW - High voltage cable accessories KW - Self-healing KW - Silicone rubber PY - 2017 AN - OPUS4-42511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - The impact of methanogenic Archaea on material, environment and health N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures (Fig. 1). Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g.Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to analyse two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation/transformation. T2 - IBRG-Tagung CY - Berlin, Germany DA - 26.04.17 KW - Biofilm KW - Corrosion KW - Implants KW - Methanogens KW - Archaea KW - Anaerob PY - 2017 AN - OPUS4-42492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Harsha, A. P. A1 - Gradt, Thomas T1 - On the sliding behavior of PAEK composites in vacuum environment N2 - The tribological behavior of PAEK composites were investigated in air and vacuum environment. Results indicate that the tribological performance of these compounds depends on material compositions, fiber orientation as well as test conditions. In vacuum, very low friction and wear coefficient were obtained at low sliding speed while severe wear occurred at high speed. T2 - The 6th World Tribology Congress - WTC 2017 CY - Beijing, China DA - 17.09.2017 KW - PAEK KW - Sliding performances KW - Vacuum PY - 2017 AN - OPUS4-42447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Monks, Melissa-Jane A1 - Ritter, B. A1 - Würth, Christian A1 - Krahl, T. A1 - Kemnitz, E. A1 - Resch-Genger, Ute T1 - Rare earth strontium fluoride nanocrystals prepared via sol gel synthesis - Spectroscopic study of upconversion luminescence properties N2 - Obtaining high quality upconverting nanocrystals with only little crystal defects and hence, a high luminescence, affords a reliable synthesis route. Only this guarantees the reproducibility of the material and its spectroscopic properties required for future application. The fluorolytic sol-gel synthesis appears to be a convenient attempt, as this is a method with only few steps influencing the material properties, which can be well controlled. Also creating bright upconverting nanocrystals requires a profound understanding of the interplay of photophysical processes like multiphoton absorption, radiative and non-radiative pathways, and energy transfer in the material. Based on steady-state and time resolved luminescence measurements at different excitation power densities, the influence of the lanthanide doping ratio and synthesis parameters such as the annealing process on SrF2-nanocrystals obtained via the fluorolytic sol-gel synthesis was systematically studied. T2 - GDCh Wissenschaftsforum Chemie CY - Berlin, Germany DA - 10.09.2017 KW - Upconversion KW - Strontiumfluoride KW - Annealing study KW - Doping study KW - Luminescence PY - 2017 AN - OPUS4-42944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agea Blanco, Boris A1 - Reinsch, Stefan A1 - Meyer, Christian A1 - Müller, Ralf A1 - Günster, Jens T1 - Quantification of sand erosion on PV solar glass N2 - Solar glass in arid and semi-arid regions is exposed to sand storms which can affect the durability of PV modules. Related erosion processes have been extensively studied but the results given are difficult to compare due to being obtained by different variables like particle speed and sand mass. This study correlates the damage of solar panels to the cumulative impact energy as a global parameter. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Glass KW - Sandblasting KW - Erosion KW - Sandstorm KW - Transmittance KW - Roughness PY - 2017 AN - OPUS4-42856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breitfeld, Steffen A1 - Scholz, Gudrun A1 - Emmerling, Franziska A1 - Kemnitz, Erhard T1 - High energy ball milling of a new representative of coordination polymers without organofluorine linkers N2 - Metal organic frameworks and coordination polymers play an important role in different fields of applications. Moreover, particularly fluorinated metal-organic frameworks (FMOFs) are in the focus of interest during the last years. In most cases, fluorine is implemented using perfluorinated organic linkers at the synthesis, usually performed by solvothermal synthesis. However, only few examples are known so far where fluorine is coordinated directly to the metal cation. Recently, we reported about mechanochemical syntheses and characterization of fluorine-containing coordination polymers of alkaline earth metals by milling M(OH) (M: Ca, Sr, Ba) with fluorinated benzene dicarboxylic acids 2 and we reported about mechanochemical syntheses of alkaline earth metal fluorides with ammonium fluoride. Now we are reporting about a combination of both synthesis routes. That is the first mechanochemical synthesis of coordination polymers where fluorine is coordinated directly to the metal cation. T2 - Konferenz CY - Berlin, Germany DA - 30.11.2017 KW - Metal organic frameworks KW - Coordination polymer KW - Mechanochemical syntheses KW - Direct fluorine-metal bond KW - Alkaline earth metal PY - 2017 AN - OPUS4-46898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Thompson, Cyrus T1 - Crack healing in glasses N2 - Fundamental understanding of crack healing in glassy crystalline materials is very important for many applications, especially for solid oxide fuel cells (SOFC) sealants since cracks caused by mechanical stress or thermal cycling still remain a substantial bottleneck in developing durable SOFC. Previous studies on soda lime silicate glass published by Singh showed that crack healing is driven by viscous flow. There he postulated that the healing progress is proportional to time, t, and the inverse viscosity. This finding would allow to present for a given glass data of crack healing measured at different temperatures in a master curve, if the healing progress is plotted versus t/η. Such master curves would be a helpful tool in understanding crack healing kinetics. To verify the applicability of such master curves, crack healing in non-crystallizing soda-lime-silicate (NCS) and sodium-borosilicate glasses (NBS) was studied. Cracks were generated by Vickers indention and healed isothermally at different temperatures. Crack healing progress was monitored by optical and electron microscopy. The results show that the above mentioned proportionalities applies to the two glasses. In both cases the afore developed master curve could be obtained. T2 - 91. Jahrestagung HVG-DGG CY - Weimar, Germany DA - 29.05.2017 KW - Glass KW - Crack healing PY - 2017 AN - OPUS4-41347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Thompson, Cyrus T1 - Crack healing in glass matrix composites N2 - Partially crystalline glasses are predominantly used as solid oxide fuel cell (SOFC) sealants due to their superior long term durability. However, cracks caused by thermal cycling still remain a substantial bottleneck in developing durable SOFC sealants inasmuch as, in contrast to crystal free glasses, large crystal volume fractions can retard healing. Hence, the basic understanding of crack healing in glassy crystalline materials and the effects of micro structure are important for finding optimum micro structures for both, durability and crack healing. For studying these effects, several model glass matrix composites (GMC), for which simultaneous crystal growth and crack healing can be excluded, have been synthesized. Sodium calcium silicate glass – zirconia GMC turned out to provide sufficiently homogeneous, dense and durable model GMC for our studies. The microstructure of this GMC shows large crystal free glassy regions embedded in network of finely dispersed ZrO2 nanoscale crystals. Whereas the glassy regions allow easy local crack healing, the network of dispersed crystals increases the effective viscosity on a global scale. This effect substantially retards crack broadening during later healing stages, which often ends up in large pores. Therefore, this type of microstructure seems to be an interesting candidate for crack healing optimized sealants. T2 - 91. Jahrestagung HVG-DGG CY - Weimar, Germany DA - 29.05.2017 KW - Glass KW - Crack healing KW - Glass ceramic KW - Composite PY - 2017 AN - OPUS4-41348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldmann, Titus A1 - Fedelich, Bernard A1 - Epishin, Alexander A1 - Charmi, Amir T1 - Simulation of creep of a single crystal superalloy considering the transport of dislocations N2 - The investigation of creep behavior of the single crystal superalloy CMSX-4 at 1288°C is important for the understanding of deformations mechanisms under hot isostatic pressing (HIP). This treatment is used to increase the lifetime of single crystal superalloys by reducing the number of cavities. The understanding of the internal processes during this treatment is still limited due to the material being not single-phase at room temperature, the extreme conditions of HIP and the complexity of the material. The result of predicting the pore shrinkage rate using classical crystal plasticity was not satisfying. A more complex model has been implemented, now taking the heterogeneity of dislocation sources into account. By introducing a dislocation density, one can describe the transport, nucleation and interaction of dislocations. T2 - ICMM5 CY - Rome, Italy DA - 14.6.2017 KW - Einkristalllegierung KW - Kristallplastizität PY - 2017 AN - OPUS4-42036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nguyen, Thi Yen A1 - Bernardes, C. E. S. A1 - Minas da Piedade, M. E. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Guided crystallization: The influence of solvent and concentration N2 - Theoretical and experimental studies indicate that crystal nucleation can take more complex pathways than expected on the ground of the classical nucleation theory. A direct in situ observation of the different pathways of nucleation from solution is challenging since the paths can be influenced by heterogeneous nucleation sites, such as container walls. The custom-made acoustic levitator using in these experiments regulates the influence that solid surfaces, temperature, and humidity have on the crystallization process. The investigations of the crystallization process of paracetamol were performed with in situ analytical techniques and theoretical simulations to gain a comprehensive insight into processes, occurring intermediates, and required reaction conditions. The targeted choice of the solvent and the concentration enabled the guidance of the pathways, therefore, resulting in the isolation of one desired crystalline structure. T2 - Annual COST meeting CY - Lincoln, United Kingdom DA - 25.06.2017 KW - Crystallization KW - Polymorphism KW - Molecular dynamic simulation KW - Pair distribution function analysis KW - XRD PY - 2017 AN - OPUS4-41111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Castro, R. A. E. A1 - Cortesao, A. M. A1 - Maria, T. M. R. A1 - Silva, M. R. A1 - Emmerling, Franziska A1 - Canotilho, J. A1 - Eusebio, M. E. S. T1 - New cocrystals of bexarotene with pyridinecarboxamide isomers sustained by the acid∙∙∙aromatic nitrogen supramolecular heterosynthon N2 - Pharmaceutical cocrystals are homogenous crystalline structures made up of two or more components in a definite stoichiometric ratio, where at least one of the components in the crystal lattice is an active pharmaceutical ingredient (API).1 Pharmaceutical cocrystals have opened the opportunity for engineering solid-state forms designed to have tailored properties to enhance drug product bioavailability and stability, as well a enhance processability of the solid material inputs in drug product manufacture. In this work the cocrystallization of bexarotene, an approved API by the U.S. Food and Drug Administration that belongs to Biopharmaceutics Classification System Class II (low solubility–high permeability), with pyridine carboxamide isomers (picolinamide, nicotinamide and isonicotinamide) was successfully undertaken. The synthesis was achieved by liquid assisted grinding (LAG) and the solids obtained were characterized by differential scanning calorimetry (DSC), infrared spectroscopy (FTIR-ATR), powder X-ray diffraction (XRPD), single crystal X-ray diffraction (SXD), and polarized light thermomicroscopy (PLTM). For bexarotene: picolinamide and bexarotene:isonicotinamide, 1:1 cocrystals were obtained directly from milling. SXD data of bexarotene:isonicotinamide cocrystal reveal acid∙∙∙aromatic nitrogen supramolecular heterosynthon and that the homosynthon amide∙∙∙amide in isonicotinamide is preserved. The bexarotene:nicotinamide mixtures prepared by ball milling give rise to simple binary solid–liquid phase diagram with an eutectic point, well described by the Schröder-van Laar equation. Melt crystallization of the 1:1 mixture gives rise to a cocrystal for which a complex phase behaviour is observed. T2 - 6th Meeting IAPC CY - Zagreb, Croatia DA - 04.09.2017 KW - Crystalline structure KW - Bexarotene KW - Powder X-ray diffraction KW - Single crystal X-ray diffraction KW - Infrared spectroscopy PY - 2017 AN - OPUS4-41063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosignuolo, F. A1 - Chaves Spoglianti de Souza, Roberto A1 - Andreini, M. A1 - La Mendola, S. A1 - Knaust, Christian T1 - A comparison between empirical models and FDS simulation to predict the ceiling gas temperature distribution in a tunnel fire N2 - A comparison between the results obtained from a Computational Fluid Dynamic (CFD) simulation and from the application of an empirical formula for determining the temperature distribution inside a tunnel in case of fire is presented. The temperature is measured and calculated at different distances from the location of the fire and at different time intervals. The fire considered varies with time following a time-heat release rate curve which has a parabolic growing phase, a constant period and a linear decay. The comparison reveals differences in the results. The temperatures calculated with the empirical formula resulted higher than the temperatures obtained by means of the CFD simulation. A list of possible reasons for this limited correspondence is also presented and commented. A proposal for further studies to better define the limitations of both the procedures and to define the influence of each parameter involved is finally presented. T2 - World Tunnel Congress 2017 – Surface challenges – Underground solutions CY - Bergen, Norway DA - 09.06.2017 KW - CFD KW - Fire KW - Tunnel KW - Design Fire PY - 2017 AN - OPUS4-40655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - New device for inert crack growth measurements in ultra-strong glasses N2 - The practical strength of glasses under ambient conditions is substantially lower compared to its intrinsic strength because of sub-critical crack growth (SCCG) from microscopic flaws. While SCCG is related to the humidity of the ambient atmosphere, leading to stress corrosion phenomena, the detailed kinetics are still not fully understood. To get better insight to the contribution of water on the crack-tip, highly water bearing glasses will be investigated by a new device for inert SCCG-measurements using double cantilever beam (DCB) geometry specimens. This device was designed to investigate the stress intensity factor in modus I and crack velocity in vacuum, but different atmospheres can also be introduced. For validation of the new device, first experiments were performed on microscope slides as well as on a soda-lime silicate and a borosilicate crown glass. The results achieved will be presented in comparison to the published results of Wiederhorn. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Double cantilever beam KW - DCB KW - Crack intensity factor KW - Crack growth velocity KW - Glass PY - 2017 AN - OPUS4-40680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frenzel, Florian A1 - Würth, Christian A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Power dependent optical properties of hexagonal β-NaYF4: x % Er3+, 20 % Yb3+ core/ core-shell upconversion nanoparticles in cyclohexane and water N2 - Lanthanide doped photon upconverting nanophosphors (UCNPs) have the unique capability to produce narrow band, multi-color emission in the UV/vis/NIR upon multiphotonic absorption of infrared light, which makes them promising reporters for diagnostic, bioanalytical, and biological applications. This minimizes background signals, which normally occur due to autofluorescence from auxochromes, in biological matrices and enables deep penetration depths in biological applications. Moreover, UCNPs show long luminescence lifetimes in the μs range favorable for time gated emission in conjunction with a high photostability and chemical inertness and they do not blink. One of the most efficient upconversion (UC) phosphors for conversion of 976 nm to 655 nm and 545 nm light presents the hexagonal NaYF4-host crystal doped with 20 % Yb3+ used as sensitizer to absorb infrared light and 2 % Er3+ acting as activator mainly responsible for light emission. The high transparency in the relevant spectral windows of this host together with its low phonon frequencies ensure relatively high luminescence efficiencies. Although UCNPs are ideal candidates for many chemical and biological sensing and imaging applications, compared to other well-known chromophores like organic dyes or QDs, they suffer from a comparatively low brightness due to the low absorption cross sections of the parity forbidden f-f-transitions and low photoluminescence quantum yields (QYUC) particularly in the case of small nanoparticles with sizes of < 50 nm. The rational design of more efficient UCNPs requires an improved understanding of the nonradiative decay pathways in these materials that are influenced by particle architecture including dopant ion concentration and homogeneity of dopant distribution within UCNPs, size/surface-to-volume ratio, surface chemistry, and microenvironment. A promising approach to overcome the low efficiency of UCNPs is to use plasmonic interactions between a noble metal (Ag or Au) structure in the proximity of UCNPs and the incident light. This interaction leads to a modification of the spectroscopic properties due to local field enhancements and can involve an increase of the photoluminescence. In this respect, we study the interactions of UCNPs with metal structures (clusters and shells) by varying shape and size. Here, first results derived from integrating sphere spectroscopy and time-resolved fluorescence measurements are presented. T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Upconversion KW - Nanoparticle KW - Flourescence KW - Core-shell architecture KW - NIR KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - Er(III) KW - Yb(III) KW - Single particle spectroscopy PY - 2017 AN - OPUS4-41172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dhamo, Lorena A1 - Würth, Christian A1 - Raevskaya, A. E. A1 - Stroyuk, O. L. A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Resch-Genger, Ute T1 - Syntheses and characterization of 2-4nm AgInS2/ZnS quantum dots N2 - Ternary semiconductors Quantum Dots (t-QDs) like AgInS (AIS) QDs are interesting alternatives to Cd-based QDs for applications as optical active materials in light-emitting diodes (LEDs), solar concentrators and solar cells as well as as biodiagnostic tools, respectively. AIS QDs exhibit broad photoluminescence (PL) spectra in the visible and near infrared, which are tunable by size and chemical composition (ratio of components or doping). In order to enhance the PL quantum yield (PL QY or Fpl) and prevent material deterioration and oxidation, these QDs are covered by ZnS shell. Here we show a spectroscopic study of differently colored AIS QDs synthesized in water, evaluating their PL properties, their PL QY and their PL decay. The simple aqueous synthesis that avoids further ligand exchange steps for bioanalytical applications, the tunable emission color, the high PL QY, the high absorption coefficients and the long lifetime make these t-QDs promising Cd-free materials as biodiagnostic tools or optical active materials. T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Flourescence KW - Synthesis KW - Spectral multiplexing KW - Ternary quantum dot PY - 2017 AN - OPUS4-41173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sentker, K. A1 - Yildirim, Arda A1 - Zantop, A. A1 - Lippmann, M. A1 - Hofmann, T. A1 - Seeck, O. A1 - Kityck, A. A1 - Mazza, M. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Characterization of the thermotropic phase behavior and microscopic structure of a confined discotic liquid crystal N2 - Discotic liquid crystals (DLC) filled into cylindrical nanopores exhibit a liquid crystalline phase with their molecules arranged in hexagonal columns. The columns orient perpendicular (radially) or parallel (axially) with respect to the pore axis depending on surface anchoring conditions and pore size. Axially oriented columns enable the fabrication of organic nanowires utilizing the high conductivity in the stacking direction due to overlapping π-electrons. This leads to interesting applications in e.g. organic semiconductorbased devices. The molecular ordering of the liquid crystalline columns can be probed by temperature dependent optical retardation measurements supplemented by X-ray diffraction sensitive to the translational order. We investigated the DLC 2, 3, 6, 7, 10, 11 - hexakis [hexyloxy] triphenylene (HAT6) embedded in nanoporous alumina and silica membranes as function of the pore diameter (12 nm - 180 nm). Due to their hydrophilic nature porous membranes enforce face-on anchoring leading to a radial orientation. To obtain edge-on anchoring conditions, and thus favoring axial orientation, the silica membrane surface is chemically modified. The optical retardation measurements show that the columns orient radially in these membranes independent of the anchoring conditions. Interestingly, a quantized phase transition of each molecular layer is found indicated by a distinct increase of the optical orientation. Additionally, an axial orientation of HAT6 filled into alumina membranes with a pore diameter of 25 nm is achieved. A Landau-de Gennes ansatz semi-quantitatively describes the phase transition behavior observed. X-ray diffraction experiments performed at the 3rd generation synchrotron radiation source PETRA III at DESY giving detailed information about the translational order support these findings. Summarizing, this study shows the existence of a phase transition in the molecular range as well as the suitability of the membrane with 25 nm pores as a template for preparing organic nanowires. T2 - Liquids 2017 – 10th Liquid Matter Conference CY - Ljubljana, Slovenia DA - 17.07.2017 KW - Discotic Liquid Crystals PY - 2017 AN - OPUS4-41180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weigert, Florian A1 - Guhrenz, C. A1 - Strelow, C. A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Mews, A. A1 - Resch-Genger, Ute T1 - Probing the bright and dark fraction of core-shell CdSe nanocrystals with single particle spectroscopy N2 - "The optical properties of semiconductor nanocrystals (SCNC) are controlled by constituent material, particle size, and surface chemistry, specifically the number of dangling bonds favoring nonradiative deactivation. This can lead to a distribution of photoluminescence Quantum yields (PL QY) amongst the SCNC particles, i.e., mixtures of “bright” and “grey” or “dark” SCNCs. Particularly the number of absorbing, yet not emitting particles can have a significant effect on the PL quantum yield obtained in ensemble measurements, leading to ist underestimation. The “dark fraction” is not assessable in common ensemble measurements; it can be probed only on a single particle level using a confocal laser scanning microscope coupled with an AFM. Such a setup was used to study core‐shell CdSe SCNCs with different shells and surface chemistries. Special emphasis was dedicated to correlate brightness, blinking, dark fraction, and decay kinetics of the single SCNCs with the ensemble PL QY and the PL decay kinetics. The results of this study can help to identify new synthetic routes and surface modifications to colloidally and photochemically stable SCNCs with a PL QY of close to unity." T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Flourescence KW - CdSe KW - Shell KW - Surface chemistry KW - Single particle spectroscopy PY - 2017 AN - OPUS4-41192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Makris, Ruben A1 - Bronsert, Jeffrey A1 - Hille, Falk A1 - Kirschberger, D. A1 - Sowietzki, D. T1 - Crack Luminescence as innovative method for detection of fatigue damage N2 - Conventional methods of crack detection only provide a snapshot of the fatigue evolution at a specific location and in the moment of examination. The crack luminescence method realizes a clear visibility of the occurring cracks in loaded components during ongoing operation. Several different experiments show that due to the sensitive coating even the early stage of the crack formation can be detected what makes the crack luminescence helpful to determine the incipient crack opening behavior depending on load alternation. Due to the emitting of light under UV-radiation the crack gets clearly visible what makes continuous monitoring and automated crack detection possible. This can reduce costs and time needed for maintenance and inspection. T2 - Sensor +Test 2017 CY - Nuremberg, Germany DA - 30.05.2017 KW - Fatigue damage KW - Crack KW - Luminescence KW - Detection PY - 2017 AN - OPUS4-41839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin A1 - Reinemann, Steffi A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Influence of corundum grinding processes on the corrosion behaviour of austenitic stainless steels N2 - The scientific poster shows by means of corrosion testing in combination with surface analytical methods to which degree corundum grinding influences the corrosion behaviour of stainless steel surfaces. The austenitic stainless steel AISI 304 from a consistent heat was used for all investigations to guarantee the same chemical composition and thus no additional influences caused by the material itself. A wide range of different grinding parameters such as pressure, cooling medium and grain size of the abrasive was varied. Thus, comparison of the corrosion behaviour of different surface states and the evaluation of an optimum grinding process using corundum abrasives were possible. The results will contribute to present discussions and give novel impulses for companies in the metalworking industry. T2 - Eurocorr 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - Korrosion KW - Corrosion KW - Korundschleifen KW - Corundum grinding KW - Nichtrostende Stähle KW - Stainless steels PY - 2017 AN - OPUS4-41896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Methanogene Archaea - The impact of methanogenic Archaea on material, environment and health N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures (Fig. 1). Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g. Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to analyse two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation/ transformation. T2 - EMBO-Course CY - Wageningen, The Netherlands DA - 24.07.2017 KW - Corrosion KW - Methanogens KW - Biofilm KW - Implants PY - 2017 AN - OPUS4-41899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid T1 - Upper critical solution temperature (UCST)- type thermoresponsive polymers from acrylamide-based monomers N2 - UCST-type thermoresponsive polymers that phase separate from solution upon cooling present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel UCST-type polymers because of their hydrophilic nature (with the right side chain) and propensity to form hydrogen bonds. We want to present our latest results on the copolymer poly(acrylamide-co-acrylonitrile) (P(AAm-co-AN)) that present a UCST in water as well as on two homopolymers based on an acrylamide derivative of 2,6-diaminopyridine, namely poly(N-(6-aminopyridin-2-yl)acrylamide) (PNAPAAm) and poly(N-(6-acetamidopyridin-2-yl)acrylamide) (PNAcAPAAm) that show UCST-type thermoresponsiveness in water/alcohol mixtures. Our focus for P(AAm-co-AN)) is its aggregation behaviour above and below its phase transition temperature as the size of thermoresponsive polymeric systems is of prime importance for biomedical applications (as size dependent processes take place in the body) and is linked to the optical properties of a material that matter in materials science. In the case of PNAPAAm and PNAcAPAAm, we focused on the co-solvency/co-non solvency effect on the phase transition temperature in water/alcohol mixture. Indeed, polymers with UCST behavior below 60°C in water/alcohol mixtures are extremely promising for the preparation of “smart” materials for sensing. T2 - 31st Conference of the European Colloid and Interface Society (ECIS 2017) CY - Madrid, Spain DA - 03.09.2017 KW - Thermoresponsive polymers KW - UCST polymers KW - Acrylamide based polymers PY - 2017 AN - OPUS4-41902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Wachtendorf, Volker A1 - Sameith, Janin A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Effect of surface degradation on high-density polyethylene for initial attachment of bacillus and pseudomonas N2 - High-density polyethylene (PE-HD) is a widely applied plastic for fuel storage tank applications. But such tanks, filled with diesel or biodiesel, provide excellent environmental conditions for growth of a broad spectrum of fungi and various bacteria1. This can result in fuel contamination, engine plugging or possible (bio-) degradation2. Our research focusses on the initial attachment phase of Bacillus sp. and Pseudomonas aeruginosa isolated from a „dieselpest“2 on two distinctly PE-HD materials, typical for fuel storage tank applications, pre-damaged thermally and by UV-irradiation. T2 - PDDG CY - Taormina, Sicily, Italy DA - 04.09.2017 KW - PE-HD KW - UV-irradiation KW - Initial attachment KW - Bacteria PY - 2017 AN - OPUS4-41908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Maren A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Long-term storage of high-density polyethylene in biodiesel and diesel fuels N2 - Sustainable energy and clean engine fuels receive more and more attention. Petrodiesel could be substituted by biofuels such as biodiesel produced from renewable resources. Biodiesel is derived by transesterification of oils with alcohols for example vegetable oils, animal fats or food waste. Its chemical composition of unsaturated fatty methyl acids causes biodiesels susceptibility to oxidation. Especially, the polymer-biodiesel performance under long-term conditions has been considered only in few researches. Our study addresses a long-term storage scenario of a polymeric fuel tank containing biodiesel or diesel. T2 - PDDG CY - Taormina, Sicily, Italy DA - 04.09.2017 KW - PE-HD KW - Degradation KW - Biodiesel KW - Diesel PY - 2017 AN - OPUS4-41909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Long term corrosion behavior of stainless steel in maritime atmosphere N2 - In the context of a research project carried out by BAM, nine different steel alloys were exposed to maritime environmental conditions at the German Island of Helgoland over a period of five years and their corrosion behavior was compared and evaluated. In order to evaluate the influence of a possible concentration of corrosion specific crucial air constituents on the investigated steel grades, a series of sample surfaces were freely exposed to the we ather while other samples were protected from direct rain in a covered area. The parallel investigation of four different surface finishes (cold rolled, dry grinded, electro-polished, blasted) of the respective alloys also made it possible to take account of the specific influences and features of the surface finish during the material comparison. On the basis of the results of the natural exposure tests, conclusions were drawn about the influence of the alloy composition, the surface finish and the exposure time under maritime conditions. The samples of the three investigated duplex alloys exhibited the best corrosion resistance under the given maritime environmental conditions over the five-year period, both with and without crevice geometry. Likewise, the molybdenum alloy ferrite 1.4521 could achieve comparable corrosion resistance as the austenitic standard materials 1.4301 and 1.4404. The results on the freely exposed surfaces showed, that due to the washing effect the influence of the exposure time on the corrosion of the samples is low while the particular surface finish has a great influence on the overall corrosion behavior of the stainless steels. Thus, the electro-polished surfaces showed few signs of corrosion while the blasted surfaces exhibited very poor corrosion behavior. In the case of the covered specimens, the respective material-specific corrosion resistance as well as the exposure time have a significant influence on the corrosion behavior while the surface finishes were of marginal importance. T2 - EuroCorr 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - Corrosion KW - Maritime atmosphere KW - Stainless steel PY - 2017 AN - OPUS4-41859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf A1 - Rosemann, Paul T1 - Influence of the post-weld surface treatment on the corrosion resistance of duplex stainless steel 1.4062 N2 - The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polishing or blasting depending on the requested corrosion resistance. Blasted surfaces are often used in the industrial practice due to the faster and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the results of different corrosion tests (KorroPad-testing and pitting potentials). T2 - Eurocorr 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - Duplexstahl KW - Korrosion KW - Nichtrostender Stahl KW - Oberflächenbearbeitung KW - Schweißen KW - Strahlen PY - 2017 AN - OPUS4-41915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Material properties and their impact on laserinduced plasmas for concrete analysis N2 - For concrete production aggregates, cement and water are mixed together and after 28 days of hydration a porous and multiphase material is formed. To consider the heterogeneity of concrete a 2D scanning system is used. The coarse aggregates (limit > 2 X d ) can be excluded. laser spot The remaining content is a mixture of flour grains and cement particles (micro heterogeneity). Harmful species like chlorides may penetrate together with water through the capillary pore space. A quantification of Cl regarding to the cement content only (European standard EN 206) is necessary for the damage assessment. A LIBS system operating with a NdCr:YAG laser (pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns, a repetition rate of 100 Hz) and two Czerny-Turner spectrometer (UV and NIR range) have been used. T2 - EMSLIBS Konferenz 2017 CY - Pisa, Italy DA - 12.06.2017 KW - Concrete KW - LIBS KW - Micro-heterogeneity PY - 2017 AN - OPUS4-40938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Eisenacher, Germar A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Development of a material model for the crush of spruce wood N2 - Typical transport packages used in Germany are equipped with wooden impact limiting devices. In this paper we give an overview of the latest status regarding the development of a finite element material model for the crush of spruce wood. Although the crush of wood – mainly in longitudinal direction – is a phenomenon governed by macroscopic fracture and failure of wood fibres we smear fracture and failure mechanisms over the continuous voume. In first step we altered an existing LS-DYNA material model for foams, which considers an ellipse shaped yield surface written in terms of the first two stress invariants. The evolution of the yield surface in the existing model depends on the volumetric strain only. For the use with spruce wood, we modified the existing material model to consider the deviatoric strain for the evolution of the yield surface as well. This is in accordance with the results of crush tests with spruce wood specimens, where the crushing deformation was rather deviatoric for uniaxial stress states and rather volumetric for multiaxial stress states We rate the basic idea of this approach to be reasonable, though other problems exist regarding the shape of the yield surface and the assumption of isotropic material properties. Therefore we developed a new transversal isotropic material model with two main directions, which considers different yield curves according to the multiaxiality of the stress state via a multi-surface yield criterion and a non-associated flow rule. The results show the ability to reproduce the basic strength characteristics of spruce wood. Nevertheless, problems with regularization etc. show that additional investigations are necessary. T2 - ASME PVP 2017 CY - Waikaloa, HY, USA DA - 16.07.2017 KW - Crush KW - Wood KW - Spruce KW - FEM PY - 2017 AN - OPUS4-41617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Do non-thermal effects exist? - Microwave-assisted acceleration of silver nanoparticle synthesis and particle growth N2 - Ever since increasing a reaction’s yield while shortening the reaction time is the main objective in synthesis optimization. Microwave reactors meet these demands. In literature however their usage is under discussion due to claims of the existence of non-thermal effects resulting from the microwave radiation. Especially for nano-material syntheses it is of crucial importance to be aware of influences on the reaction pathway. Therefore, we compare ultra-small silver nanoparticles with mean radii of 3 nm, synthesized via conventional and microwave heating. We employed a versatile one-pot polyol synthesis of poly(acrylic acid) (PAA) stabilized silver nanoparticles, which display superior catalytic properties. No microwave specific effects in terms of particle size distribution characteristics, as derived by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS), are revealed. Due to the microwave reactor’s characteristics of a closed system, syntheses can be carried out at temperatures beyond the solvent’s boiling point. Particle formation was accelerated by a factor of 30 by increasing the reaction temperature from 200 °C to 250 °C. The particle growth process follows a cluster coalescence mechanism. A post-synthetic incubation step at 250 °C induces a further growth of the particles while the size distribution broadens. Thus, utilization of microwave reactors enables an enormous decrease of the reaction time as well as the opportunity of tuning the particles’ size. Possibly, decomposition of the stabilizing ligand at elevated temperatures results in reduced yields. A temperature of 250 °C and a corresponding reaction time of 30 s represent a compromise between short reaction times and high yields. T2 - 5th Nano Today Conference CY - Waikoloa Village, HI, USA DA - 06.12.2017 KW - Microwave synthesis KW - Small-angle scattering KW - Silver nanoparticles PY - 2017 AN - OPUS4-43497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Highly enhanced catalytic activity of silver N2 - Silver nanoparticles are one of the most widespread consumer related nanoparticles worldwide. Since the particles show special optical and antibacterial properties they are used for a wide range of applications from biological investigations over medical applications and catalysis. Especially the outstanding question of applicable alternatives for catalysts in diverse reactions can be addressed with the design of versatile system of small silver nanoparticles. In this study we present the synthesis and application of ultra-small silver nanoparticles with a narrow size distribution (R = 3.1 nm, σ = 0.6 nm). The particles are thoroughly characterized by small angle X-ray scattering, dynamic light scattering and UV/Vis spectroscopy. As a representative test reaction the reduction of 4-nitrophenol to 4-aminophenol was chosen. The particles show a catalytic activity of (436 ± 24) L g-1 s-1, which is two orders of magnitude higher than for other silver particles in the literature. The particles surrounding shell, composed of poly(acrylic acid), provides the particles with a good accessibility for the reactants. Since the catalytic activity strongly depends on the surrounding ligand, the particles shell can also be exchanged by other ligands enabling a tuning of the catalytic activity to a desired value. This shows the high flexibility of this system which can also be applied for other catalytic reactions. T2 - 5th Nano Today Conference CY - Waikoloa Village, HI, USA DA - 06.12.2017 KW - SAXS KW - Catalysis KW - Silver nanoparticles KW - Reduction 4-nitrophenol PY - 2017 AN - OPUS4-43496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit T1 - Experimental and analytical investigation of notched components of a Nickel based superalloy under high temperature cyclic loading N2 - While the increase in use of renewable energy sources is a necessity in times of climate change the use of gas turbines as back-up requires them to be run in a much more flexible manner in order to compensate for side effects like sudden fluctuations of energy generation. The significant changes of stress and temperature levels in turbine blades due to start-up and shut down can cause crack initiation and growth in the blades‘ alloy. The aim of this research project is to identify a model for lifetime prediction for gas turbine components made of a Nickel base superalloy under high temperature with a Focus on stress concentration points such as cooling holes. T2 - HIDA-7 Conference on Life/Crack Assessment & Failures in Industrial Structures, UK CY - Portsmouth, UK DA - 15.05.2017 KW - LCF KW - Gas turbine KW - Service life model PY - 2017 AN - OPUS4-42274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Richter, Janine A1 - Jann, Oliver T1 - Emissions of formaldehyde from acoustic tiles N2 - Acoustics is an important aspect for large rooms especially in schools, kindergartens and offices. Foam tiles made from melamine resins are often used for acoustic insulation because they show good fire resistance and good thermal insulation properties. But they can emit formaldehyde. In Germany there are cases with a resulting indoor air concentration of higher than 100 µg/m³. In this study samples from two schools and one office were investigated. Additionally, new tiles were purchased and tested to evaluate the general potential as formaldehyde source. T2 - Healthy Buildings 2017 Europe CY - Lublin, Poland DA - 02.07.2017 KW - Building products KW - Emission test chamber KW - Formaldehyde KW - Foam tiles PY - 2017 AN - OPUS4-41573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Redfern, J. A1 - Stephan, Ina A1 - Verran, J. A1 - Askew, P. T1 - Control of humidity during simulation tests on the efficacy of antimicrobial surfaces N2 - The influence of rel. humidity on the drying of splashes on different surfaces is documented in order to investigate how Long humidity for microbiological growth is present. T2 - COST Action Clinical microbiology and infection (AMiCl) CY - Pori, Finland DA - 06.06.2017 KW - Moisture drying KW - Plastic KW - Humidity PY - 2017 AN - OPUS4-40790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Usmani, Shirin A1 - Schlishka, Joerg A1 - Klutzny, Kerstin A1 - de Laval, Yvonne A1 - Plarre, Rüdiger A1 - Krahl, Thoralf A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, Erhard T1 - Wood protection with nanoparticles: MgF2 and CaF2 N2 - Alkaline earth metal fluoride nanoparticles have been investigated for application in wood protection. Sols of MgF2 and CaF2 were synthesized and their efficacy was tested against fungi and termites (Rehmer 2016, Krahl et al. 2016). The sols were characterized by XRD and SEM. The wood specimens were vacuum impregnated with nanoparticles and then exposed to fungi and termites according to EU certified test conditions. Our results show that wood impregnated with metal fluoride nanoparticles significantly reduce cellulose hydrolysis by fungi and termites. The wood samples were exposed to brown-rot fungi; Coniophora puteana and Poria placenta. Between the two fungi, the overall mass lost due to fungal degradation was lower for treated (MgF2 and CaF2) wood samples exposed to Coniophora puteana. Thus, the metal fluoride nanoparticles impregnated in the wood samples were more efficient in reducing cellulose degradation from Coniophora puteana than from Poria placenta. However the mass loss in samples treated with MgF2 was similar to those treated with CaF2, irrespective of type of fungi. Therefore, it is likely that fungal degradation in treated samples was dependent on the biocidal action of fluorides rather than on the differences in chemical and physical properties of MgF2 and CaF2, respectively. Conversely, for termite exposure, wood samples treated with MgF2 had lower cellulose degradation compared to those treated with CaF2. A possible explanation for this difference in results could be fungi and termites use separate mechanisms for cellulose hydrolysis which will be further investigated. Future experiments include testing the leaching potential of MgF2 and CaF2 nanoparticles from wood. The results from the leaching experiment will test if metal fluoride nanoparticles can provide long-term and environmentally safe protection to wood. T2 - International Research Group (IRG48) Scientific Conference on Wood Protection CY - Ghent, Belgium DA - 04.06.2017 KW - Fluoride KW - Nanoparticles KW - Brown-rot fungi KW - Termites PY - 2017 AN - OPUS4-41019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramirez Caro, Alejandra A1 - Pauli, Jutta A1 - Artemeva, Elena A1 - Ermilov, Eugeny A1 - Crasselt, Claudia A1 - Stroh, Julia A1 - Mota Gasso, Berta A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Study of the hydration of superplasticizer-cement pastes with optical spectroscopy N2 - Chemical admixtures like superplasticizers or stabilizing agents are of ever increasing importance for modern concrete technology. Although such admixtures have meanwhile become common practice in many applications of concrete technology, the understanding of these highly complex systems is still limited and the relevant parameters, which predominantly control the interaction between the superplasticizer and the cement components, have not been identified yet. Optical methods have been successfully used for the analysis and monitoring of the interactions between a broad variety of nanoscale and molecular systems like nanoparticles of various chemical composition and different types of organic ligands or biomolecules. This encouraged us to assess the potential of these methods, and particularly reflectance and fluorescence measurements, for the study of the interactions that occur at the interface between particle or hydrate surfaces and the fluid phase at a very early stage of concrete formation. Special emphasis is dedicated to search for and identify differences between commonly used superplasticizers. Here, we focus on hydration effects using commercial comb shape polycarboxylate ethers (PCEs) with different charge densities, which are known to allow a very low water/cement ratio (w/c of 0.20 or less) while maintaining good workability. Based upon changes of the intensity of the reflectance and fluorescence signal and spectral effects of a dye, acting as optical reporter, a model for the interactions of dye, PCE molecules and cement nanoparticles in the very first phase of cement hydration is derived T2 - Gesellschaft Deutscher Chemiker-Analytische Chemie-Anakon 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Cement hydration KW - Optical spectroscopy KW - Superplasticizers PY - 2017 AN - OPUS4-39882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -