TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid Amorphous Phase in Polymer Nanocomposites as Revealed by Relaxation Spectroscopy N2 - In inorganic/polymer nanocomposites the polymer matrix region near a filler surface, termed as the interphase, is of topical interest due to its possible influence on the macroscopic properties of the material. The segmental dynamics of this interphase is expected to be altered, as compared to the pure matrix, which might percolate into the entire system. It was found that a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of the polymer segments onto the nanoparticles, yielding in their immobilization. Here, we employed a combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) in a form of Temperature Modulated DSC (TMDSC)) to investigate the structure and molecular mobility of Epoxy/Inorganic nanofiller composites with different nanoparticles geometries and contents. The two techniques show different perspectives on the glassy dynamics; BDS is sensitive to dipole fluctuations, whereas SHS senses entropy fluctuations. First, our dielectric relaxation investigations proved an existence of an additional process in nanocomposites, which is not present in the pure material. Due to the increasing intensity of the process with increasing filler content it was assigned as the α-process related to the segmental dynamics of polymer chains adsorbed onto the nanoparticles. Considering the expected high conductivity effects of the material, the dielectric data were analyzed by fitting a derivative of the HN function to a “conduction-free” loss spectra: ε''deriv=-(∂ε'/∂logω). Second, TMDSC measurements were used to study the specific heat capacity of nanocomposites in its nanofiller content dependence. Assuming that RAF is proportional to the decrease of the specific heat capacity step (Δcp) in the glass transition region of the nanocomposites, comparing to the pure material, the inorganic/polymer interphase was quantitatively analyzed and the amount of RAF estimated. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Boehmite KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2018 AN - OPUS4-45915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Molecular dynamics of an asymmetric PVME/PS Blend investigated by broadband dielectric and specific heat spectroscopy N2 - Over the past decades research on the molecular dynamics of miscible polymer blends are of topical interest in the literature, in an attempt to understand the segmental mobilty of individual components, as it is affected by blending. In general, miscible polymer blends exhibit a complex behavior of the molecular mobility. For an A/B blend the relaxation times of component A and component B are affected by the spatial local compositional heterogeneity, present in binary systems on a microscopic level, regardless of the macroscopic homogeneity. Here, a combination of broadband dielectric and specific heat spectroscopy was employed to study the dynamically asymmetric PVME/PS blend with seven different compositions, focusing on samples with high PS contents. Considering that PS is dielectrically invisible, BDS is a powerful technique to study the response of PVME, as it is affected by PS segments. In this work the well-known binary relaxation times distribution of PVME in a blend, originating from the spatial local heterogeneity, was studied over ten decades in frequency, for the first time in literature. Secondly, one of the detected processes, α’-relaxation, shows a crossover from high-temperature behavior (system in equilibrium) towards a low temperature regime, where PS undergoes the thermal glass transition, resulting in confined segmental dynamics of PVME within a frozen network of PS. Here, we introduce a precise mathematical tool to distinguish between the temperature dependency regimes of the process, and examine the composition dependence of the crossover temperature, detected by dielectric spectroscopy. Moreover, the dielectric data was compared in detail with results obtained by specific heat spectroscopy. This comparison provides new insights in the dynamics and dynamic heterogeneity of the PVME/PS blend system. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Polymer blends KW - Dielectric spectroscopy KW - Specific heat spectroscopy PY - 2018 AN - OPUS4-45917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Dynamics of nanoscopically confined PVME in thin films of an asymmetric miscible PVME/PS blend N2 - In recent years, substantial efforts have been devoted to investigating nanoscopic confinement of polymers, and its effect on glassy dynamics. Broadband Dielectric Spectroscopy (BDS) was used to study the dynamics of ultra-thin films of PVME/PS 50/50 wt% blend, employing a novel nano-structured capacitor sample arrangement. The investigated system shows a complex dynamic behavior. First, an α-relaxation, related to a bulk-like layer was found. Second, an α’-relaxation was observed, characteristic for dynamically asymmetric blends, where the out of equilibrium dynamics is attributed to weakly-cooperative PVME segments relaxing within a frozen environment of PS segments. Third, for thinnest films, an Arrhenius-like process was dominant in the dielectric spectra, indicating localized fluctuations of the segments. Relaxation rates of this process resembled that of the degenerated α-relaxation of the adsorbed layer, found for pure PVME [1], thus it was assigned accordingly. For thinnest films, this process undergoes a further confinement, due to the topological constraints, introduced by PS. Such multiple confinement effect has not been reported for ultra-thin films of polymer blends, before this study [2]. [1] Madkour, S. et al. ACS Appl. Mater. Interfaces 2017, 9, 7535. [2] Madkour, S. et al. ACS Appl. Mater. Interfaces 2017, 9, 37289. T2 - 10th Conference on Broadband Dielectric Spectroscopy and its Applications CY - Brussels, Belgium DA - 26.08.2018 KW - Polymer blends KW - Thin polymer films KW - Dielectric spectroscopy KW - Specific heat spectroscopy PY - 2018 AN - OPUS4-45919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Rigid amorphous fraction (RAF) in epoxy/Boehmite and epoxy/LDH nanocomposites N2 - The interphase between the inorganic filler and the polymer matrix is considered as one of the most important characteristics of inorganic/polymer nanocomposites. The segmental dynamics of this interphase is expected to be altered as compared to the pure matrix, which might percolate into the entire system. For instance, it was found that a so-called Rigid Amorphous Phase (RAF) is formed by adsorption of segments onto the nanoparticles yielding to its immobilization. The RAF is available from the decrease of the specific heat capacity Δcp in the glass transition region of the nanocomposites. Here, precise Temperature Modulated DSC (TMDSC) was employed to study Δcp of epoxy/Boehmite nanocomposites with different nanofiller concentrations. Surprisingly, the investigated system showed an increase of Δcp with increasing filler concentration up to 10 wt%. This implies an increased fraction of mobile segments, and is in accordance with the found decreased value of the glass transition temperature Tg. Although for higher filler contents Tg further slightly decreases, Δcp decreases in contrary, indicating a formation of RAF. This behavior was discussed as a competition of mobilization effects, due to an incomplete crosslinking reaction, and the formation of RAF. T2 - 15thLähnwitzseminar on Calorimetry 2018 CY - Rostock, Germany DA - 04.06.2018 KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - Boehmite PY - 2018 AN - OPUS4-45148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid amorphous phase in polymer nanocomposites as revealed by dielectric relaxation spectroscopy and fast scanning calorimetry N2 - For inorganic/polymer nanocomposites a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate into the entire system, affecting the overall nanocomposite properties. A combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) in a form of Temperature Modulated DSC (TMDSC)) as well as Fast Scanning Calorimetry (FSC) was employed to investigate the structure and molecular mobility of nanocomposites based on Epoxy and Layered Doubled Hydroxides with different nanoparticle content. First, BDS investigations proved the existence of a process, which is present only for nanocomposites, assigned to the dynamics of polymer segments within RAF. Second, the amount of RAF was quantified by analyzing the change of specific heat capacity step of nanocomposites, comparing to the pure material. Thirdly, the glass transition of nanocomposites was studied with FSC, applying high heating rates (500-10 000 K/s). Considering that all techniques probe essentially the same molecular process, an activation plot was constructed, delivering a complete picture of the molecular mobility and structure of the polymer nanocomposites including RAF. T2 - American Physical Society (APS) March Meeting 2019 CY - Boston, MA, USA DA - 04.03.2019 KW - Nanocomposites KW - Rigid amorphous fraction PY - 2019 AN - OPUS4-47564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid Amorphous Phase in Epoxy-based Nanocomposites as Revealed by Dielectric Spectroscopy and Fast Scanning Calorimetry N2 - For inorganic/polymer nanocomposites a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate to the entire system, affecting the overall nanocomposite properties. A combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Temperature Modulated DSC (TMDSC)) as well as Fast Scanning Calorimetry (FSC) was employed to investigate the structure and molecular mobility of nanocomposites based on Epoxy and Layered Doubled Hydroxides with different nanoparticle content. First, BDS investigations proved the existence of a process, which is present only for nanocomposites, assigned to the dynamics of polymer segments within RAF. Second, the amount of RAF was quantified by analyzing the change of specific heat capacity step of nanocomposites, comparing to the pure material. Thirdly, the glass transition of nanocomposites was studied with FSC, applying high heating rates (0.5-10 kK/s). Considering that all techniques probe essentially the same molecular process, an activation plot was constructed, delivering a complete picture of the molecular mobility and structure of the polymer nanocomposites including RAF. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 01.04.2019 KW - Rigid amorphous fraction KW - Nanocomposites PY - 2019 AN - OPUS4-47762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Madkour, Sherif T1 - Multiple Glassy Dynamics of an Asymmetric PVME/PS Blend Investigated by Broadband Dielectric and Specific Heat Spectroscopy N2 - Over the past decades research on the molecular dynamics of miscible polymer blends is of topical interest in the literature, to understand the segmental mobility of individual components, as it is affected by blending. In general, miscible polymer blends exhibit a complex dynamic behavior. For an A/B blend the relaxation times of component A and component B are affected by the spatial local compositional heterogeneity, present in binary systems on a microscopic level, regardless of the macroscopic homogeneity. Here, a combination of broadband dielectric and specific heat spectroscopy was employed to study the dynamically asymmetric PVME/PS blend with seven different compositions, focusing on samples with high PS contents. Considering that PS is dielectrically invisible, BDS is a powerful technique to study the response of PVME, as it is affected by PS segments. Here, three separate relaxation processes were found by dielectric investigations, related to confined or constrained PVME segments due to the spatial local compositional heterogeneities, which is in contrary to the previous literature findings [1]. Moreover, the dielectric data was compared with results obtained by specific heat spectroscopy, where a fourth relaxation process was found, due to the cooperative fluctuations of PVME and PS. [1] Colmenero, J., Arbe, A. Soft Matter, 2007, 3, 1474. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 01.04.2019 KW - Specific heat spectroscopy KW - Polymer blends KW - Dielectric spectroscopy PY - 2019 AN - OPUS4-47764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Unexpected behavior of thin PVME/PS blend films investigated by specific heat spectroscopy N2 - The structure and molecular dynamics of thin polymer films are of topical interest of soft matter-physics. Commonly, spatial structural heterogeneities of 1D confined thin films (surface, bulk-like and adsorbed layer), are expected to alter the glassy dynamics, compared to the bulk. Here, Specific Heat Spectroscopy (SHS) was used, to investigate the glassy dynamics of thin films of an asymmetric miscible PVME/PS 25/75 wt% blend. SHS measurements showed a non-monotonous thickness dependence of the dynamic Tg, on the contrary to the previously investigated PVME/PS 50/50 wt%. For PVME/PS 25/75 wt% thin films (> 30 nm), due to the presence of PVME-rich adsorbed and surface layers, the bulk-like layer experienced a thickness dependent increase of PS concentration. This led to a systematic increase of dynamic Tg. Further decrease of the film thickness (< 30 nm), resulted in a decrease of dynamic Tg, ascribed to the influence of the surface layer, which has a high molecular mobility. This is the first study, which shows deviations of dynamic Tg of thin films, compared to the bulk, resulting from the counterbalance of the free surface and adsorbed layer. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Dynamics of nanoscopically confined PVME in thin films of an asymmetric PVME/PS blend N2 - In recent years, substantial efforts have been devoted to investigating nanoscopic confinement of polymers, and its effect on glassy dynamics. Broadband Dielectric Spectroscopy (BDS) was used to study the dynamics of ultra-thin films of PVME/PS 50/50 wt% blend, employing a novel nano-structured capacitor sample arrangement. The investigated system shows a complex dynamic behavior. First, an α-relaxation, related to a bulk-like layer was found. Second, an α’-relaxation was observed, characteristic for dynamically asymmetric blends, where the out of equilibrium dynamics is attributed to weakly-cooperative PVME segments relaxing within a frozen environment of PS segments. Thirdly, for thinnest films, an Arrhenius-like process was dominant in the dielectric spectra, indicating localized fluctuations of the segments. Relaxation rates of this process resembled that of the degenerated α-relaxation of the adsorbed layer, found for pure PVME, thus it was assigned accordingly. For thinnest films, this process undergoes a further confinement, due to the topological constraints, introduced by PS. Such multiple confinement effect has not been reported for ultra-thin films of polymer blends, before this study. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Ghasem Zadeh Khorasani, Media A1 - Schönhals, Andreas T1 - Competition of mobilization and immobilization effects of segmental dynamics in epoxy/Boehmite nanocomposites N2 - The polymer matrix region near a filler surface, termed as the interface, witnessed increasing interest, due to its possible influence on the macroscopic properties of the nanocomposite. The interphase is expecting to have different segmental dynamic, as compared to the pure matrix, which can percolate into the entire system. Here, the segmental dynamics of epoxy/Boehmite nanocomposite was studied by Broadband Dielectric Spectroscopy. It was found that an artificial relaxation process is present in the nanocomposite, on the contrary to the pure epoxy system. It was assigned to constrained fluctuations of polymer chains in the interfacial region, due to the nanofiller. However, the overall dynamic Tg of the system decreased with increasing filler concentration, indicating higher segmental mobility. This was in accordance with Temperature Modulated DSC investigations of specific heat capacity of the system, which was found to increase with increasing filler concentration, up to 10 wt%, indicating increasing mobility of the polymer matrix segments. Surprisingly, for the highest filler content, the heat capacity decreases, implying a formation of an immobilized rigid amorphous phase in the interfacial region. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Nanocomposites PY - 2018 AN - OPUS4-44503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Resolving the mystery of the molecular dynamics of epoxy-based materials using broadband dielectric spectroscopy and hypheneated calorimetry N2 - A detailed calorimetric and dielectric study on two epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and methyl tetrahydrophtalic acid anhydride (MTHPA) aas the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) and boehmite as nanofiller. The molecular dynamics investigation revealed an intrinsic structural heterogeneity of the epoxy materials. Moreover the polymer/particle interphase was qualitatively and quantitavely investigated. T2 - Online International Dielectric Society 2020 Workshop CY - Online meeting DA - 28.09.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - BDS KW - TMDSC PY - 2020 AN - OPUS4-51492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials N2 - This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: taurine-modified layered double hydroxide (T-LDH) and halloysite nanotubes (HNTs). The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. T2 - Abteilungsseminar 6. - FB 6.6 CY - Online meeting DA - 06.05.2021 KW - Broadband dielectric spectroscopy KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Rigid amorphous fraction KW - Flash DSC PY - 2021 AN - OPUS4-52697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Flash DSC investigations on nanocomposites and electrospun fibers containing nanoparticles N2 - It was found for inorganic/polymer nanocomposites that a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate into the entire system, affecting the overall nanocomposite properties. Here, the structure and molecular mobility of epoxy-based PNCs with different nanofillers (layered double hydroxide and boehmite) was studied by a combination of calorimetric and X-Ray scattering techniques. Temperature modulated DSC (TMDSC) showed that depending on the nanofiller, RAF can reach up to 40 wt % of the system or, on the contrary, the overall mobility of the matrix might increase due to the presence of particles. Such contrasting results, including the high amount of RAF, which was never shown before for epoxy-based PNCs, emphasize the importance of interfaces. Additionally, glass transition and glassy dynamics were investigated by a novel technique, Flash DSC (heating rates up to 10 kK/s) employed for the first time to a thermosetting system and electrospun fibers, which did not result in their degradation. It was used to study both the vitrification kinetics and glassy dynamics of the PNCs, for instance further confirming the presence of RAF and its impact on the overall material properties. T2 - 4th Mettler Toledo Flash DSC conference CY - Zurich, Switzerland DA - 25.11.2019 KW - Flash DSC KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS KW - Boehmite KW - Electrospun fibers PY - 2019 AN - OPUS4-50067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy and Corresponding Nanocomposites by Broadband Dielectric Spectroscopy and Hyphenated Calorimetry N2 - Polymer nanocomposites (PNCs) with inorganic nanofillers dispersed in a polymer matrix have been widely studied from the 1990s, since the pioneering work by Toyota Central Research. The possibility of producing advanced tailor-made, light weight and low-cost materials, inspired academic and commercial research towards numerous potential applications, facilitating PNCs to become a billion-dollar global industry. The introduction of nanoparticles (NPs) to a polymer matrix is expected to result in improved properties. The outstanding performance of PNCs is determined not only by the characteristics of the used components but also by their phase morphology, including the dispersion of NPs and interfacial properties. Understanding of structure-property relationships is particularly important for polymer nanocomposites with high industrial significance, such as epoxy-based materials reinforced with inorganic nanofillers. These PNCs have been successfully adopted by the marine, automotive and aerospace industries, although they are still rarely studied on a fundamental level. Therefore, this thesis aims for a detailed understanding of the structure, molecular mobility and vitrification kinetics first, of two epoxy-based materials with different network structures and second, of the corresponding nanocomposites with different alumina-based nanofillers. The first system considered (EP/T-LDH) was based on bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) and taurine-modified layered double hydroxide (T-LDH) NPs. The taurine molecule bears additional functionalities that could enhance the interactions between the matrix and the nanofiller, improving the interphase formation. The seconds system (EP/BNP) was based on DGEBA and methyl tetrahydrophtalic acid anhydride (MTHPA) as a hardener, reinforced with boehmite nanoparticles (BNPs). The comparison of the two systems enables for a comparative study on the effect of different hardeners and the morphology and modification of the alumina-based nanofillers on the material behavior. The materials were investigated employing complementary techniques with different sensitivities and frequency windows. The following methodology was used: transmission electron microscopy (TEM), small – and wide – angle X-ray scattering (SAXS/WAXS), broadband dielectric spectroscopy (BDS), calorimetry in a form of conventional DSC and fast scanning calorimetry (FSC), as well as specific heat spectroscopy (SHS) in a form of temperature modulated DSC, temperature modulated FSC and static FSC by calculating the thermal relaxation rates from the cooperativity approach. The FSC method (based on adiabatic chip calorimetry to probe micrometer-sized samples) was successfully employed in this work, exploiting all its possibilities for the first time in literature for a PNC. Moreover, a systematic analysis technique was established to overcome the problem of vague glass transition regions observed for highly loaded PNCs in the heat flow and heat capacity curves. First, TEM, SAXS/WAXS and indirectly BDS and SHS were employed to obtain the information about the approximate morphology of the PNCs. It was found that epoxy-based materials exhibit a structural heterogeneity in a form of regions with different average crosslinking density. This was indicated by multiple-peak scattering pattern of the polymer matrix and two distinct α-processes (dynamic glass transition) related to the cooperative fluctuation of the epoxy network found by BDS and SHS. This was described for the first time for epoxy-based materials. The two α-relaxations were evidenced differently for the two systems, which is related to different network structures and dipole moments due to the employed hardeners. Nevertheless, structural heterogeneity is an intrinsic feature of these materials, independent of the type of hardener used for the network formation and nanofiller. In addition, matrix inhomogeneities were more pronounced with increasing nanoparticle content. Furthermore, a powerful new technique was applied for X-ray scattering data, using Monte Carlo fits, to describe the NPs dispersion throughout the whole sample volume (as opposed to the local investigations performed by most researches). Additional structural information of the two systems was extracted by BDS and SHS, such as qualitative and quantitative estimation of polymer segments physically adsorbed and/or chemically bonded onto the nanoparticles. Due to the immobilized character of this interphase with respect to the cooperative segmental motions, it is denoted as a rigid amorphous fraction (RAF). For instance, on the contrary to EP/BNP, for EP/T-LDH a dielectrically active process was found, related to the localized fluctuations within RAF. Moreover, the amount of RAF in EP/T-LDH was reaching up to 40 wt % of the system, whereas in EP/BNP it ranged between 1-7 wt %. In the latter case the presence of NPs was found to simultaneously increase and decrease the number of mobile segments, due to the interphase formation and changes in crosslinking density. The difference between the two systems was ascribed to the presence of additional amine functionalities in the T-LDH nanofiller. Second, employing BDS and SHS, a systematic study on the effect of NPs on the segmental dynamics was performed. For example, depending on the nanofiller, the α-processes related to regions with higher crosslinking density was found to shift to higher and lower temperatures with increasing T-LDH and BNPs concentration, respectively. The observed difference is due to the different synergism of the polymer matrix with the nanofiller. Third, a detailed investigation of the vitrification kinetics was performed with DSC and FSC. The concentration dependence of the glass transition temperature was found, similar to the behavior of the α-processes. It was shown that, in parallel to the detected main glass transition, epoxy-based materials can exhibit an additional low temperature vitrification mechanism. As expected from the two distinct α-processes, this behavior was however not discussed in prior studies for an unfilled network former. This finding was correlated to the structural heterogeneity evidenced by other techniques. This thesis, dealing with an in-depth research on the epoxy-based materials that are already successfully employed in numerous applications underlines the necessity of more fundamental research in this field. It shines light on the complexity of these systems and contributes to defining how the structure-property relationships can be determined by combining multiple experimental techniques and analytical methodology. T2 - PhD defense CY - Online meeting DA - 18.12.2020 KW - Interfaces KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS PY - 2020 AN - OPUS4-52035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas A1 - Qu, Xintong T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials by Broadband Dielectric Spectroscopy and Calorimetry N2 - Although in the last decades epoxy-based nanocomposites have been successfully adopted by the marine, automotive and aerospace industries they are still rarely studied on a fundamental level. This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: I) taurine-modified layered double hydroxide (T-LDH), II) boehmite (BNPs) and III) halloysite nanotubes (HNTs). Moreover, the effect of different hardeners (diethylene triamine and methyl tetrahydrophtalic acid anhydride) on the unfilled epoxy matrix is addressed as well. The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. The combination of these techniques proved an intrinsic spatial heterogeneity of epoxy-based materials, evidenced by two separate segmental relaxation processes. Although, depending on the hardener the response of the systems to calorimetric and dielectric investigations was different, in a broader sense similar conclusions can be extracted on the structural heterogeneity. As expected from the two distinct α-processes, it was shown that, in parallel to the main glass transition, epoxy-based materials can exhibit an additional low temperature vitrification mechanism, which was not discussed in prior studies for an unfilled network former. Furthermore, the interfacial region (so-called rigid amorphous fraction) was qualitatively and quantitatively addressed, in dependence of the employed nanofiller structure. T2 - Webinar University of Southern Denmark CY - Online meeting DA - 20.01.2021 KW - BDS KW - Nanocomposites KW - Epoxy KW - Rigid amorphous fraction KW - TMDSC KW - Flash DSC PY - 2021 AN - OPUS4-52036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Competition of mobilization and Immobilization Effects in Epox-Based Nanocomposites N2 - Two epoxy-based nanocomposites with different nanofillers (layered double hydroxide and boehmite) were investigated employing temperature modulated DSC, flash DSC and broadband dielectric spectroscopy. Detailed investigation on the molecular mobility of the two systems showed the effect of the fillers on the structure of the bulk epoxy matrix and the interface formed at the polymer/particle interface T2 - FOR 2021: Acting principles of Nano-Scaled Matrix Additives for Composite Structures CY - Berlin, Germany DA - 11.10.2019 KW - TMDSC KW - Nanocomposites KW - Rigid amorphous fraction KW - Boehmite KW - BDS PY - 2019 AN - OPUS4-49287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surov, A. A1 - Vasilev, N. A1 - Voronin, A. A1 - Churakov, A. A1 - Emmerling, Franziska A1 - Perlovich, G. T1 - Ciprofloxacin salts with benzoic acid derivatives: structural aspects, solid-state properties and solubility performance N2 - n this work, three new pharmaceutical hydrated salts of ciprofloxacin with selected derivatives of benzoic acid, namely 4-hydroxybenzoic acid, 4-aminobenzoic acid and gallic acid, were obtained and systematically investigated by several solid-state analytical techniques. In situ Raman spectroscopy was applied to elucidate the alternative pathways of the solid forms' formation under mechanochemical conditions. Crystal structure analysis and a CSD survey allowed us to establish a distinct supramolecular motif formed by infinite columnar stacks of ciprofloxacin dimers arranged in the “head-to-tail” manner. An alternative “head-to-head” packing arrangement was only observed in the crystal of the hydrated ciprofloxacin salt with 4-aminobenzoic acid. In addition, the pH-solubility behavior of the solid forms was thoroughly investigated. Furthermore, a distinct structure–property relationship between the specific features of the supramolecular organization of the hydrated salts and their solubility was observed and discussed. KW - Mechanochemistry KW - XRD PY - 2020 DO - https://doi.org/10.1039/D0CE00514B VL - 22 IS - 25 SP - 4238 EP - 4249 AN - OPUS4-51818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee T1 - Grenzflächen als Material: Konzepte und Beispiele zu nanoverstärkten Duroplasten N2 - Nachdem Jahrzehnte die Grenzfläche zwischen Kohlefaser und Duroplastmatrix optimiert wurde liegt das Augenmerk heute auf der Polymermatrix selbst. Diese lässt sich hinsichtlich ihres Elastizitätsmoduls und ihrer Bruchfestigkeit verbessern, indem Nanopartikel aus Böhmit (AlOOH) eindispergiert werden. Der Vortrag geht auf integrale und hochauflösend-bildgebende Methoden ein die ein Verständnis der komplexen Zusammenhänge ermöglichen. Nach einer chemischen in-situ Analyse des Aushärtvorgangs, aus welchem sich die Bedeutung der externer Parameter ablesen lässt, werden diverse hochauflösende, neue Methoden der Rasterkraftmikroskopie (AFM) eingeführt. Der lokalen Bestimmung des E-Moduls der Nanopartikel folgen Ausführungen zum temperaturabhängigen Chemismus des Böhmits, der während der Aushärtung Wasser freisetzt. Die hochauflösende Bestimmung der Oberflächenpotentiale, der Steifigkeit, der attraktiven Kräfte zwischen Spitze und Probe sowie der Energiedissipation im Kontakt stellen auf der Nanoskala eine komplexe Datenquelle dar, die auf der Makroskala einer Ergänzung bedarf: Durch Kombination von dynamisch-mechanisch-thermischer Analyse einerseits und Kartierung physikalischer Eigenschaften auf der Nanoskala andererseits kann der Zusammenhang zwischen chemischer Steuerung der Netzwerkbildung und den mechanischen Eigenschaften des Nanokomposits geklärt werden. Überraschend ist, dass bei geeigneter Steuerung der lokale E-Modul der Polymermatrix den des Füllstoffs übersteigt. Die Rissfortschrittsenergie wird in Böhmit-modifiziertem Epoxy verbessert absorbiert, die These dazu ist, dass die (010)-Gleitebenen, die nur durch Wasserstoffbrücken zusammen gehalten werden, einigermaßen schadlos geschert werden können. Daraus folgt, dass das System auf der Nanoskala über einen, wenn auch begrenzten, Selbstheilmechanismus verfügt. Zudem wird durch die hohe Heterogenität der Steifigkeit und Energiedissipation des Nanokomposits eine Risstrajektorie vielfach umgelenkt und somit früher gestoppt. Ergebnisse dieses Vortrags stammen aus einer Zusammenarbeit innerhalb des DFG-Forscherverbundes FOR2021 „Wirkprinzipien nanoskaliger Matrixadditive für den Faserverbundleichtbau“. T2 - Niedersächsisches Symposium Materialtechnik - NSM 2019 CY - Clausthal, Germany DA - 14.02.1019 KW - Nanokomposit KW - Böhmit KW - Risstrajektorie KW - Oberflächenpotential KW - Energiedissipation im Kontakt KW - Oberflächensteifigkeit KW - attraktive Wechelwirkung KW - Epoxy-Anhydrid Duroplast KW - Leichtbau PY - 2019 AN - OPUS4-47636 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Braun, Ulrike T1 - Kunststoffe und deren Recycling – Materialwissenschaftliche Erkenntnisse, um mehr Recyclat einzusetzen N2 - Nach einer Übersicht zu den immer schneller aktualisierenden Rahmenbedingungen von Politik und Gesellschaft folgt eine Übersicht zu materialwissenschaftlichen Problemen des Recyclings von Kunststoffen. Lösungsansätze aus der Forschung reichen von einfacher Optimierung bis hin zur radikalen Neukonstruktion der polymeren Werkstoffe. Aus dem bereits möglichen Ansatz "performance-by-design" wird ein neuer Weg des "recycling-by-design" adressiert. Dies inkludiert methodisch eine skalenübergreifende Modellierung und die Depolarisation bis zum Monomer. T2 - Gefahrgut-Technik-Tage CY - Berlin, Germany DA - 07.11.2019 KW - Recycling KW - Kunststoff KW - Additiv KW - Polymer KW - Normung KW - Plastikstrategie KW - Grenzfläche als Material KW - Recycling-by-design PY - 2019 AN - OPUS4-49561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stuff, Maria A1 - Rübner, Katrin A1 - Prinz, Carsten A1 - Rische, N. A1 - Chronz, M. A1 - Kühne, Hans-Carsten ED - Siegesmund, S. ED - Middendorf, B. T1 - Towards a better understanding of tuff stone deterioration N2 - Stone deterioration is the result of a complex interaction of external physical, chemical and biological forces with the mineralogical-petrophysical properties of the stone. With a better understanding of how these properties are linked to material behavior and durability, more effective measures for stone conservation can be developed. Studying these interactions in tuff is particularly complex due to the naturally high heterogeneity of tuff rocks. The first aim of a current research project is to combine the results of recent and older studies on tuff deterioration. Furthermore, the literature overview is complemented by our own investigation of Weibern and Ettringen tuff, with a focus on pore structure characteristics. T2 - STONE - 14th international congress on the deterioration and conservation of stone CY - Meeting was canceled DA - 07.09.2020 KW - Pore structure KW - Weathering KW - Weibern tuff KW - Ettringen tuff PY - 2020 SN - 978-3-96311-172-3 SP - 805 EP - 810 PB - Mitteldeutscher Verlag CY - Halle (Saale) AN - OPUS4-51549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroh, Julia A1 - Emmerling, Franziska T1 - In situ full phase analysis of the early cement hydration N2 - Fresh cement paste is a suspension consisting of a hydraulic binder (cement), water, and numerous minor components – admixtures. Addition of admixtures aims at specific modification of properties of the fresh cement paste or hardened cementitious building material. Specific admixtures, so-called superplasticizers (SP), are used to improve the flowability of the fresh cement paste with reduced water content. The latter is the starting material for the high-strength concrete. Thus, SPs are essential for the ambitious construction projects. However, uncontrollable retardation of the setting time in presence of SPs is occasionally observed. Obviously, SPs influence early products of the cement hydration leading to changes in the microstructure development. The hardening is thus delayed, and the quality of the resulting building material suffers. The mechanisms of the admixture action during the hydration process are still intensively investigated [1-7]. A detailed understanding of the admixture effects during the early hydration stage is the key to control and individual adjustment of the cement-based construction materials. We use the unique combination of the wall-free sample holder and the time-resolved X-ray scattering analysis to achieve the full information about the hydrate phases formed under the influence of admixtures. We use ultrasonic levitator to start the cement hydration in levitated cement pellets [8, 9]. The sample levitation allows collection of the unimpaired information about cement hydrate phases. The most beneficial is the avoiding of the contributions of the sample holder material to the data signal. We induce the cement hydration by adding water to unhydrated Portland cement during the data acquisition. The full phase composition of the hydrating cementitious system can be gathered in situ using wide angle X-ray scattering (WAXS). During the hydration of cement both crystalline and amorphous hydrate phases are formed. WAXS data contain the information about crystalline phases behind the Bragg reflections, whereas the amorphous hydrates influence the appearance of the background. Application of the data analysis specific for crystalline or amorphous phases is needed. The data quantification by the Rietveld method allows to conclude about the changes of the phase amounts due to the presence of admixture. The calculation of the pair distribution functions allows analysis of the amorphous hydrates. Based on this information, the SP effects and the extent of their involvement into the ongoing reactions can be concluded. A detailed understanding of the complex cement hydration process is envisioned. T2 - Anakon 2019 CY - Münster, Germany DA - 25.03.2019 KW - Cement KW - Admixtures KW - Pair Distribution Functions KW - X-ray diffraction KW - Total scattering analysis PY - 2019 AN - OPUS4-47664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stratakis, E. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Siegel, J. A1 - Tsibidis, G.D. A1 - Skoulas, E. A1 - Papadopoulos, A. A1 - Mimidis, A. A1 - Joel, A.-C. A1 - Comanns, P. A1 - Krüger, Jörg A1 - Florian, C. A1 - Fuentes-Edfuf, Y. A1 - Solis, J. A1 - Baumgartner, W. T1 - Laser engineering of biomimetic surfaces N2 - The exciting properties of micro- and nano-patterned surfaces found in natural species hide a virtually endless potential of technological ideas, opening new opportunities for innovation and exploitation in materials science and engineering. Due to the diversity of biomimetic surface functionalities, inspirations from natural surfaces are interesting for a broad range of applications in engineering, including phenomena of adhesion, friction, wear, lubrication, wetting phenomena, self-cleaning, antifouling, antibacterial phenomena, thermoregulation and optics. Lasers are increasingly proving to be promising tools for the precise and controlled structuring of materials at micro- and nano-scales. When ultrashort-pulsed lasers are used, the optimal interplay between laser and material parameters enables structuring down to the nanometer scale. Besides this, a unique aspect of laser processing technology is the possibility for material modifications at multiple (hierarchical) length scales, leading to the complex biomimetic micro- and nano-scale patterns, while adding a new dimension to structure optimization. This article reviews the current state of the art of laser processing methodologies, which are being used for the fabrication of bioinspired artificial surfaces to realize extraordinary wetting, optical, mechanical, and biological-active properties for numerous applications. The innovative aspect of laser functionalized biomimetic surfaces for a wide variety of current and future applications is particularly demonstrated and discussed. The article concludes with illustrating the wealth of arising possibilities and the number of new laser micro/nano fabrication approaches for obtaining complex high-resolution features, which prescribe a future where control of structures and subsequent functionalities are beyond our current imagination. KW - Biomimetic surfaces KW - Laser processing KW - Surface functionalization KW - Bioinspiration KW - Bionic materials PY - 2020 DO - https://doi.org/10.1016/j.mser.2020.100562 SN - 0927-796X VL - 141 SP - 100562-1 EP - 100562-47 PB - Elsevier B.V. AN - OPUS4-50927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolzenberg, U. A1 - Schmitt Rahner, M. A1 - Pullner, B. A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Kluge, M. A1 - Ortner, A. A1 - Hoppe, B. A1 - Krüger, Jörg T1 - X-ray emission hazards from ultrashort pulsed laser material processing in an industrial setting N2 - Interactions between ultrashort laser pulses with intensities larger than 10^13 W/cm^2 and solids during material processing can lead to the emission of X-rays with photon energies above 5 keV, causing radiation hazards to operators. A framework for inspecting X-ray emission hazards during laser material processing has yet to be developed. One requirement for conducting radiation protection inspections is using a reference scenario, i.e., laser settings and process parameters that will lead to an almost constant and high level of X-ray emissions. To study the feasibility of setting up a reference scenario in practice, ambient dose rates and photon energies were measured using traceable measurement equipment in an industrial setting at SCHOTT AG. Ultrashort pulsed (USP) lasers with a maximum average power of 220 W provided the opportunity to measure X-ray emissions at laser peak intensities of up to 3.3 × 10^15 W/cm^2 at pulse durations of ~1 ps. The results indicate that increasing the laser peak intensity is insufficient to generate high dose rates. The investigations were affected by various constraints which prevented measuring high ambient dose rates. In this work, a list of issues which may be encountered when performing measurements at USP-laser machines in industrial settings is identified. KW - X-ray emission hazards KW - Ultrashort pulsed laser KW - Radiation protection KW - Industrial applications KW - Protection housing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538632 DO - https://doi.org/10.3390/ma14237163 SN - 1996-1944 VL - 14 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-53863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Stoian, R. A1 - Bonse, Jörn T1 - Ultrafast Laser Nanostructuring — The Pursuit of Extreme Scales N2 - Long seen as “a solution seeking a problem,” laser pulses are nowadays – more than 60 years after their first practical demonstration – paramount in shaping and structuring matter. Harnessing their capabilities to direct intense beams of light, the number of scientific and technological developments and daily-life applications is continuously increasing. Today, the presence of lasers is ubiquitous in all sites of scientific and technological interest, from the most advanced research laboratories to industrial factories and medical hospitals. The directionality of the laser beam determines equally a local character on lightmatter interaction and as such a local modification to a material target. Furthermore, the coherence of laser radiation enables near-field or far-field scattering and interference effects that widen significantly the capabilities of controlling and tracking laser-matter interactions in space and time. Already with the advent of lasers, powerful beams of light have been directed at solid materials for a variety of purposes, making this application as old as the laser itself. The roots of the major applications for laser structuring were developed already in the 1960s, setting the base of both theoretical and experimental studies on laser ablation, with the number of publications expanding explosively during the next decades. Within this dynamic context, laser processing of materials experienced an impressive development over the years. Laser processing means specifically the capability to structure and tailor a material on its surface or even within its volume, rendering new functions and properties that are impacting the mechanical, electrical, or optical characteristics of the material. These properties are scaledependent, generating thus over the years an equally impressive quest for spatial or temporal resolution. Therefore, the developments in laser engineering with major breakthroughs, notably in pulse duration and power, always closely accompanied the efforts in material structuring with two milestones in sight: (1) yield and (2) resolution. Every step in shrinking the laser pulse duration led to a subsequent strong-impact development in process precision – particularly when the ultrashort pulse durations surpassed the fundamental electron-phonon relaxation times. Thus, minimizing heat diffusion, the advent of pulses with duration smaller than molecular or lattice vibration times has managed to confine the spatial resolution to the optical diffraction limit and sometimes even beyond. The nanoscale was already in sight at the turn of the millennium. An important question may be raised now; is there any fundamental limit in the processing resolution, a barrier defined by the intrinsic properties of light and matter? The answer has an inherently multidisciplinary nature, following the conversion of free-propagating electromagnetic radiation into material-confined energy potentially usable to drive or transform matter, and will be the focus of the present book. Relying on the experience and expertise of the leading researchers in the field, the present book intends to explore the current efforts in achieving laser processing resolution beyond the diffraction limit, laying down a perspective towards extreme laser nanostructuring. Following the most recent advances and developments, it puts forward a concept of extreme processing scales enabled by optical pulses that are able to bypass diffraction limits and achieve structuring characteristic scales beyond 100 nm. This objective can be achieved by a comprehensive understanding on how light can change matter and how, in turn, matter can change light, allowing jointly for actively controlling light and material processes. In order to give an extended perspective on the current state-of-the-art in the field of precision laser structuring, the book is divided into three main parts. The first part of the book (Part I: Fundamental Processes) offers a perspective into the fundamentals of laser-matter interaction on extreme spatial scales, with a description of the most advanced modeling efforts in understanding energy deposition in matter, a plethora of material-relaxation pathways, as well as advanced concepts for probing and observing matter in motion. Roadmaps for energy localization will be developed, and the atomistic perspective of laser ablation visualized. Theoretical modelling enables in-depth insights on ultrafast quantum processes at the nanoscale. Laser-driven self-organization at surfaces will be dissected regarding the question of how light drives material periodic patterns down to the nanoscale, explored and transmitted to its ultimate limits of an atomic printer, and immediately complemented by the unprecedented capabilities of ultrafast in-situ observation approaches for tracking the laser-induced material response with extreme spatial and temporal resolution. In the second part of the book (Part II: Concepts of Extreme Nanostructuring), distinct concepts will be developed and explored that allow confinement of light and harnessing of a material response restricted to nano- or mesoscopic scales at surfaces or in the volume of irradiated materials. A special focus will be on optical near-field related approaches for localizing light on scales even below the optical diffraction limit and plasmonic printing. Spatial and temporal beam-shaping and tailored interference techniques are discussed in the context of ultrashort laser pulses, and insights into some extreme states of matter realized by the tight confinement of laser energy are presented. The ultimate limits of writing waveguides in the bulk of dielectrics and for manifesting 3D-nanolithography are elucidated. Plasma-based surface treatments can significantly enhance the vertical precision of surface processing through etching processes. Finally, the third part of the book (Part III: Applications) leads us to a number of resuming applications, unveiling the tremendous capabilities of surface functionalization through laser micro- and nanostructuring, assessing the 3D-writing of waveguides in the bulk of dielectrics or semiconductors for enabling new branches of integrated photonics, and summarizing related applications ranging from nanophotonics to nanofluidics and from optical sensing to biomedical applications, including the latest capabilities of refractive eye surgery. This part will analyze the applications’ compatibility in yield and reproducibility with current industrial requirements, costs, and intellectual property aspects. It expands the involved spatial scales by more than eight orders of magnitude, when extending extremely small structures featuring sizes of few tens of nanometers to larger dimensions in the meter range. Thus, from surfaces to the bulk, from subtractive to additive manufacturing approaches, from advanced theoretical frames to practical technological processes – we invite the readers here to an exciting journey into the varicolored landscape of extreme laser nanostructuring. The idea of this book project was seeded in early 2020. We were delighted about the numerous and extremely positive responses from the laser-processing community, quickly receiving commitments for more than 30 individual book chapters. About 2500 communications later, the book is published. We would like to thank all authors of this book project for their insightful and detailed chapters, reviewing and reporting on this fascinating topic of the pursuit of extreme scales in ultrafast laser nanostructuring. Moreover, we would like to acknowledge the professional help and guidance of the staff of Springer Nature. Finally, we hope you will enjoy reading this book as much as we have enjoyed putting it together. Saint Etienne, France Razvan Stoian Berlin, Germany Jörn Bonse December 2022 KW - Laser nanostructuring KW - Surface engineering KW - Nonlinear lithography KW - Self-organization KW - Laser-induced periodic surface structures, LIPSS PY - 2023 SN - 978-3-031-14751-7 (Hardcover) SN - 978-3-031-14752-4 (eBook) DO - https://doi.org/10.1007/978-3-031-14752-4 SN - 0342-4111 VL - 239 SP - 1 EP - 1245 PB - Springer Nature Switzerland AG CY - Cham ET - 1 AN - OPUS4-57294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Weimann, T. A1 - Bütefisch, S. T1 - A new XPS test material for more reliable surface analysis of microstructures N2 - Small-area XPS analysis is one of the most popular and powerful methods for analysing the surface of features in the micro-range. When measuring microstructures, the ques-tion arises whether the measuring point is really located at the point intended to be ana-lysed. Information in a measured spectrum might originate within the field of view (FoV) on the surface of the sample, from outside the FoV, or even from inherent contamination. To ensure that small structures can be measured correctly regardless of user and instru-ment, certain instrument and sample settings must be known and selected correctly: beam and aperture size as well as the aperture settings and the approximate dimensions of the structure to be analysed. This is the only way to ensure that the information in the spectrum originates only from the FoV on the analysed structure. To test the performance of the XPS instruments, a dedicated test material was developed that consists of a gold surface on which 8 circles and 8 squares of chrome are incorpo-rated using a masking process, so that the Au substrate and the Cr structure surfaces are in the same surface plane. In order to be able to test as many as possible instruments from different manufacturers, the structures have been designed with a size ranging from 300 µm down to 7 µm. The layout of the test material has been optimised in regard of the handling. The structures are arranged along lines instead of a circumference, marking arrows around the smaller structures (≤50 µm) are added, and the lithography mask is optimised regarding edge and diffraction effects. Furthermore, the manufacturing process was changed from electron-beam deposition to mask lithography due to costs reasons. The structures on the test material were measured with a metrological SEM to determine their accurate dimensions and check the repeatability of the manufacturing process. XPS investigations with a Kratos AXIS Ultra DLD and an ULVAC-Phi Quantes demonstrates the suitability of this new test material for measuring the analysed area. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Small-area XPS KW - Test material KW - Field of view KW - Imaging PY - 2024 AN - OPUS4-60539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - Reference material for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small-area XPS KW - Field of View KW - Imaging XPS KW - Reference Material PY - 2020 AN - OPUS4-51412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, V. A1 - Fahrenson, C. A1 - Thünemann, Andreas A1 - Donmez, M. H. A1 - Voss, L. A1 - Bohmert, L. A1 - Braeuning, A. A1 - Lampen, A. A1 - Sieg, H. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - Current analyses show a widespread occurrence of microplastic particles in food products and raise the question of potential risks to human health. Plastic particles are widely considered to be inert due to their low chemical reactivity and therefore supposed to pose, if at all only minor hazards. However, variable physicochemical conditions during the passage of the gastrointestinal tract gain strong importance, as they may affect particle characteristics. This study aims to analyze the impact of the gastrointestinal passage on the physicochemical particle characteristics of the five most produced and thus environmentally relevant plastic materials polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate and polystyrene. Scanning electron microscopy (SEM) and subsequent image analysis were employed to characterize microplastic particles. Our results demonstrate a high resistance of all plastic particles to the artificial digestive juices. The present results underline that the main stages of the human gastrointestinal tract do not decompose the particles. This allows a direct correlation between the physicochemical particle characteristics before and after digestion. Special attention must be paid to the adsorption of organic compounds like proteins, mucins and lipids on plastic particles since it could lead to misinterpretations of particle sizes and shapes. KW - Artificial digestion KW - Gastrointestinal barrier KW - Microplastic KW - Oral uptake KW - Particle size PY - 2020 DO - https://doi.org/10.1016/j.fct.2019.111010 VL - 135 SP - 111010 PB - Elsevier Ltd. AN - OPUS4-49999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stock, V. A1 - Fahrenson, C. A1 - Voss, L. A1 - Thünemann, Andreas A1 - Boehmert, L. A1 - Sieg, S. A1 - Lampen, A. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - The environmental pollution with plastic debris is one of the great challenges scientists are facing in recent times Due to degradation by UV radiation and other environmental factors, larger pieces of plastic can decompose into microscale fragments which can enter human foodstuff through the food chain or by environmental entry Recent publications show a contamination of various food products with microplastic particles suggesting a widespread exposure Thus, orally ingested plastic particles pose a potential health risk to humans In this study, we investigated the impact of artificial digestive juices on the size and shape of the three environmentally relevant microplastic particles polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC). T2 - 12th International Particle Toxicology CY - Salzburg , Austria DA - 11.09.2019 KW - Microplastic KW - Particle PY - 2019 AN - OPUS4-48847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Nützmann, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Menneken, Martina A1 - Falk, Florian T1 - High temperature oxidation/sulfidation meets X-ray absorption near edge structure spectroscopy (XANES) N2 - Ferritic-martensitic alloys with 12-16 % Cr in weight are subject to devices for various energy systems, such as coal power plants and waste incineration plants. These materials are exposed to a highly corrosive environment which lead to a degradation of the material. Especially the simultaneous oxidation and sulfidation is thereby of special interest. Proper spatially resolved measurements that determine not only chemical compositions but phases are rare. However, precise phase identification and quantification of corrosion products within the multi-phase corrosion scales is a key aspect to understand diffusion paths of metal ions and gas ions/molecules. This study investigated Fe-Cr model alloys with Cr contents from 0 to 13 % in weight in 0.5 % SO2 and 99.5 % Ar atmosphere to aim in a fundamental and systematic analysis. Samples were aged at 650 °C for time scales from 12 h to 250 h. The results presented here correspond to depth dependent phase identification of oxide and sulphide phases in the corrosion scales by using X-ray absorption near edge spectroscopy (XANES). Per sample a series of ca. 20 spots (1-5 µm spot size) from scale-gas to scale-metal interface were measured. XANES spectroscopy was performed at the Fe-K edge (7.11 keV) on polished cross sections. The collected spectra were fitted to a combination of reference materials to quantify the present phases at different positions within the scale.The phase distribution differs with Cr content and the Cr diffusion through pure Fe-oxide and mixed Fe-Cr-oxide phases is discussed. T2 - EFC Workshop "High Temperature Corrosion" CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - High temperature corrosion KW - XANES PY - 2018 AN - OPUS4-47277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Nützmann, Kathrin A1 - Falk, Florian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Witte, Steffen A1 - Radtke, Martin T1 - Early stages of high temperature oxidation/sulfidation studied by synchrotron x-ray diffraction and spectroscopy N2 - Ferritic high temperature alloys are widely used as boiler tube and heat exchanger materials in coal, biomass and co-fired power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres that lead to a change of the material properties and a further degradation of the material. Material changes caused by aging in highly corrosive and toxic gases such as SO2 are mainly studied ex situ after the reaction is finished. The solid material is deposited in the atmosphere for a certain period of time, and material changes are then examined by various microscopic techniques such as optical microscopy (OM), electron microprobe analysis (EMPA), scanning electron microscopy (SEM and TEM) and X-ray diffraction (XRD). Nevertheless, extensive efforts were made to study material changes of high temperature alloys under oxidizing and reducing atmospheres by environmental scanning electron microscopy or in situ TEM techniques However, the possibilities of microscopic in situ techniques are very limited for the use of highly corrosive and toxic gases such as SO2. Since Sulfur induced corrosion at temperatures relevant for coal and biomass fired power plants, which is causing breakaway oxidation and sulfide precipitation at grain boundaries, is still of scientific interest, the current work focuses on the effect of SO2 in an initial stage of corrosion of ferritic alloys. For the analysis of early stages of combined oxidation and sulphidation processes of Fe-Cr model alloys the usage of a light furnace to conduct a rapid reactive annealing experiment is feasible. Previous studies presented distinct results of the influence of chromium on early high temperature corrosion by SO2 by this technique and subsequent classical metallographic analyses. However, it is still not possible to trace the corrosion mechanism in real time by conducting single aging experiments. The current work introduces two different approaches to study the initial stages of high temperature oxidation processes by applying above state of the art X-ray diffraction and spectroscopy methods. One part focuses on the real time observation of the formation of corrosion products such as oxides and sulfides by energy dispersive X-ray diffraction (EDXRD). The potential of this technique to study crystallization and growth processes of thin films in a reactive environment in real time was previously shown for different compound semiconductors. This approach was now applied to follow oxidation and sulphidation processes of ferritic model alloys in SO2 and SO2/H2O environments. The diffraction signals of the X-rays were detected during the corrosion process and the peak area and positions were analyzed as a function of time. This procedure enables monitoring external oxide growth and material loss in real time in an early stage of corrosion. The other part of the current work presents the possibilities of X-ray absorption near edge structure spectroscopy (XANES) to characterize oxide scales and their growth mechanisms. Precise phase identification and quantification of corrosion products in a multi-phase oxide/sulfide scale is a pre-requisite to understand diffusion paths of metal ions and gas components. It is a challenging task to distinguish structurally similar reaction products such as Fe3O4 and FeCr2O4 especially in thin films with texture effects by diffraction. To illustrate for example Cr-out diffusion of an alloy throughout an inner and external oxide scale the differentiation of Fe3O4 and FeCr2O4 is indispensable. XANES uses the photoionization effect at the metal absorption edge in an aging product and accesses by this structural and chemical information. The current work uses XANES at the Fe-K and Cr-K absorption edge to identify various aging products grown as thin layers on alloys after short time aging experiments. A reaction chamber for combining high temperature oxidation experiments with surface sensitive X-ray absorption near edge structure spectroscopy will be introduced and first results of XANES on scales at high temperatures will be presented. T2 - ISHOC 2018 CY - Matsue, Japan DA - 22.10.2018 KW - Corrosion KW - Sulfidation KW - In situ KW - Diffraction KW - XANES PY - 2018 AN - OPUS4-47278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinhoff, U. A1 - Hodoroaba, Vasile-Dan T1 - EMPIR Erläuterung der Fördermaßnahme und Beispiele aus der Nanotechnologie N2 - Das EMPIR-Förderprogramm wird kurz erläutert und laufende Projekte aus der Nanotechnologie werden vorgestellt. Der Schwerpunkt liegt auf Standardisierungsprojekten, die gemeinsam mit ISO/TC 229 'Nanotechnologies' und CEN/TC 352 'Nanotechnologies' zu neuen Normen führen sollten. Als Beispiel für laufende Nanotechnologie-Projekte mit Koordination aus Deutschland werden MagNaStand (PTB) und nPSize (BAM) gegeben. T2 - Treffen des Normungsausschusses NA 062-08-17 AA Nanotechnologien CY - KIT, Karlsruhe, Germany DA - 07.03.2019 KW - EMPIR KW - Nanoparticles KW - Reference materials KW - Particle size distribution KW - Traceability KW - Standardisation PY - 2019 AN - OPUS4-47859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steiner, S. A1 - Heldt, J. A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Frömeling, T. T1 - Influence of oxygen vacancies on core-shell formation in solid solutions of (Na,Bi)TiO3 and SrTiO3 N2 - Solid solutions of (Na,Bi)TiO3 (NBT) and SrTiO3 (ST) are materials of interest for high-strain or high-energy density capacitor applications. Often, they exhibit chemical heterogeneity and develop core-shell structures during regular solid-state synthesis with an NBT-rich core. In this case, the NBT forms first so that the strontium needs to diffuse into the material to reach chemical homogeneity. Depending on the presence of core-shell structures, the electrical properties can vary drastically. In this work, we rationalize the effect of variations in oxygen vacancy concentration by Fe-acceptor and Nb-donor doping. It can be shown that a diffusion couple of strontium and oxygen is responsible for chemical homogenization and that the oxygen vacancy content can control the formation of a core-shell structure. KW - Lead-free ceramics KW - Bismuth titanates KW - Core-shell structures KW - Diffusion/diffusivity KW - Ferroelectricity/ferroelectric materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525988 DO - https://doi.org/10.1111/jace.17845 SP - 1 EP - 10 PB - Wiley Periodicals LLC, John Wiley & Sons, Inc. AN - OPUS4-52598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Editorial for special issue "Formation of sulfate minerals in natural and industrial environments" N2 - Sulfate is abundant in the environment and, as a result, sulfate-containing minerals constitute a large and important focus of research. These minerals play an important role in many geochemical and industrial processes, including the sulfur cycle, the construction industry (e.g., plaster of Paris), fault tectonics, acid mine drainage, and even rare biominerals. Important to note are the abundant amounts of sulfate (minerals) located on the surface of Mars, and in meteorites, extending the relevance of this mineral group beyond the realm of our planet. In geological systems, sulfate minerals such as barite are also important for indicating certain sedimentation environments. In this regard, sulfate deposits can be used to evaluate the redox state of ancient oceans during early Earth time periods. KW - Calcium sulfate KW - Sulfates PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546794 DO - https://doi.org/10.3390/min12030299 SN - 2075-163X VL - 12(3) IS - Special issue "Formation of sulfate minerals in natural and industrial environments" SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-54679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacies associated with the formation of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that the nucleation of calcium sulfate systems occurs nonclassically, involving the aggregation and reorganization of nanosized prenucleation species. In recent work, we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant micrometer-sized CaSO4 crystals. This property of CaSO4 minerals provides us with the unique opportunity to search for evidence of nonclassical nucleation pathways in geological environments. In particular, we focused on large anhydrite Crystals extracted from the Naica Mine in Mexico. We were able to shed light on this mineral's growth history by mapping defects at different length scales. Based on this, we argue that the nanoscale misalignment of the structural subunits, observed in the initial calcium sulfate crystal seeds, propagates through different length scales both in morphological, as well as in strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nonclassical nucleation mechanism introduces a “seed of imperfection,” which leads to a macroscopic “single” crystal whose fragments do not fit together at different length scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very welldefined walls/edges. However, at the same time, the material retains in part its single crystal nature. KW - Calcium sulfate KW - Anhydrite KW - Mesocrystal KW - Nucleation KW - Naica PY - 2021 DO - https://doi.org/10.1073/pnas.2111213118 SN - 0027-8424 VL - 118 IS - 48 SP - 1 EP - 11 PB - National Academy of Sciences (USA) CY - Washington AN - OPUS4-53820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Supplementary data set for "Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals" N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that nucleation in the calcium sulfate system is non-classical, involving the aggregation and reorganization of nanosized prenucleation particles. In a recent work we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant single micron-sized CaSO4 crystals. This property of CaSO4 minerals provides us with an unique opportunity to search for evidence of non-classical nucleation pathways in geological environments. In particular, we focused on the quintessential single crystals of anhydrite extracted from the Naica mine in Mexico. We elucidated the growth history from this mineral sample by mapping growth defects at different length scales. Based on these data we argue that the nano-scale misalignment of the structural sub-units observed in the initial calcium sulfate crystal seed propagate through different length-scales both in morphological, as well as strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nanoparticle mediated nucleation mechanism introduces a 'seed of imperfection', which leads to a macroscopic single crystal, in which its fragments do not fit together at different length-scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. But, at the same time the material retains its essential single crystal nature. These findings shed new light on the longstanding concept of crystal structure. KW - Calcium sulfate KW - Mesocrystal KW - Anhydrite PY - 2021 DO - https://doi.org/10.5281/zenodo.4943234 PB - Zenodo CY - Geneva AN - OPUS4-53765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, Carlos A1 - Montes-Hernández, German A1 - Kochovski, Zdravko A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, Ernesto A1 - Van Driessche, Alexander E.S. T1 - Solution-driven processing of calcium sulfate: The mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Here, we show that calcium sulfate dihydrate (gypsum) can be directly, rapidly and reversibly converted to calcium sulfate hemihydrate (bassanite) in high salinity solutions (brines). The optimum conditions for the efficient production of bassanite in a short time (<5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the better-known behaviour of the bassanite phase in low-salt environments. In low-salinity aqueous solutions, bassanite is considered to be metastable with respect to gypsum and anhydrite, and therefore gypsum-to-bassanite conversion does not occur in pure water. Interestingly, the high-salinity transformation of gypsum-to-bassanite has been reported by many authors and used in practice for several decades, although its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures was inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline phase for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. KW - Industrial and Manufacturing Engineering KW - Strategy and Management KW - General Environmental Science KW - Renewable Energy, Sustainability and the Environment KW - Building and Construction KW - Calcium sulfate KW - Gypsum KW - Bassanite KW - Scattering KW - Raman KW - In situ KW - Synchrotron KW - BESSY KW - MySpot PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594698 UR - https://www.sciencedirect.com/science/article/pii/S0959652624004591#appsec1 DO - https://doi.org/10.1016/j.jclepro.2024.141012 SN - 0959-6526 VL - 440 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-59469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Besselink, R. A1 - Chatzipanagis, K. A1 - Hövelmann, J. A1 - Benning, L. G. A1 - Van Driessche, E. S. T1 - Nucleation Pathway of Calcium Sulfate Hemihydrate (Bassanite) from Solution: Implications for Calcium Sulfates on Mars N2 - CaSO4 minerals (i.e., gypsum, anhydrite, and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed that nucleation in the CaSO4–H2O system is nonclassical, where the formation of crystalline phases involves several steps. Based on these recent insights, we have formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42– ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e., amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units. The thermodynamic (meta)stability of any of the three CaSO4 phases is regulated by temperature, pressure, and ionic strength, with gypsum being the stable form at low temperatures and low-to-medium ionic strengths and anhydrite being the stable phase at high temperatures and at lower temperature for high salinities. Bassanite is metastable across the entire phase diagram but readily forms as the primary phase at high ionic strengths across a wide range of temperatures and can persist up to several months. Although the physicochemical conditions leading to bassanite formation in aqueous systems are relatively well established, nanoscale insights into the nucleation mechanisms and pathways are still lacking. To fill this gap and to further improve our general model for calcium sulfate precipitation, we conducted in situ scattering measurements at small-angle X-ray scattering and wide-angle X-ray scattering and complemented these with in situ Raman spectroscopic characterization. Based on these experiments, we show that the process of formation of bassanite from aqueous solutions is very similar to the formation of gypsum: it involves the aggregation of small primary species into larger disordered aggregates, only from which the crystalline phase develops. These data thus confirm our general model of CaSO4 nucleation and provide clues to explain the abundant occurrence of bassanite on the surface of Mars (and not on the surface of Earth). KW - Gypsum' SAXS KW - Calcium sulfate KW - Bassanite KW - Nucleation PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c01041 VL - 124 IS - 15 SP - 8411 EP - 8422 PB - American Chemical Society AN - OPUS4-50849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, C. A1 - Montes Hernandez, G A1 - Kochovski, Z A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, E A1 - Van Driessche, A T1 - Solution-driven processing of calcium sulfate: the mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Calcium sulfate hemihydrate (CaSO4ᐧ0.5H2O), also known as bassanite, has been used as a precursor to produce gypsum (dihydrate, CaSO4ᐧ2H2O) for various construction and decorative purposes since prehistoric times. The main route to obtain hemihydrate is a thermal treatment of gypsum at temperatures typically between 150 °C and 200 °C to remove some of the structural water. In this contribution, we introduce (Fig. 1) a more efficient and sustainable method (T < 100 °C) that enables the direct, rapid, and reversibly conversion of gypsum to bassanite using reusable high salinity aqueous solutions (brines with c[NaCl] > 4 M). The optimum conditions for the efficientproduction of bassanite in a short time (< 5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the typical behaviour of the bassanite phase in low salt environments. Traditionally, hemihydrate is obtained through a solid state thermal treatment because bassanite is considered to be metastable with respect to gypsum and anhydrite in aqueous solutions, and therefore gypsum-to-bassanite conversion should not occur in water. Its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures is inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline structure for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. T2 - Granada Münster Discussion Meeting GMDM 10 CY - Münster, Germany DA - 29.11.2023 KW - Gypsum KW - Bassanite KW - Calcium sulfate KW - Recycling KW - Scattering PY - 2024 AN - OPUS4-59162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Scattering is a powerful tool to follow nucleation and growth of minerals from solutions N2 - In recent years, we have come to appreciate the astounding intricacy of the processes leading to the formation of minerals from ions in aqueous solutions. The original, and rather naive, ‘textbook’ image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. Does it, however, mean that all the minerals grow through intermediate phases, following a non-classical pathway? In general, the precursor or intermediate species constitute different, often short-lived, points along the pathway from dissolved ions to the final solids (typically crystals in this context). In this regard synchrotron-based scattering (SAXS/WAXS/total scattering) appears to be the perfect tool to follow in situ and in a time-resolved manner the crystallization pathway because of the temporal and spatial length scales that can be directly accessed with these techniques. In this presentation we show how we used scattering to probe the crystallisation mechanisms of calcium sulfate, This system contains minerals that are widespread in diverse natural environments, but they are also important in various industrial settings. Our data demonstrate that calcium sulfate precipitation involves formation and aggregation of sub-3 nm anisotropic primary species. The actual crystallisation and formation of imperfect single crystals of calcium sulfate phases, takes place from the inside of the in itial aggregates. Hence, calcium sulfate follows a non-classical pathway. T2 - X-ray Powder Diffraction at DESY - new opportunities for research and industry CY - Online meeting DA - 22.06.2020 KW - Nucleation KW - Calcium sulfate KW - Diffraction KW - Scattering KW - Synchrotron KW - SAXS/WAXS PY - 2020 AN - OPUS4-50943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Wolf, Jakob A1 - Emmerling, Franziska T1 - Smart Machines, New Materials, Automated Future N2 - In pursuing the automated synthesis of metal nanoparticles (NPs), the capabilities of the “Chemputer” are deployed, for the first time, into the field of inorganic chemistry. Metal NPs have a substantial impact across different fields of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver NPs are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize Ag NPs often do not result in well-defined products, the main obstacles being high polydispersity or a lack of particle size tunability. The Chemputer is a modular, automated platform developed by the Cronin group for execution of multi-step, solution based organic synthesis. The machine has been further implemented at BAM, where we used this setup to perform automated organic syntheses, autonomously controlled by feedback derived from online NMR. In the Chemputer liquids can be transferred across a backbone, constructed from HPLC selection valves and syringe pumps. The Chemputer operates in a batch mode, common laboratory devices, such as heaters and glassware like round bottom flasks, are connected to the backbone, forming reaction modules. Solutions can be manipulated in these modules, and as all operations are controlled through a software script, reproducibility among individual syntheses is high. Likewise, any adjustments of the synthesis conditions, if required, are straightforward to implement and are documented in the reaction log file and a code versioning system. We characterised Chemputer-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. The approach is an important first step towards the automation of nanoparticle syntheses in a modular, multipurpose platform. The modularity of the Chemputer opens many possibilities for the synthesis of a variety of different NP morphologies and sizes and potentially more complex structures. These advances and further work can help in the general investigations of silver nanoparticles by supplying a reliable and reproducible method of their synthesis and removing tacit knowledge by significantly reducing the experimental bias. T2 - Analytica 2022 CY - Munich, Germany DA - 21.06.2022 KW - Automated synthesis KW - Nanoparticles PY - 2022 AN - OPUS4-55198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Evolution of mesoporous frameworks from precipitated struvite-structured metal phosphate materials N2 - Mesoporous transition metal phosphates (TMPs) have attracted major interest due to their high (electro-)catalytic activity suitable for H2 generation, supercapacitors or batteries. Typically, mesoporous materials are synthesized via a template-based route. This way is in the case of TMP because the surfactants used are difficult to remove due to the sensitivity of the mesoporous framework. We present a template-free method including the formation of a precursor phase called M-struvite (NH4MPO4•6H2O, M = Mg2+, Ni2+, Co2+, Ni2+xCo2+1-x) to synthesize mesoporous and amorphous metal phosphates. This method relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneous mesoporous phase associated with the degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the coordination metal coordination environment was followed with diffraction and spectroscopy based in-situ and ex-situ methods. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions between the chemical systems. In a complex amorphous structure, thermal decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes for phosphate materials with a spherical to channel-like pore geometry (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). In addition to this low-cost, environmentally friendly and simple synthesis, M-struvites could grow as a recycling product from industrial and agricultural wastewaters. These waste products could be upcycled through a simple thermal treatment for further applications. T2 - ECCG7, European Conference on Crystal Growth CY - Paris, France DA - 25.07.2022 KW - Transition metals KW - Phosphates KW - Struvite KW - Amorphous phases KW - Mesoporosity PY - 2022 AN - OPUS4-55491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Particle-mediated origins of mesocrystalline disorder in calcium sulfate single crystals N2 - Calcium sulfate minerals are abundant in natural and engineered environments and they exist in the form of three hydrates: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), and anhydrite (CaSO4). Due to their relevance in natural and industrial processes, the formation pathways of these calcium sulfate phases from aqueous solution have been the subject of intensive research1. The state-of-the-art of the calcium sulfate formation mechanisms builds upon and goes beyond what we have come to appreciate in the astounding intricacy of other mineral formation processes from ions in aqueous solutions. The original, and rather naive, 'textbook' image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species2. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. In this context, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of the different crystalline phases involves several steps including a common amorphous precursor1, 3, 4. In this contribution we show that the formation of the amorphous phase involves the aggregation of small primary particles into larger disordered aggregates exhibiting a "brick-in-the-wall" structure5, 6. The actual crystallization occurs by the restructuring and coalescence of the particles ("bricks") into a given calcium sulfate phase depending on the physicochemical conditions of the solution. Importantly, the rearrangement process does not continue until a (nearly-)perfect homogeneous single crystal is obtained. Instead it comes to a stop, or at least significantly slows down. Such a process thus yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous crystal structure, within which the domains are separated by an amorphous (i.e. less ordered) calcium sulfate phase. Hence, the non-classical crystallization process of CaSO4 yields a final imperfect mesocrystal with an overall morphology resembling that of a single crystal, yet composed of smaller nano-domains. Importantly, these observations reveal that organic-free calcium sulfate mesocrystals grown by a particle mediated-pathway preserve in the final crystal structure a “memory” or “imprint” of their non-classical nucleation process, something that has been overlooked until now. Furthermore, the nano-scale misalignment of the structural sub-units within these crystals can propagate through the length-scales, and be expressed macroscopically as misaligned zones/domains in large single crystals (Fig. 1). Indeed, by considering large anhydrite crystals from the famous Naica Mine (“Cueva de los cristales”) we observed a suite of correlated self-similar void defects spanning multiple length-scales7 (Fig 2). These flaws, in the macroscopic crystal, stem from “seeds of imperfection” originating from a particle-mediated nucleation pathway. Hence, building a crystal could be viewed as Nature stacking blocks in a game of Tetris, whilst slowly forgetting the games core concept and failing to fill rows completely. T2 - Granada Münster Discussion Meeting (GMDM) CY - Granda, Spain DA - 30.11.2022 KW - Anhydrite KW - Mesocrystals KW - Calcium sulfate KW - Bassanite KW - Gypsum PY - 2022 AN - OPUS4-56476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. T1 - Particle-mediated origins of mesocrystalline disorder in calcium sulfate single crystals N2 - Calcium sulfate minerals are abundant in natural and engineered environments and they exist in the form of three hydrates: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), and anhydrite (CaSO4). Due to their relevance in natural and industrial processes, the formation pathways of these calcium sulfate phases from aqueous solution have been the subject of intensive research1. The state-of-the-art of the calcium sulfate formation mechanisms builds upon and goes beyond what we have come to appreciate in the astounding intricacy of other mineral formation processes from ions in aqueous solutions. The original, and rather naive, 'textbook' image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species2. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. In this context, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of the different crystalline phases involves several steps including a common amorphous precursor1, 3, 4. In this contribution we show that the formation of the amorphous phase involves the aggregation of small primary particles into larger disordered aggregates exhibiting a "brick-in-the-wall" structure5, 6. The actual crystallization occurs by the restructuring and coalescence of the particles ("bricks") into a given calcium sulfate phase depending on the physicochemical conditions of the solution. Importantly, the rearrangement process does not continue until a (nearly-)perfect homogeneous single crystal is obtained. Instead it comes to a stop, or at least significantly slows down. Such a process thus yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous crystal structure, within which the domains are separated by an amorphous (i.e. less ordered) calcium sulfate phase. Hence, the non-classical crystallization process of CaSO4 yields a final imperfect mesocrystal with an overall morphology resembling that of a single crystal, yet composed of smaller nano-domains. Importantly, these observations reveal that organic-free calcium sulfate mesocrystals grown by a particle mediated-pathway preserve in the final crystal structure a “memory” or “imprint” of their non-classical nucleation process, something that has been overlooked until now. Furthermore, the nano-scale misalignment of the structural sub-units within these crystals can propagate through the length-scales, and be expressed macroscopically as misaligned zones/domains in large single crystals. Indeed, by considering large anhydrite crystals from the famous Naica Mine (“Cueva de los cristales”) we observed a suite of correlated self-similar void defects spanning multiple length-scales7. These flaws, in the macroscopic crystal, stem from “seeds of imperfection” originating from a particle-mediated nucleation pathway. Hence, building a crystal could be viewed as Nature stacking blocks in a game of Tetris, whilst slowly forgetting the games core concept and failing to fill rows completely. T2 - ECCG: European Conference on Crystal Growth 7 CY - Paris, France DA - 25.07.2022 KW - Anhydrite KW - SAXS KW - Single crystal KW - Mesocrystal PY - 2022 AN - OPUS4-56276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Dreissche, A. T1 - Particle-mediated origins of mesocrystallinity in calcium sulfate single crystals N2 - Calcium sulfate minerals are abundant in natural and engineered environments in the form of three phases: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), and anhydrite (CaSO4). Due to their relevance in natural and industrial processes, the formation pathways of these phases from aqueous solution have been the subject of intensive research, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, The formation of the different crystalline phases involves several steps including a common amorphous precursor. In this contribution we show that the formation of the amorphous phase involves the aggregation of small primary particles into larger disordered aggregates exhibiting a "brick-in-the-wall" structure. The actual crystallization occurs by the restructuring and coalescence of the "bricks" into a given calcium sulfate phase depending on the physicochemical conditions of the solution. Such a process yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous single crystal structure. These observations reveal that organic-free calcium sulfate mesocrystals grown by a particle mediated-pathway might preserve in the final crystal structure an “imprint” of their growth pathways. Indeed, by considering large anhydrite crystals from the famous Naica Mine we observed a suite of correlated self-similar void defects spanning multiple length-scales. These flaws, in the macroscopic crystal, stem from “seeds of imperfection” originating from an original particle-mediated growth. Hence, building a crystal could be viewed as Nature stacking blocks in a game of Tetris, whilst slowly forgetting the games core concept and failing to fill rows completely. T2 - GeoMinKöln 2022 CY - Cologne, Germany DA - 11.09.2022 KW - Anhydrite KW - Mesocrystals KW - Calcium sulfate PY - 2022 AN - OPUS4-56277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Scattering is a powerful tool to follow nucleation and growth of minerals from solutions N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. The original ‘textbook’ image o these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species [e.g. 1], including solute clusters (e.g. prenucleation clusters PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc. In general, these precursor or intermediate species constitute different, often short-lived points along the pathway from dissolved ions to the final solids (typically crystals in this context). In this regard synchrotron-based scattering (SAXS/WAXS/HEXD appears to be the perfect tool to follow in situ and in a time-resolved manner the crystallization pathways because of the temporal and spatial length scales that can be directly accessed with these techniques. Here, I show how we used scattering to probe the crystallization mechanisms o calcium sulfate. CaSO4 minerals (i.e. gypsum, anhydrite and bassanite) are widespread in natural and industrial environments. During the last several years, a number o studies have revealed indeed that nucleation in the CaSO4-H2O system is non-classical My SAXS data demonstrate that gypsum precipitation, involves formation and aggregation of sub-3 nm primary species. These species constitute building blocks o an amorphous precursor phase [2]. Further, I show how in situ high-energy X-ray diffraction experiments and molecular dynamics (MD) simulations can be combined to derive the atomic structure of the primary CaSO4 clusters seen at small-angles [3]. fitted several plausible structures to the derived pair distribution functions and explored their dynamic properties using unbiased MD simulations based on polarizable force fields. Finally, based on combined SAXS/WAXS, broad-q-range measurements, show that the process of formation of bassanite, a less hydrated form of CaSO4, is very similar to the formation of gypsum: it also involves the aggregation of small primary species into larger disordered aggregates [4]. Based on these recent insights I formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42- ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e. amorphous) hydrated aggregates which in turn undergo ordering into coherent crystalline units of either gypsum o bassanite (and possibly anhydrite). Determination of the structure and (meta)stability of the primary species is important from both a fundamental, e.g. establishing a general non-classical nucleation model, and applied perspective; e.g. allow for an improved design of additives for greater control of the nucleation pathway T2 - BAM - Abteilungsseminar 6.3 CY - Online meeting DA - 21.02.2021 KW - Scattering KW - SAXS/WAXS KW - Calcium sulfate PY - 2021 AN - OPUS4-53713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - The structure of amorphous calcium sulfate and its role in the nucleation pathway and final mesostructure of CaSO 4 phases N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of the different crystalline phases involves several steps including a common amorphous precursor. In this contribution a holistic view of the formation mechanism of gypsum and bassanite from solution will be presented. In short, our in situ and time-resolved scattering data demonstrate that calcium sulfate precipitation starts with the formation and aggregation of well-defined sub-3 nm primary species. These species constitute building “bricks'' of an amorphous precursor phase. We characterised the “bricks” by combining information obtained at different length-scales accessible at the mesoscale (from small-angle scattering) and at the atomic-length-scale (wide-angle scattering and high-energy diffraction). From these scattering data we derived pair distribution functions of the clusters and restricted their external shapes and dimensions. This allowed us to propose a structure of the primary species and to explore their dynamic properties with unbiased MD simulations using polarizable force fields. The formation of the amorphous phase involves the aggregation of these small primary species into larger disordered aggregates exhibiting “brick-in-the-wall” structure. The actual crystallisation occurs by the restructuring and coalescence of the “bricks” into a given calcium sulfate phase depending on the thermodynamic conditions of the solution. Importantly, these rearrangement processes by no means continue until a (nearly-)perfect homogeneous single crystal is obtained. Instead they come to a stop or at least significantly slow down. Such a process thus yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous crystal structure, within which the domains are separated by an amorphous calcium sulfate phase. T2 - Goldschmidt Virtual 2021 CY - Online meeting DA - 04.07.2021 KW - Amorphous calcium sulfate KW - Scattering KW - SAXS/WAXS PY - 2021 UR - https://2021.goldschmidt.info/goldschmidt/2021/meetingapp.cgi/Paper/3847 AN - OPUS4-53621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, Alexander T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that nucleation in the calcium sulfate system is non-classical, involving the aggregation and reorganization of nanosized prenucleation particles. In a recent work we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant single micron-sized CaSO4 crystals. This property of CaSO4 minerals provides us with an unique opportunity to search for evidence of non-classical nucleation pathways in geological environments. In particular, we focused on the quintessential single crystals of anhydrite extracted from the Naica mine in Mexico. We elucidated the growth history from this mineral sample by mapping growth defects at different length scales. Based on these data we argue that the nano-scale misalignment of the structural sub-units observed in the initial calcium sulfate crystal seed propagate through different length-scales both in morphological, as well as strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nanoparticle mediated nucleation mechanism introduces a 'seed of imperfection', which leads to a macroscopic single crystal, in which its fragments do not fit together at different length-scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. But, at the same time the material retains its essential single crystal nature. These findings shed new light on the longstanding concept of crystal structure. T2 - S4SAS Conference 2021 CY - Online meeting DA - 01.09.2021 KW - SAXS KW - Calcium sulfate KW - Anhydrite KW - Mesocrystals PY - 2021 AN - OPUS4-53630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Scattering is a powerful tool to follow nucleation and growth of minerals from solutions N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. The original ‘textbook’ image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species [e.g. 1], including solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc. In general, these precursor or intermediate species constitute different, often short-lived, points along the pathway from dissolved ions to the final solids (typically crystals in this context). In this regard synchrotron-based scattering (SAXS/WAXS/HEXD) appears to be the perfect tool to follow in situ and in a time-resolved manner the crystallization pathways because of the temporal and spatial length scales that can be directly accessed with these techniques. Here, we show how we used scattering to probe the crystallization mechanisms of calcium sulfate. CaSO4 minerals (i.e. gypsum, anhydrite and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed indeed that nucleation in the CaSO4-H2O system is non-classical. Our SAXS data demonstrate that gypsum precipitation, involves formation and aggregation of sub-3 nm primary species. These species constitute building blocks of an amorphous precursor phase [2]. Further, we show how in situ high-energy X-ray diffraction experiments and molecular dynamics (MD) simulations can be combined to derive the atomic structure of the primary CaSO4 clusters seen at small-angles [3]. We fitted several plausible structures to the derived pair distribution functions and explored their dynamic properties using unbiased MD simulations based on polarizable force fields. Finally, based on combined SAXS/WAXS, broad-q-range measurements, we show that the process of formation of bassanite, a less hydrated form of CaSO4, is very similar to the formation of gypsum: it also involves the aggregation of small primary species into larger disordered aggregates [4]. Based on these recent insights we formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42- ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e. amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units of either gypsum or bassanite (and possibly anhydrite). Determination of the structure and (meta)stability of the primary species is important from both a fundamental, e.g. establishing a general non-classical nucleation model, and applied perspective; e.g. allow for an improved design of additives for greater control of the nucleation pathway. T2 - Annual Meeting of German Crystallographic Society (29. Jahrestagung der Deutschen Gesellschaft für Kristallographie - DGK CY - Online meeting DA - 15.03.2021 KW - Scattering KW - Calcium sulfate KW - SAXS/WAXS PY - 2021 AN - OPUS4-53619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Grabicki, N. A1 - Möckel, Anna A1 - Maltitz, J. A1 - del Refugio Monroy Gómez, J. A1 - Smales, Glen Jacob A1 - Dumele, O. T1 - Substituted Benzophenone Imines for COF Synthesis via Formal Transimination N2 - Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - General Chemistry KW - Ceramics and Composites KW - Electronic, Optical and Magnetic Materials KW - Catalysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586449 DO - https://doi.org/10.1039/D3CC03735E SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk A1 - Ayerdi, J. A1 - Slachciak, Nadine A1 - Llavori, I. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn T1 - Tribological performance of FS-laser-induced periodic surface structures on titanium alloy against different counter-body materials using a ZDDP lubricant additive N2 - In this study the so-called laser-induced periodic surface structures (LIPSS, ripples) were produced on titanium alloy (Ti6Al4V) surfaces upon scan processing in air by a Ti:sapphire femtosecond (fs) laser. The tribological performance of the resulting surfaces was qualified in linear reciprocating sliding tribological tests (RSTT) against balls made of different materials (100Cr6 steel/Al2O3/Si3N4) using different oil-based lubricants. The admixture of the additive 2-ethylhexylzinc-dithiophosphate (ZDDP) to a base oil containing only anti-oxidants and temperature stabilizers disclosed the synergy of the additive with the laser-oxidized nanostructures. This interplay between the laser-textured sample topography and the local chemistry in the tribological contact area reduces friction and wear. T2 - 7th World Tribology Congress - WTC 2022 CY - Lyon, France DA - 11.07.2022 KW - Lubricant additives KW - Laser-induced periodic surface structures (LIPSS) KW - Wear KW - Friction PY - 2022 AN - OPUS4-55318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Souza, B. A1 - Chauque, S. A1 - de Oliveira, P. A1 - Emmerling, Franziska A1 - Torresi, R. T1 - Mechanochemical optimization of ZIF-8/Carbon/S8 composites for lithium-sulfur batteries positive electrodes N2 - The application of lithium-sulfur (Li-S) batteries is still limited by their rapid capacity fading. The pulverization of the sulfur positive electrode after the lithiation and the consequence dissolution of long chain polysulfides in organic solvents lead to the shuttle effect. To address these issues, here we report the mechanochemical preparation of ZIF-8 (Zeolitic Imidazole Framework-8)-based composites as sulfur hosts for positive electrodes in Li-S batteries. We studied different methods for the incorporation of conductive carbon. Also, the replacement of Zn2+ metal centers by other bivalent metals (Cu2+, Co2+ and Ni2+), enabled the preparation of other ZIF-8-based materials. The positive electrode ZIF-8/C/S8 showed initial discharges of 772 mA h g−1 while the pristine one, ZIF-8/S8, displayed 502 mA h g−1. The enhanced performance of 54% for ZIF-8/C/S8 indicates that the direct mechanochemical synthesis of ZIF-8 with conductive carbon is beneficial at initials charge/discharge process in comparison to traditional slurry preparation (ZIF-8/S8). Also, the Li2S6 absorption tests shows 87% of discoloration with ZIF-8/C/S8, confirming the better polysulfides absorption. KW - Lithium-sulfur battery KW - Metal organic frameworks KW - ZIF-8 KW - Mechanochemistry PY - 2021 DO - https://doi.org/10.1016/j.jelechem.2021.115459 VL - 896 SP - 115459 PB - Elsevier B.V. AN - OPUS4-53542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sordello, F. A1 - Prozzi, M. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Pellegrino, F. T1 - Increasing the HER efficiency of photodeposited metal nanoparticles over TiO2 using controlled periodic illumination N2 - Although the use of noble metal catalysts can increase the efficiency of hydrogen evolution reaction, the process is still limited by the characteristics of the metal-hydrogen (M−H) bond, which can be too strong or too weak, depending on the metal employed. Studies revealed that the hydrogen affinity for the metal surface (i.e. H absorption/desorption) is regulated also by the potential at the metal nanoparticles. Through controlled periodic illumination (CPI) of a series of metal/TiO2 suspensions, here we demonstrated that an increase of the HER efficiency is possible for those photodeposited metals which have a Tafel slope below 125 mV. Two possible explanations are here reported, in both of them the M−H interaction and the metal covering level play a prominent role, which also depend on the prevailing HER mechanism (Volmer-Heyrovsky or Volmer-Tafel). KW - Controlled periodic illumination KW - Hydrogen evolution reaction KW - Titanium dioxide KW - Photoreforming KW - Volcano plot KW - Sabatier KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589875 DO - https://doi.org/10.1016/j.jcat.2023.115215 VL - 429 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-58987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Somasundaram, S. K. A1 - Buzanich, Ana A1 - Emmerling, Franziska A1 - Krishnan, S. A1 - Senthilkumar, K. A1 - Joseyphus, R.J. T1 - New insights into pertinent Fe-complexes for the synthesis of iron via the instant polyol process N2 - Chemically synthesized iron is in demand for biomedical applications due to its large saturation magnetization compared to iron oxides. The polyol process, suitable for obtaining Co and Ni particles and their alloys, is laborious in synthesizing Fe. The reaction yields iron oxides, and the reaction pathway remains unexplored. This study shows that a vicinal polyol, such as 1,2-propanediol, is suitable for obtaining Fe rather than 1,3-propanediol owing to the formation of a reducible Fe intermediate complex. X-ray absorption spectroscopy analysis reveals the ferric octahedral geometry and tetrahedral geometry in the ferrous state of the reaction intermediates in 1,2-propanediol and 1,3-propanediol, respectively. The final product obtained using a vicinal polyol is Fe with a γ-Fe2O3 shell, while the terminal polyol is favourable for Fe3O4. The distinct Fe–Fe and Fe–O bond lengths suggest the presence of a carboxylate group and a terminal alkoxide ligand in the intermediate of 1,2-propanediol. A large Fe–Fe bond distance suggests diiron complexes with bidentate carboxylate bridges. Prominent high-spin and low-spin states indicate the possibility of transition, which favors the reduction of iron ions in the reaction using 1,2-propanediol. KW - XAS KW - Nanoparticle PY - 2023 DO - https://doi.org/10.1039/D3CP01969A SN - 1463-9076 VL - 25 IS - 33 SP - 21970 EP - 21980 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solomun, Tihomir A1 - Hahn, Marc Benjamin A1 - Smiatek, J. T1 - Raman spectroscopic signature of ectoine conformations in bulk solution and crystalline state N2 - Recent crystallographic results revealed conformational changes of zwitterionic ectoine upon hydration. By means of confocal Raman spectroscopy and density functional theory calculations, we present a detailed study of this transformation process as part of a Fermi resonance analysis. The corresponding findings highlight that all resonant couplings are lifted upon exposure to water vapor as a consequence of molecular binding processes. The importance of the involved molecular groups for water binding and conformational changes upon hydration is discussed. Our approach further Shows that the underlying rapid process can be reversed by carbon dioxide saturated atmospheres. For the first time, we also confirm that the conformational state of ectoine in aqueous bulk solution coincides with crystalline ectoine in its dihydrate state, thereby highlighting the important role of a few bound water molecules. KW - Fermi resonance KW - Ectoine hydration KW - DFT calculations of Raman spectra KW - Position of carboxylate group PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509855 DO - https://doi.org/10.1002/cphc.202000457 SN - 1439-4235 SN - 1439-7641 VL - 21 IS - 17 SP - 1945 EP - 1950 PB - Wiley-VCH CY - Weinheim AN - OPUS4-50985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Sokolowski-Tinten, K. A1 - Bonse, Jörn A1 - Barty, A. A1 - Chapman, H.N. A1 - Bajt, S. A1 - Bogan, M.J. A1 - Boutet, S. A1 - Cavalleri, A. A1 - Düsterer, S. A1 - Frank, M. A1 - Hajdu, J. A1 - Hau-Riege, S. A1 - Marchesini, S. A1 - Stojanonovic, N. A1 - Treusch, R. ED - Stoian, R. ED - Bonse, Jörn T1 - In-Situ Observation of the Formation of Laser-Induced Periodic Surface Structures with Extreme Spatial and Temporal Resolution N2 - Irradiation of solid surfaces with intense ultrashort laser pulses represents a unique way of depositing energy into materials. It allows to realize states of extreme electronic excitation and/or very high temperature and pressure and to drive materials close to and beyond fundamental stability limits. As a consequence, structural changes and phase transitions often occur along unusual pathways and under strongly nonequilibrium conditions. Due to the inherent multiscale nature—both temporally and spatially—of these irreversible processes, their direct experimental observation requires techniques that combine high temporal resolution with the appropriate spatial resolution and the capability to obtain good quality data on a single pulse/event basis. In this respect, fourth-generation light sources, namely, short wavelength and short pulse free electron lasers (FELs), are offering new and fascinating possibilities. As an example, this chapter will discuss the results of scattering experiments carried out at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nanometer to submicron length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution. KW - Laser-induced periodic surface structures, LIPSS KW - Capillary waves KW - Time-resolved scattering KW - Pump-probe experiments KW - Free electron laser PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 DO - https://doi.org/10.1007/978-3-031-14752-4_6 VL - 239 SP - 257 EP - 276 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Observations of the deuterium distribution and the structural changes in standard and lean duplex stainless steels by ToF-SIMS and EBSD N2 - Duplex (DSS) and austenitic stainless steels (ASS) are frequently used in many energy related applications. The duplex grade is considered to have outstanding mechanical properties as well as good corrosion resistance. The austenitic phase combines high ductility, even at low temperatures, with sufficient strength, and therefore such materials are applied in storage and transport of high-pressure hydrogen. During service in acidic environments large amounts of hydrogen can ingress into the microstructure and induce many changes in the mechanical properties of the steel. Embrittlement of steels by hydrogen remains unclear even though this topic has been intensively studied for several decades. The reason for that lies in the inability to validate the proposed theoretical models in the sub-micron scale. Among the very few available methods nowadays, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) enables a highly accurate mapping of hydrogen in the microstructure in a spatial resolution below 100 nm. In the present work ToF-SIMS was used as a main tool in order to investigate the effect of deuterium on a duplex microstructure of lean and standard DSSs during and after the electrochemical charging process. Electrochemical charging simulates the service of a component in acidic environments under conditions of cathodic protection that are commonly applied to prevent corrosion reactions. ToF-SIMS after multivariate data analysis (MVA) was combined with high resolution topographic images and electron back-scattered diffraction (EBSD) data to characterize the structural changes. It was observed that the ferritic phase was affected almost identical in all steels whereas in the austenitic phase significant differences were obtained in the lean duplex in comparison to the standard DSS. The obtained results have been compared to similar investigations on a AISI 304L austenitic stainless steel. The advantage of the combined techniques is reflected by the ability to correlate the hydrogen distribution in the microstructure and the resulted phase transformation. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgien DA - 29.05.2018 KW - Data-fusion KW - ToF-SIMS KW - PCA KW - DSS KW - LDX KW - EBSD PY - 2018 AN - OPUS4-45094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded T1 - Hydrogen assisted cracking phenomena in duplex stainless steels elucidated by in- and ex-situ ToF-SIMS experiments N2 - In the presented research, the high potential and abilities of secondary ion mass spectrometry (ToF-SIMS) to detect and locally map the hydrogen distribution in two types of duplex stainless steels are shown. The research validates certain proposed mechanisms by combining ToF-SIMS with high-resolution scanning electron microscopy and electron-backscattered diffraction. The combination of data from several techniques on the same region was conducted in this field for the first time by applying data treatment of the ToF-SIMS raw data and data fusion approach. This powerful combination of methods allows reviewing of the occurring processes related to hydrogen assisted cracking. The step beyond the state of the art in this field was gained here by developing permeation and mechanical loading experiments within the ToF-SIMS during chemometric imaging of the hydrogen distribution in the microstructure. The research presents the necessary correlation between the hydrogen distribution and the resulted structural changes, the diffusion behavior in a duplex microstructure and stress induced diffusion of hydrogen by applying external load at the microscale. T2 - 6th WMRIF Early Career Scientist Summit CY - NPL Teddington UK DA - 18.06.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - LDX KW - EBSD KW - Data-fusion PY - 2018 AN - OPUS4-46865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - BAM’s role in materials science and hydrogen in metals: TOF-SIMS imaging N2 - Due to its low mass and high diffusivity in presence of compositional, thermal and mechanical gradients, hydrogen within a metallic microstructure can result in severe loss in ductility even at low concentrations and might lead eventually to a catastrophic and unpredictable failure of structural components during service. In this context, hydrogen mapping at the microscale is still considered among the most important challenges on the pathway towards a better understanding of the hydrogen transport and assisted cracking phenomena in metals, specifically in structural components, e.g. steels. Among the very few available techniques to localize hydrogen at the microscale, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. Based on the assumption that deuterium influence the microstructure similarly to hydrogen, in the following contribution ToF-SIMS was applied as the main technique to detect and locally map the deuterium distribution in several alloys: lean 2101 and standard 2205 duplex stainless steel (DSS), AISI 304L austenitic stainless steel and titanium 6Al-4V alloy. These alloys were selected as case studies in this work due to the wide use of them in many applications and environments which frequently provide critical conditions for hydrogen absorption and assisted degradation. The innovative design of in-situ and ex-situ experiments enabled us to elucidate the permeation, transport and trapping of deuterium in the microstructure in sub-micron resolution for the first time. In addition to the novel experimental setups, further progress was gained by applying computational multivariate data analysis (MVA) on the raw data and data fusion with high resolution structural characterization methods (scanning electron microscopy and electron back-scattered diffraction – SEM/EBSD). This combination allowed us to correlate the deuterium distribution and the influence on the microstructure. T2 - 4th Symposium on Innovative Measurement and Analysis for Structural Materials CY - Tokyo, Japan DA - 13.11.2018 KW - ToF-SIMS KW - Duplex stainless steel KW - Austenitic stainless steel KW - Principal Component Analysis KW - Data-fusion PY - 2018 UR - https://unit.aist.go.jp/tia-co/project/SIP-IMASM/sympo/2018/index.html AN - OPUS4-46867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sobol, Oded T1 - Hydrogen assisted cracking and transport studied by ToF-SIMS and data fusion with HR-SEM N2 - For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments). In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account. Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods. In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were: 1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution. 2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack. 3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure. The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion). The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch. T3 - BAM Dissertationsreihe - 160 KW - Duplex stainless steels KW - Hydrogen assisted cracking KW - Time-of-Flight secondary ion mass spectrometry KW - Data fusion PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447331 SN - 1613-4249 VL - 160 SP - I EP - 180 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smekhova, A. A1 - Kuzmin, A. A1 - Siemensmeyer, K. A1 - Luo, C. A1 - Taylor, J. A1 - Thakur, S. A1 - Radu, F. A1 - Weschke, E. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Xiao, B. A1 - Savan, A. A1 - Yusenko, Kirill A1 - Ludwig, A. T1 - Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale N2 - The huge atomic heterogeneity of high-entropy materials along with a possibility to unravel the behavior of individual components at the atomic scale suggests a great promise in designing new compositionally complex systems with the desired multi-functionality. Herein, we apply multi-edge X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and X-ray magnetic circular dichroism (XMCD)) to probe the structural, electronic, and magnetic properties of all individual constituents in the single-phase face-centered cubic (fcc)-structured nanocrystalline thin film of Cr20Mn26Fe18Co19Ni17 (at.%) high-entropy alloy on the local scale. The local crystallographic ordering and component-dependent lattice displacements were explored within the reverse Monte Carlo approach applied to EXAFS spectra collected at the K absorption edges of several constituents at room temperature. A homogeneous short-range fcc atomic environment around the absorbers of each type with very similar statistically averaged interatomic distances (2.54–2.55 Å) to their nearest-neighbors and enlarged structural relaxations of Cr atoms were revealed. XANES and XMCD spectra collected at the L2,3 absorption edges of all principal components at low temperature from the oxidized and in situ cleaned surfaces were used to probe the oxidation states, the changes in the electronic structure, and magnetic behavior of all constituents at the surface and in the sub-surface volume of the film. The spin and orbital magnetic moments of Fe, Co, and Ni components were quantitatively evaluated. The presence of magnetic phase transitions and the co-existence of different magnetic phases were uncovered by conventional magnetometry in a broad temperature range. KW - Magnetism KW - High-entropy alloys KW - Reverse Monte Carlo (RMC) KW - Element-specific spectroscopy KW - Extended X-ray absorption fine structure (EXAFS), KW - X-ray magnetic circular dichroism (XMCD), PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578254 DO - https://doi.org/10.1007/s12274-022-5135-3 SN - 1998-0124 SP - 5626 PB - Springer AN - OPUS4-57825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smekhova, A. A1 - Kuzmin, A. A1 - Siemensmeyer, K. A1 - Luo, C. A1 - Chen, K. A1 - Radu, F. A1 - Weschke, E. A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill T1 - Al-driven peculiarities of local coordination and magnetic properties in single-phase Alx-CrFeCoNi high-entropy alloys N2 - Modern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. The revealed unimodal and bimodal distributions of all five elements are in agreement with structure-dependent magnetic properties of studied alloys probed by magnetometry. A degree of surface atoms oxidation uncovered by soft X-rays suggests different kinetics of oxide formation for each type of constituents and has to be taken into account. X-ray magnetic circular dichroism technique employed at L2,3 absorption edges of transition metals demonstrates reduced magnetic moments of 3d metal constituents in the sub-Surface region of in situ cleaned fcc-structured Al0.3-CrFeCoNi compared to their bulk values. Extended to nanostructured versions of multicomponent alloys, such studies would bring new insights related to effects of high entropy mixing on low dimensions. KW - X-ray magnetic circular dichroism (XMCD) KW - High-entropy alloys KW - Reverse Monte Carlo KW - Magnetism KW - Element-specific spectroscopy KW - Extended X-ray absorption fine structure (EXAFS) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530668 DO - https://doi.org/10.1007/s12274-021-3704-5 SN - 1998-0124 VL - 15 IS - 6 SP - 4845 EP - 4858 PB - Springer AN - OPUS4-53066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smekhova, A. A1 - Kuzmin, A. A1 - Siemensmeyer, K. A1 - Abrudan, R. A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Schneider, M. A1 - Laplanche, G. A1 - Yusenko, Kirill T1 - Inner relaxations in equiatomic single-phase high-entropy Cantoralloy N2 - The superior properties of high-entropy multi-functional materials are strongly connected with their atomic heterogeneity through many different local atomic interactions. The detailed element-specific studies on a local scale can provide insight into the primary arrangements of atoms in multicomponent systems and benefit to unravel the role of individual components in certain macroscopic properties of complex compounds. Herein, multi-edge X-ray absorption spectroscopy combined with reverse Monte Carlo simulations was used to explore a homogeneity of the local crystallographic ordering and specific structure relaxations of each constituent in the equiatomic single-phase facecentered cubic CrMnFeCoNi high-entropy alloy at room temperature. Within the considered fitting approach, all five elements of the alloy were found to be distributed at the nodes of the fcc lattice without any signatures of the additional phases at the atomic scale and exhibit very close statistically averaged interatomic distances (2.54 – 2.55 Å) with their nearest-neighbors. Enlarged structural displacements were found solely for Cr atoms. The macroscopic magnetic properties probed by conventional magnetometry demonstrate no opening of the hysteresis loops at 5 K and illustrate a complex character of the long-range magnetic order after field-assisted cooling in ± 5 T. The observed magnetic behavior is assigned to effects related to structural relaxations of Cr. Besides, the advantages and limitations of the reverse Monte Carlo approach to studies of multicomponent systems like high-entropy alloys are highlighted. KW - Magnetism KW - High-entropy alloys KW - Reverse Monte Carlo (RMC) KW - Element-specific spectroscopy KW - Extended X-ray absorption fine structure (EXAFS) KW - X-ray absorption near edge structure (XANES) PY - 2022 DO - https://doi.org/10.1016/j.jallcom.2022.165999 SN - 0925-8388 VL - 920 SP - 1 EP - 31 PB - Elsevier AN - OPUS4-55457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_3/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_3 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Synthesis KW - Automation KW - Traceability KW - Procedure PY - 2024 DO - https://doi.org/10.5281/zenodo.11237815 PB - Zenodo CY - Geneva AN - OPUS4-60633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_2/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_2 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Automation KW - Procedure KW - Synthesis KW - Traceability PY - 2024 DO - https://doi.org/10.5281/zenodo.11236074 PB - Zenodo CY - Geneva AN - OPUS4-60611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - The MOUSE project - A meticulous approach for obtaining traceable, wide-range X-ray scattering information N2 - Herein, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for UltrafineStructure Exploration). The MOUSE project provides scattering information on a wide variety of samples, with traceable dimensions for both the scattering vector (q) and the absolute scattering cross-section (I). The measurable scattering vector-range of 0.012≤ q (nm-1) ≤ 92, allows information across a hierarchy of structures with dimensions ranging from ca. 0.1 to 400 nm. In addition to details that comprise the MOUSE project, such as the organisation and traceable aspects, several representative examples are provided to demonstrate its flexibility. These include measurements on alumina membranes, the tobacco mosaic virus, and dual-source information that overcomes fluorescence limitations on ZIF-8 and iron-oxide-containing carbon catalyst materials. KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Traceability KW - Wide-range KW - Data curation KW - FAIR KW - Uncertainties KW - Nanomaterials KW - Nanometrology PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528669 DO - https://doi.org/10.1088/1748-0221/16/06/P06034 VL - 16 IS - 6 SP - 1 EP - 50 PB - IOP CY - Bristol, UK AN - OPUS4-52866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Seitz, H. T1 - X-ray scattering datasets and simulations associated with the publication "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - This dataset contains the processed and analysed small-angle X-ray scattering data associated with all samples from the publications "Bio-SAXS of Single-Stranded DNA-Binding Proteins: Radiation Protection by the Compatible Solute Ectoine" (https://doi.org/10.1039/D2CP05053F). Files associated with McSAS3 analyses are included, alongside the relevant SAXS data, with datasets labelled in accordance to the protein (G5P), its concentration (1, 2 or 4 mg/mL), and if Ectoine is present (Ect) or absent (Pure). PEPSIsaxs simulations of the GVP monomer (PDB structure: 1GV5 ) and dimer are also included. TOPAS-bioSAXS-dosimetry extension for TOPAS-nBio based particle scattering simulations can be obtained from https://github.com/MarcBHahn/TOPAS-bioSAXS-dosimetry which is further described in https://doi.org/10.26272/opus4-55751. This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number 442240902 (HA 8528/2-1 and SE 2999/2-1). We acknowledge Diamond Light Source for time on Beamline B21 under Proposal SM29806. This work has been supported by iNEXT-Discovery, grant number 871037, funded by the Horizon 2020 program of the European Commission. KW - SAXS KW - Radiation protection KW - Microdosimetry KW - G5P KW - Ectoine KW - DNA-Binding protein PY - 2023 DO - https://doi.org/10.5281/zenodo.7515394 PB - Zenodo CY - Geneva AN - OPUS4-56811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, Glen Jacob T1 - Following the formation of zeolites and MOFs in-situ N2 - Porous materials are of a great interest due to their ability to interact with ions and molecules not only on their surface but throughout their bulk. Porous materials are conventionally used in applications; such as ion exchange, adsorption/separation and in catalysis, exploiting the huge internal surface area of highly ordered porous materials. [1, 2] The ability for these materials to succeed, in a particular field, is dependent greatly upon the uniformity of the shape and size of the pores within the material. However, despite how well we are able to understand the stability of 3-D frameworks in crystalline or polycrystalline zeolites and ZIFs, there still remains major limitations in fully understanding the synthetic mechanisms occurring prior to their formation. [3, 4] Though the syntheses of a wide variety of porous solids are already well established, their formation mechanisms continue to be of great interest to both academic and industrial communities, with the thought that with greater understanding of the formation of these solids can lead to their rational design. By obtaining a better knowledge of the underlying nucleation mechanisms, it can allow for increased predictability of new structures and in addition can reveal valuable information regarding the particle dimensions aiding in controlling particle morphology and size. Small-angle and wide-angle X-ray scattering (SAXS/WAXS) are ideal techniques for determining morphological changes in-situ, where the shape, size and crystallinity can be followed at a high temporal resolution, and when these techniques are deployed alongside complimentary techniques, such as ex-situ microscopy, a great deal of information on the formation of materials can be obtained. The above-mentioned methodologies were utilised to study the formation of Silicalite-1 from multiple silica sources to obtain a detailed picture of the formation as a whole, including the formation of intermediate species (Image 1 show the in-situ SAXS data collected from the formation of Silicalite-1 from tetraethyl orthosilicate). In-situ SAXS/WAXS studies were also utilized to observe the formation of ZIF-8 alongside in-situ X-ray absorption spectroscopy (XAS) experiments to probe both the morphological changes, as well as any changes occurring to the local structure during synthesis (Image 2 show the in-situ SAXS data collected from the formation of ZIF-8). These timeresolved in-situ studies have been utilised to follow changes in crystallinity and crystallite size, whilst also providing valuable information on the formation of intermediate species, the nucleation of crystalline ZIFs, and their subsequent growth. References: [1] M E Davis. Nature, 417(6891):813–21, 2002 [2] S T Meek, J A Greathouse, M D Allendorf, Advanced Materials, 23 (2): 249-267, 2011 [3] J Grand, H Awala, CrystEngComm,18 (5): 650–664, 2016 [4] M J V Vleet, T Weng, X Li, J R Schmidt. Chem.Rev.,118 (7): 3681–3721, 2018 T2 - 8th Conference of the Federation of European Zeolite Associations (FEZA 2021) CY - Online meeting DA - 05.07.2021 KW - SAXS KW - Zeolites KW - MOFs KW - In situ PY - 2021 AN - OPUS4-53187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, G. J. A1 - Pauw, Brian Richard T1 - DACHS/MOFs/AutoMOFs_1/Synthesis N2 - The DACHS (Database for Automation, Characterization and Holistic Synthesis) project aims to create completely traceable experimental data, covering syntheses, measurements, analyses, and interpretations. DACHS_MOFs focuses on the synthesis and characterisation of metal-organic frameworks, across multiple, automation-assisted experimental series (AutoMOFs), with the overall goal of producing reproducible MOF samples through tracking of the synthesis parameters. DACHS_MOFs is simultaneously used to test the DACHS principles. This upload contain synthesis data from AutoMOFs_1 in HDF5 format (.h5). Each .h5 file contains detailed information on the chemical, experimenal, and synthesis parameters used during the synthesis of a single AutoMOF sample. KW - Synthesis KW - Automation KW - Traceability KW - Procedure PY - 2024 DO - https://doi.org/10.5281/zenodo.11236031 PB - Zenodo CY - Geneva AN - OPUS4-60243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simões, R. G. A1 - Melo, P. L. T. A1 - Bernardes, C. E. S. A1 - Heilmann, Maria A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Linking Aggregation in Solution, Solvation, and Solubility of Simvastatin: An Experimental and MD Simulation Study N2 - The solubility is generally thought to be higher if the solvent effectively solvates solute molecules that are well-separated from each other. The present work suggests, however, that the formation of large solute aggregates does not necessarily imply less effective solvation and lower solubility. Measurements of the solubility of simvastatin (one of the most commonly prescribed antihyperlipidemic drugs) in three solvents with different polarities and protic characters, led to the solubility order acetone > ethyl acetate > ethanol, in the full temperature range covered by the experiments (283–308 K). An analysis of the structures of the different solutions on the basis of molecular dynamics simulation results indicated that this trend seems to be determined by a balance between the solute tendency toward aggregation and the ability of the solvent to efficiently solvate it, by integrating the cluster structures, regardless of their size, and effectively establishing solvent–solute interactions. KW - Simvastatin KW - Solubility KW - API KW - Aggregation PY - 2021 DO - https://doi.org/10.1021/acs.cgd.0c01325 VL - 21 IS - 1 SP - 544 EP - 551 AN - OPUS4-52185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, P. A1 - Ihlemann, J. A1 - Bonse, Jörn T1 - Editorial: Special issue "Laser-generated periodic nanostructures" N2 - The study of laser-fabricated periodic nanostructures is one of the leading topics of today’s photonics research. Such structures on the surface of metals, semiconductors, dielectrics, or polymers can generate new material properties with special functionalities. Depending on the specific material parameters and the morphology of the structures, new devices such as microlasers, optical nanoswitches, optical storage devices, sensors or antifraud features can be realized. Furthermore, laser-generated surface textures can be used to improve the tribological properties of surfaces in contact and in relative motion—to reduce friction losses or wear, to modify the wettability or the cell and biofilm growth properties of surfaces through bioinspired laser engineering, for emerging medical applications, or as decoration elements for the refinement of precious goods. This Special Issue “Laser-Generated Periodic Nanostructures” focuses on the latest experimental and theoretical developments and practical applications of laser-generated periodic structures that can be generated in a “self-organized” way (laser-induced periodic surface structures, LIPSS, ripples) or via laser interference-based direct ablation (often referred to as direct laser interference patterning, DLIP). We aimed to attract both academic and industrial researchers in order to collate the current knowledge of nanomaterials and to present new ideas for future applications and new technologies. By 8 August 2021, 22 scientific articles have been published in the Special Issue, see www.mdpi.com/journal/nanomaterials/special_issues/laser-generated_periodic. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser interference patterning (DLIP) KW - Surface functionalization KW - Laser ablation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530980 DO - https://doi.org/10.3390/nano11082054 SN - 2079-4991 VL - 11 IS - 8 SP - 1 EP - 7 PB - MDPI CY - Basel AN - OPUS4-53098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simoes, R. A1 - Bernades, C. A1 - Joseph, A. A1 - Piedade, F. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Diogo, H. A1 - da Piedade, M. T1 - Polymorphism in simvastatin: Twinning, disorder, and enantiotropic phase transitions N2 - : Simvastatin is one of the most widely used active pharmaceutical ingredients for the treatment of hyperlipidemias. Because the compound is employed as a solid in drug formulations, particular attention should be given to the characterization of different polymorphs, their stability domains, and the nature of the phase transitions that relate them. In this work, the phase transitions delimiting the stability domains of three previously reported simvastatin forms were investigated from structural, energetics, and dynamical points of view based on single crystal X-ray diffraction (SCXRD), hot stage microscopy (HSM), and differential scanning calorimetry (DSC) experiments (conventional scans and heat capacity measurements), complemented with molecular dynamics (MD) simulations. Previous assignments of the crystal forms were confirmed by SCXRD: forms I and II were found to be orthorhombic (P212121, Z′/Z = 1/4) and form III was monoclinic (P21, Z′/Z = 2/4). The obtained results further indicated that (i) the transitions between different forms are observed at 235.9 ± 0.1 K (form III → form II) and at 275.2 ± 0.2 K (form II → form I) in DSC runs carried out at 10 K min−1 and close to these values when other types of techniques are used (e.g., HSM). (ii) They are enantiotropic (i.e., there is a transition temperature relating the two phases before fusion at which the stability order is reversed), fast, reversible, with very little hysteresis between heating and cooling modes, and occur under single crystal to single crystal conditions. (iii) A nucleation and growth mechanism seems to be followed since HSM experiments on single crystals evidenced the propagation of an interface, accompanied by a change of birefringence and crystal contraction or expansion (more subtle in the case of form III → form II), when the phase transitions are triggered. (iv) Consistent with the reversible and small hysteresis nature of the phase transitions, the SCXRD results indicated that the molecular packing is very similar in all forms and the main structural differences are associated with conformational changes of the “ester tail”. (v) The MD simulations further suggested that the tail is essentially “frozen” in two conformations below the III → II transition temperature, becomes progressively less hindered throughout the stability domain of form II, and acquires a large conformational freedom above the II → I transition. Finally, the fact that these transitions were found to be fast and reversible suggests that polymorphism is unlikely to be a problem for pharmaceutical formulations employing crystalline simvastatin because, if present, the III and II forms will readily convert to form I at ambient temperature. KW - Polymorphism KW - Twinning KW - Disorder KW - Simvastatine PY - 2018 DO - https://doi.org/10.1021/acs.molpharmaceut.8b00818 SN - 1543-8384 SN - 1543-8392 VL - 15 IS - 11 SP - 5349 EP - 5360 PB - American Chemical Society CY - Washington, DC AN - OPUS4-46927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Multiphoton lithography of interpenetrating polymer networks for tailored microstructure thermal and micromechanical properties N2 - Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures. Herein, novel MPL materials based on interpenetrating polymer networks (IPNs) are presented that effectively combine the advantages of acrylate and epoxy systems. IPNs with varying component ratios are investigated for their microfabrication performance and structural integrity with respect to thermal and micromechanical properties. A variety of high-resolution techniques is applied to comprehensively evaluate IPN properties at the bulk, micron, and segmental levels. This study shows that the MPL laser scanning velocity and power, photoinitiator content, and multi-step exposure can be used to tune the morphology and properties of the IPN. As a result, a library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. New IPN microstructures with Young’s moduli of 3–4 MPa demonstrate high-to-fully elastic responses to deformations, making them promising for applications in morphable microsystems, soft micro-robotics, and cell engineering. KW - Interpenetrating polymer network KW - Multiphoton lithography KW - Atomic force microscopy KW - Intermodulation AFM KW - Fast scanning calorimetry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600593 DO - https://doi.org/10.1002/smll.202310580 SN - 1613-6810 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-60059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Text Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of producing 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. However, achieving the desired properties of fabricated microcomponents for a specific application remains a challenge. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters (Figure 1). The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly-sensitive space-resolved methods. Flash scanning calorimetry revealed the influence of both, IPN composition and fabrication parameters, on glass transition temperature and material fragility. AFM force-distance curve and intermodulation methods were used to characterize the mechanical properties with a lateral resolution of 1 micron and 4 nm, respectively. The deformation, stiffness and elastic behavior are discussed in detail in relation to the morphology. Moreover, we found that some 3D IPN microstructures exhibit fully elastic behavior. Our funding encourages the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Micro Nano Engineering (MNE conference) CY - Berlin, Germany DA - 25.09.2023 KW - Interpenetrating polymer network KW - Multiphoton Lithography KW - Two photon polymerisation KW - Direct laser writing KW - Polyethylene glycol diacrylate PY - 2023 AN - OPUS4-58879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Multiphoton lithography (MPL), an emerging microfabrication technique, shows great potential in a variety of applications ranging from tissue engineering to soft micro-robotics. Fabricated micro-objects often are expected to undergo shape morphing or bending. Furthermore, ensuring precise property tuning becomes detrimental for the functionality of MPL microstructures. Herein, we present novel MPL materials based on interpenetrating networks (IPNs), which effectively combine the advantages of acrylate and epoxy thermoset systems. A library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. MPL laser velocity and fabrication power can be used to tune the morphology and therefore properties of IPN. New IPN microstructures with materials Young's moduli of 4 to 6 MPa demonstrate susceptibility to deformation with high to fully elastic response. Such soft elastic materials hold immense promise within morphable microsystems, soft micro-robotics and cell engineering applications. T2 - RSC Poster conference CY - Online meeting DA - 05.03.2024 KW - Multiphoton lithography KW - Interpenetrating polymer networks KW - AFM PY - 2024 AN - OPUS4-60060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating Polymer Networks with Tuned Thermal and Mechanical Properties by Multiphoton Lithography N2 - Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of fabricating 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. Often, the mechanically flexible micro-objects are expected to be capable of shape morphing, bending, or other motion to ensure their functionality. However, achieving the desired properties of MPL-manufactured micro components for a specific application still remains challenging. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at fabrication 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters. The studied mixtures consist of polyethylene glycol diacrylate (PEGDA) and cycloaliphatic epoxide functional groups. Consequently, tryarylsylfonium salt and cyclopentanone photoinitiator tailored for MPL were used to ensure cationic and radical polymerization, respectively. The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly sensitive space-resolved methods. For the first time, we were able to evaluate the glass transition behavior of 3D MPL microstructures using fast scanning calorimetry. The influence of both IPN composition and fabrication parameters on glass transition temperature and material fragility was demonstrated. AFM force-distance curve and intermodulation methods were used to characterize the micromechanical properties with lateral resolution of the techniques in the range of 1 micron and 4 nm, respectively. The elastic-plastic behavior of the microarchitectures was evaluated and explained in terms of IPN morphology and thermal properties. The fabricated 3D IPN microstructures exhibit higher structural strength and integrity compared to PEGDA. In addition, IPNs exhibit high to full elastic recovery (up to 100%) with bulk modulus in the range of 4 to 6 MPa. This makes IPNs a good base material for modeling microstructures with intricate 3D designs for biomimetics and scaffold engineering. The effects of composition and MPL microfabrication parameters on the resulting IPN properties give us a better understanding of the underlying mechanisms and microfabrication-structure-property relationships. Moreover, our funding supports the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Material Research Society Meeting CY - Boston, Massachusetts, USA DA - 26.11.2023 KW - Multiphoton Lithography KW - Two-photon polymerisatio KW - Interpenetrating polymer network PY - 2023 SP - 1 AN - OPUS4-59382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Plajer, A. J. T1 - Thioanhydride/isothiocyanate/epoxide ring-opening terpolymerisation: sequence selective enchainment of monomer mixtures and switchable catalysis N2 - We report a new sequence selective terpolymerisation in which three monomers (butylene oxide (BO) A, PhNCS B and phtalic thioanhydride (PTA) C) are selectively enchained into an (ABA′C)n sequence. PTA/PhNCS/BO ring-opening terpolymerisation ROTERP can be coupled with CS2 ROTERP to generate tetrapolymers and with εDL ROP in switchable catalysis for blockpolymer synthesis. KW - Blockcopolymer KW - 1H-NMR KW - TGA KW - DSC KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552339 DO - https://doi.org/10.1039/d2py00629d SP - 1 EP - 5 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-55233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Ghasem Zadeh Khorasani, Media A1 - Cano Murillo, Natalia A1 - Elert, Anna Maria A1 - Sturm, Heinz ED - Glatzel, T. T1 - Bulk chemical composition contrast from attractive forces in AFM force spectroscopy N2 - A key application of atomic force microscopy (AFM) is the measurement of physical properties at sub-micrometer resolution. Methods such as force–distance curves (FDCs) or dynamic variants (such as intermodulation AFM (ImAFM)) are able to measure mechanical properties (such as the local stiffness, kr) of nanoscopic heterogeneous materials. For a complete structure–property correlation, these mechanical measurements are considered to lack the ability to identify the chemical structure of the materials. In this study, the measured attractive force, Fattr, acting between the AFM tip and the sample is shown to be an independent measurement for the local chemical composition and hence a complete structure–property correlation can be obtained. A proof of concept is provided by two model samples comprised of (1) epoxy/polycarbonate and (2) epoxy/boehmite. The preparation of the model samples allowed for the assignment of material phases based on AFM topography. Additional chemical characterization on the nanoscale is performed by an AFM/infrared-spectroscopy hybrid method. Mechanical properties (kr) and attractive forces (Fattr) are calculated and a structure–property correlation is obtained by a manual principle component analysis (mPCA) from a kr/Fattr diagram. A third sample comprised of (3) epoxy/polycarbonate/boehmite is measured by ImAFM. The measurement of a 2 × 2 µm cross section yields 128 × 128 force curves which are successfully evaluated by a kr/Fattr diagram and the nanoscopic heterogeneity of the sample is determined. KW - AFM force spectroscopy KW - Composites KW - Principle component analysis KW - Structure–property correlation KW - Van der Waals forces PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520175 DO - https://doi.org/10.3762/bjnano.12.5 SN - 2190-4286 VL - 12 IS - 5 SP - 58 EP - 71 PB - Beilstein Institute CY - Frankfurt am Main AN - OPUS4-52017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, Holger A1 - Schaar, Caroline A1 - Fouquet, Nicole A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Braeuning, Albert T1 - Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells N2 - Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded. KW - Toxicology KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593935 DO - https://doi.org/10.1016/j.tiv.2024.105772 VL - 96 SP - 1 EP - 12 PB - Elsevier BV AN - OPUS4-59393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Krause, B.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Laux, P. A1 - Braeuning, A. A1 - Fessard, V. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Cellular Effects of In Vitro-Digested Aluminum Nanomaterials on Human Intestinal Cells N2 - Aluminum (Al) can be taken up from food, packaging, or the environment and thus reaches the human gastrointestinal tract. Its toxic potential after oral uptake is still discussed. The fate of different solid and ionic Al species during the passage through the digestive tract is the focus of this research, as well as the cellular effects caused by these different Al species. The present study combines the physicochemical processing of three recently studied Al species (metallic Al0, mineral Al2O3, and soluble AlCl3) in artificial digestion fluids with in vitro cell systems for the human intestinal barrier. Inductively coupled plasma mass spectrometry (ICP-MS) and small-angle X-ray scattering (SAXS) methods were used to characterize the Al species in the artificial digestion fluids and in cell culture medium for proliferating and differentiated intestinal Caco-2 cells. Cytotoxicity testing and cellular impedance measurements were applied to address the effects of digested Al species on cell viability and cell proliferation. Microarray-based transcriptome analyses and quantitative real-time PCR were conducted to obtain a deeper insight into cellular mechanisms of action and generated indications for cellular oxidative stress and an influence on xenobiotic metabolism, connected with alterations in associated signaling pathways. These cellular responses, which were predominantly caused by formerly ionic Al species and only at very high concentrations, were not impacted by artificial digestion. A two-directional conversion of Al between ionic species and solid particles occurred throughout all segments of the gastrointestinal tract, as evidenced by the presence of nanoscaled particles. Nevertheless, this presence did not increase the toxicity of the respective Al species. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02354 VL - 3 IS - 3 SP - 2246 EP - 2256 PB - American Chemical Society AN - OPUS4-50632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Klusmann, L. A1 - Ellermann, A. L. A1 - Böhmert, L. A1 - Thünemann, Andreas A1 - Braeuning, A. T1 - Counterions determine uptake and effects of aluminum in human intestinal and liver cells N2 - Aluminum (Al) is highly abundant in the biosphere and can occur in different physico-chemical states. It is present in human food and undergoes transitions between dissolved and particulate species during the passage of the gastrointestinal tract. Moreover, in a complex matrix such as food different inorganic and organic counterions can affect the chemical behavior of Al following oral uptake. In this work, the effects of different counterions, namely chloride, citrate, sulfate, lactate and acetylacetonate, on Al uptake and toxicity in the human intestine are studied. The respective Al salts showed different dissolution behavior in biological media and formed nanoscaled particles correlating in reverse with the amount of their dissolved fraction. The passage through the intestinal barrier was studied using a Caco-2 Transwell® system, showing counterion-dependent variance in cellular uptake and transport. In addition, Al toxicity was investigated using Al species (Al3+, metallic Al0 and oxidic γAl2O3 nanoparticles) and counterions individually or in mixtures on Caco-2 and HepG2 cells. The strongest toxicity was observed using a combination of Al species, depending on solubility, and the lipophilic counterion acetylacetonate. Notably, only the combination of both led to toxicity, while both substances individually did not show toxic effects. A toxification of previously non-toxic Al-species by the presence of acetylacetonate is shown here for the first time. The dependency on the concentration of free Al ions was demonstrated using sodium hydrogen phosphate, which was able to counteract the toxic effects by complexing free Al ions. These findings, using Al salts as an example for a common food contaminant, underline the importance of a consideration of the chemical properties of human nutrition, especially dissolution and hydrophobicity, which can significantly influence the cellular uptake and effects of xenobiotic substances. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2022 DO - https://doi.org/10.1016/j.tiv.2021.105295 VL - 79 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-54110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Braeuning, C. A1 - Kunz, B. M. A1 - Daher, H. A1 - Kästner, C. A1 - Krause, B.-C. A1 - Meyer, T. A1 - Jalili, P. A1 - Kogeveen, K. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Burel, A. A1 - Chevance, S. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells N2 - Aluminum (Al) is one of the most common elements in the earth crust and increasingly used in food, consumer products and packaging. Its hazard potential for humans is still not completely understood. Besides the metallic form, Al also exists as mineral, including the insoluble oxide, and in soluble ionic forms. Representatives of these three species, namely a metallic and an oxidic species of Al-containing nanoparticles and soluble aluminum chloride, were applied to human intestinal cell lines as models for the intestinal barrier. We characterized physicochemical particle parameters, protein corona composition, ion release and cellular uptake. Different in vitro assays were performed to determine potential effects and molecular modes of Action related to the individual chemical species. For a deeper insight into signaling processes, microarray transcriptome analyses followed by bioinformatic data analysis were employed. The particulate Al species showed different solubility in biological media. Metallic Al nanoparticles released more ions than Al2O3 nanoparticles, while AlCl3 showed a mixture of dissolved and agglomerated particulate entities in biological media. The protein corona composition differed between both nanoparticle species. Cellular uptake, investigated in transwell experiments, occurred predominantly in particulate form, whereas ionic Al was not taken up by intestinal cell lines. Transcellular transport was not observed. None of the Al species showed cytotoxic effects up to 200 mg Al/mL. The transcriptome analysis indicated mainly effects on oxidative stress pathways, xenobiotic metabolism and metal homeostasis. We have shown for the first time that intestinal cellular uptake of Al occurs preferably in the particle form, while toxicological effects appear to be ion-related. KW - Small-angle x-ray scattering KW - SAXS KW - Nanopatricle PY - 2018 DO - https://doi.org/10.1080/17435390.2018.1504999 SN - 1743-5390 VL - 12 IS - 9 SP - 992 EP - 1013 PB - Taylor & Francis AN - OPUS4-47432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Shard, A. G. A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Introduction N2 - The purpose of this book is to provide a comprehensive collection of analytical methods that are commonly used to measure nanoparticles, providing information on one, or more, property of importance. The chapters provide up-to-date information and guidance on the use of these techniques, detailing the manner in which they may be reliably employed. Within this chapter, we detail the rationale and context of the whole book, which is driven by the observation of a low level of reproducibility in nanoparticle research. The aim of the book is to encourage awareness of both the strengths and weaknesses of the various methods used to measure nanoparticles and raise awareness of the range of methods that are available. The editors of the book have, for many years, been engaged in European projects and standardization activities concerned with nanoparticle analysis and have identified authors who are experts in the various methods included within the book. This has produced a book that can be used as a definitive guide to current best practice in nanoparticle measurement. KW - Nanoparticles KW - Size distribution KW - Shape KW - Chemistry KW - Coating KW - Concentration KW - Standards KW - Charge KW - Characterisation PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00001-8 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-50166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shanmugam, Sankaran A1 - Peterlechner, Martin A1 - Iskandar, Mohamad Riza A1 - Saikia, Ujjal A1 - Kulitckii, Vladislav A1 - Lipińska-Chwałek, Marta A1 - Mayer, Joachim A1 - Rösner, Harald A1 - Hickel, Tilmann A1 - Divinski, Sergiy V. A1 - Wilde, Gerhard T1 - Coherent twin-oriented Al3Sc-based precipitates in Al matrix N2 - Al3(Sc,Zr,Ti) nanoparticles with an ideal twin-type orientation relationship to Al host matrix were found in cold-rolled and subsequently annealed Al-based alloy. Atomic-scale investigations using high-resolution scanning transmission electron microscopy identified particles that form prominent coherent (111) twin-type interfaces along their longer facets and semi-coherent twin interfaces on their shorter facets. Ab-initio calculations showed that a coherent Al/Al3Sc twin-like phase boundary corresponds to a local energy minimum. A model is proposed explaining the formation of the twin orientation relationship of an Al3Sc nanoparticle with the Al host matrix. KW - Al-based alloy KW - Precipitation KW - Twin orientation relationship KW - Ab initio calculations KW - Transition electron microscopy PY - 2023 DO - https://doi.org/10.1016/j.scriptamat.2023.115351 SN - 1359-6462 VL - 229 SP - 1 EP - 6 PB - Elsevier BV AN - OPUS4-58789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sergievskaya, A. A1 - Absil, R. A1 - Chauvin, A. A1 - Yusenko, Kirill A1 - Vesely, J. A1 - Godfroid, T. A1 - Konsstantinidis, S. T1 - Sputtering onto liquids: How does the liquid viscosity affect the formation of nanoparticles and metal films? N2 - This paper reports on the effect of the solvent viscosity on the formation of gold nanoparticles (Au NPs) during Sputtering onto Liquid (SoL) process. All other parameters related to the plasma and the host liquid are kept constant. SoL is a simple highly reproducible approach for preparation of colloidal dispersions of small naked NPs. The properties of the final product are determined by both the sputtering parameters and the host liquid characteristics. As a model system we chose to sputter a gold target by a direct-current magnetron discharge onto a line of polymerized rapeseed oils having similar surface tension (32.6 ― 33.1 mJ·m-2 at RT). It was found that well dispersed Au NPs grow in the bulk solution of oils with low viscosities (below 630 cP at 25 °C) while gold films form onto the surface of high viscosity liquids (more than 1000 cP at 25 °C). The mean diameter of the individual Au NPs slightly increases with oil viscosity and is in range about 2.1―2.5 nm according to transmission electron microscopy. KW - Liquid spattering KW - Nanoparticles PY - 2023 DO - https://doi.org/10.1039/D2CP03038A SN - 1463-9084 VL - 25 IS - 4 SP - 2803 EP - 2809 PB - RSC Publ. CY - Cambridge AN - OPUS4-56562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serebrennikova, P. A1 - Komarov, V. A1 - Sukhikh, A. A1 - Khranenko, S. A1 - Zadesenetz, A. A1 - Gromilov, S A1 - Yusenko, Kirill T1 - [NiEn3](MoO4)0.5(WO4)0.5 co-crystals as single-source precursors for ternary refractory Ni-Mo-W alloys N2 - The co-crystallisation of [NiEn3](NO3)2 (En = ethylenediamine) with Na2MoO4 and Na2WO4 from a water solution results in the formation of [NiEn3](MoO4)0.5(WO4)0.5 co-crystals. According to the X-ray diffraction analysis of eight single crystals, the parameters of the hexagonal unit cell (space group P–31c, Z = 2) vary in the following intervals: a = 9.2332(3)–9.2566(6); c = 9.9512(12)–9.9753(7) Å with the Mo/W ratio changing from 0.513(3)/0.487(3) to 0.078(4)/0.895(9). The thermal decomposition of [NiEn3](MoO4)0.5(WO4)0.5 individual crystals obtained by co-crystallisation was performed in He and H2 atmospheres. The ex situ X-ray study of thermal decomposition products shows the formation of nanocrystalline refractory alloys and carbide composites containing ternary Ni–Mo–W phases. The formation of carbon–nitride phases at certain stages of heating up to 1000 °C were shown. KW - Single source precursors KW - Phase diagrams PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540123 DO - https://doi.org/10.3390/nano11123272 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sentker, K. A1 - Zantop, A. W. A1 - Lippmann, M. A1 - Hofmann, T. A1 - Seeck, O. H. A1 - Kityk, A. V. A1 - Yildirim, Arda A1 - Schönhals, Andreas A1 - Mazza, M. G. A1 - Huber, P. T1 - Quantized self-assembly of discotic rings in a liquid crystal confined in nanopores N2 - Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, onedimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter.We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers’ excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bondorientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature. KW - Discotic liquid crystals KW - Nanopores PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-440253 DO - https://doi.org/10.1103/PhysRevLett.120.067801 SN - ‎0031-9007 SN - 1079-7114 VL - 120 IS - 6 SP - 067801-1 EP - 067801-7 PB - American Physical Society AN - OPUS4-44025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sentker, K. A1 - Yildirim, Arda A1 - Lippmann, M. A1 - Zantop, A. W. A1 - Bertram, F. A1 - Hofmann, T. A1 - Seeck, O. H. A1 - Kityk, A. A1 - Mazza, M. G. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Self-assembly of liquid crystals in nanoporous solids for adaptive photonic metamaterials N2 - Nanoporous media exhibit structures significantly smaller than the wavelengths of visible light and can thus act as photonic metamaterials. Their optical functionality is not determined by the properties of the base materials, but rather by tailored, multiscale structures, in terms of precise pore shape, geometry, and orientation. Embedding liquid crystals in pore space provides additional opportunities to control light–matter interactions at the single-pore, meta-atomic scale. Here, we present temperature-dependent 3D reciprocal space mapping using synchrotron-based X-ray diffraction in combination with high-Resolution birefringence experiments on disk-like mesogens (HAT6) imbibed in self-ordered arrays of parallel cylindrical pores 17 to 160 nm across in monolithic anodic aluminium oxide (AAO). In agreement with Monte Carlo computer simulations we observe a remarkably rich self-assembly behaviour, unknown from the bulk state. It encompasses transitions between the isotropic liquid state and discotic stacking in linear columns as well as circular concentric ring formation perpendicular and parallel to the pore axis. These textural transitions underpin an optical birefringence functionality, tuneable in magnitude and in sign from positive to negative via pore size, pore surface-grafting and temperature. Our study demonstrates that the advent of large-scale, self-organised nanoporosity in monolithic solids along with confinement-controllable phase behaviour of liquid-crystalline matter at the single-pore scale provides a reliable and accessible tool to design materials with adjustable optical anisotropy, and thus offers versatile pathways to finetune polarisation-dependent light propagation speeds in materials. Such a tailorability is at the core of the emerging field of transformative optics, allowing, e.g., adjustable light absorbers and extremely thin metalenses. KW - Discotic Liquid Crystals PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499601 DO - https://doi.org/10.1039/c9nr07143a SP - 1 EP - 14 PB - RSC Royal Society of Chemistry AN - OPUS4-49960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sediqi, Salmin A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - Multi-principal element alloy nanoparticle (MPEA-NP) electrocatalysts prepared by pulsed laser ablation for electroreduction of CO2 N2 - Multi-principal element alloy (MPEA) nanoparticle electrocatalysts have the potential to provide a cost-effective and efficient alternative to noble metal electrocatalysts. The chemically complex nature and the high configurational entropy of MPEAs offer advantages in tailoring catalytic activity, product selectivity, and improved stability under harsh reaction conditions. Cu-containing bimetallic catalyst systems have already been demonstrated to lead to a significant increase in catalytic efficiency compared to monometallic systems. Thus, this project aims at the design of Cu-containing MPEAs and nanoparticle electrocatalysts for carbon dioxide reduction reaction. In this project, base alloys were prepared by means of arc melting with subsequent homogenization treatments and processed by pulsed laser ablation in water and organic solvents into high-purity nanoparticles. The nanoparticles were characterized by means of transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). Electrochemical testing was performed both on bulk alloy samples and nanoparticle film coated glassy carbon electrodes by means of cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Nanoparticle coated electrodes have been investigated by means of atomic force microscopy (AFM) and scanning kelvin probe force microscopy (SKPFM) to assure a homogeneous distribution on the electrode surface. The presentation will summarize our initial results on the electrocatalytic activity of Cu-MPEA system for carbon dioxide reduction. T2 - OPERANDO SPM 2023 CY - Berlin DA - 15.11.2023 KW - Chemically Complex Materials KW - CCMat KW - Electrocatalysis PY - 2023 AN - OPUS4-59402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sediqi, Salmin A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - Multi-principal element alloy nanoparticle (MPEA-NP) electrocatalysts prepared by pulsed laser ablation for electroreduction of CO2 N2 - The motivation and overall objective of the project are to develop electrocatalysts that are free of noble metals (e.g., Pt or Au) and are instead based on medium and high entropy alloys (MEA\HEA) of transition metals for the electrochemical reduction of CO2. The MEA\HEA are multi principal element alloys (MPEAs) consisting of more than three elements with almost equal alloying proportions, forming solid solutions without intermetallic phases. In such a crystal structure, the individual elements are well mixed, and each atom has different nearest neighbours. In catalysis, especially in selectivity, it is precisely this atomic chaos that matters. Due to the large number of possible combinations of elements, these materials offer excellent conditions to tune their functional properties for specific applications. Especially, catalyst systems in which Cu is combined with another metallic component show a significant increase in catalytic efficiency compared to monometallic systems. Since the catalytic activity, selectivity, and stability of electrocatalysts strongly depend on the size and surface, systematic studies on the influence of the organic stabilizers on heterogeneous catalysis are also of interest. The focus of this project is to design Cu-based MEA\HEA electrocatalysts on the atomic level. For this purpose, base alloys will be prepared, processed into high-purity nanoparticles by pulsed laser ablation, and tested as electrocatalysts. T2 - Tag der Chemie 2023 CY - Berlin, Germany DA - 05.07.2023 KW - Chemically Complex Materials KW - CCMat KW - Electrocatalysis PY - 2023 AN - OPUS4-59403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sechi, R. A1 - Fackeldey, K. A1 - Chewle, Surahit A1 - Weber, M. T1 - SepFree NMF: A toolbox for analyzing the kinetics of sequential spectroscopic data N2 - This work addresses the problem of determining the number of components from sequential spectroscopic data analyzed by non-negative matrix factorization without separability assumption (SepFree NMF). These data are stored in a matrix M of dimension “measured times” versus “measured wavenumbers” and can be decomposed to obtain the spectral fingerprints of the states and their evolution over time. SepFree NMF assumes a memoryless (Markovian) process to underline the dynamics and decomposes M so that M = WH, with W representing the components’ fingerprints and H their kinetics. However, the rank of this decomposition (i.e., the number of physical states in the process) has to be guessed from pre-existing knowledge on the observed process. We propose a measure for determining the number of components with the computation of the minimal memory effect resulting from the decomposition; by quantifying how much the obtained factorization is deviating from the Markovian property, we are able to score factorizations of a different number of components. In this way, we estimate the number of different entities which contribute to the observed system, and we can extract kinetic information without knowing the characteristic spectra of the single components. This manuscript provides the mathematical background as well as an analysis of computer generated and experimental sequentially measured Raman spectra. KW - Kinetics from experiments KW - Separability assumption KW - Sequential spectroscopic data PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559046 DO - https://doi.org/10.3390/a15090297 SN - 1999-4893 VL - 15 IS - 9 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schütter, Jan A1 - Pietsch, Franziska A1 - Schreiber, Frank A1 - Koerdt, Andrea A1 - Özcan Sandikcioglu, Özlem T1 - Effect of surface topography and chemistry on the attachment of bacteria on solid surfaces N2 - Microbiologically induced corrosion due to bacterial biofilms causes several problems in industrial systems, technical applications and in medicine. Prior to the formation of a biofilm on a substrate, planktonic cells attach on the surface. Hence, the properties of the surface play a key role in biofilm formation and are of great importance for the development of strategies to prevent bacterial attachment and biofilm formation. This project aims at clarifying to which extent surface micro-/nanostructuring and chemical functionalization affects bacterial attachment and whether a synergistic combination of the two can be used to control bacterial adhesion. To answer these questions, model surfaces with regular patterns of 5-10 micrometers in size have been prepared, which provide distinct zones differing in terms of their chemistry or nano-roughness. This was achieved by micro contact printing of self-assembled monolayers with different functional groups and deposition of patterned ZnO nanorod arrays for studying the effect of surface chemistry and morphology, respectively. Typical contrasts studied were combinations of positively/negatively charged, hydrophobic/hydrophilic or flat/rough. The attachment behavior of bacteria on tailored surfaces were studied in a flow chamber as a function of time. The strain Pseudomonas fluorescens SBW25 was chosen as a model organism. DNA-intercalating dyes such as Syto9 have a high affinity to adsorb on ZnO nanorods. To overcome this limitation a genetic modification was performed by introducing a gene which expresses a green fluorescent protein in P. fluorescens SBW25 enabling the quantitative evaluation of the flow chamber studies by means of fluorescence microscopy. Further analysis of the attachment behavior was performed by means of scanning electron microscopy. The presentation will summarize the results of our systematic study on the role of individual parameters on bacterial attachment and highlight synergistic combinations, showing an inhibition or enhancing effect. As the investigations with model substrates enable a precise control of the surface parameters, this approach can be applied to different microorganisms and material systems to achieve a correlative description of bacterial adhesion on solid surfaces. T2 - Eurocorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Microbial KW - Corrosion KW - MIC KW - Nanorods PY - 2019 AN - OPUS4-49730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schütter, Jan T1 - Tailored Micro- and Nanostructured Surfaces for Bacterial Attachment Studies N2 - To investigate the attachment behavior of bacteria, tailored surfaces are needed. Differences in the chemical charge of the substrate are varied by -COO-, -CH3, -OH, -NH3 terminated functional groups. Regular patterns of them on the surfaces enable bacteria to choose their preferred attachment sides. Tools to tailor the samples are µ-contact printing, self-assembled monolayers and physical vapor deposition. The same concept of preferred sides in patterned surfaces is transferred to the nano- and microroughness which is accomplished by using zinc oxide nanorods synthesis. T2 - PhD Retreat CY - Warnemünde, Germany DA - 28.09.2018 KW - ZnO nanorods KW - µ-contact printing KW - Surface modification KW - Microbial induced corrosion PY - 2018 AN - OPUS4-46577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schönhals, Andreas A1 - Zorn, R. T1 - Elastic scans on highly permeable glassy polynorbornenes N2 - Experimantal Report to proposal 13603: Elastic Scans on Highly Permeable Glassy Polynorbornenes are measured by neutron backscatering and discuused KW - Neutron backscattering KW - Glassy polynorbornenes PY - 2018 SP - 1 EP - 2 CY - Garching (MLZ) AN - OPUS4-45436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schönhals, Andreas A1 - Zorn, R. T1 - Quasi-elastic scattering of high free volume polymers by neutron time-of-flight spectroscopy N2 - Experimental report to proposal 13562 Quasi-elastic scattering of the polymer with intrinsic microporoasity PIM-1 is measured by neutron time-of-flight spectroscopy and discussed. KW - Neutron scattering KW - PIM-1 PY - 2018 SP - 1 EP - 2 CY - Garching AN - OPUS4-46693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönhals, Andreas A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Böhning, Martin A1 - Zamponi, M. A1 - Frick, B. A1 - Appel, M. A1 - Günther, G. A1 - Russina, M. A1 - Alentiev, D. A1 - Bermeshev, M. A1 - Zorn, R. T1 - Microscopic dynamics of highly permeable super glassy polynorbornenes revealed by quasielastic neutron scattering N2 - The molecular dynamics of addition-type poly(tricyclononenes) with Si-substituted bulky side groups has been investigated by a combination of neutron time-of-flight and neutron backscattering spectroscopy methods on a time scale from 0.1 ps to ca. 3 ns. The investigated poly(tricyclononenes) PTCNSi1 and PTCNSi2g both bear a high microporosity which makes them promising candidates for active separation layers for gas separation membranes. At least for larger gas molecules it is assumed that the pathways for diffusion require an enlargement of pre-existing micropores in terms of an activated zone. A low temperature relaxation process was found for both polymers by the performed neutron scattering experiments. This process was assigned to the methyl group rotation. It was analysed in terms of a jump diffusion in a three-fold potential. The analysis of the dependence of the elastic incoherent structure factor on the scattering vector yields the number of methyl groups which might be immobilized. For PTCNSi1 (3 methyl groups in the monomeric unit) it was found that all methyl groups take part in the methyl group rotation whereas for PTCNSi2g (6 methyl groups in monomeric unit) a considerable number of methyl groups are blocked in their rotation. This immobilization of methyl groups is due to the sterically demanding arrangement of the methyl groups in PTCNSi2g. This conclusion is further supported by the result that the activation energy for the methyl group rotation is three times higher for PTCNSi2g than that of PTCNSi1. KW - Highly permeably polynorbornenes KW - Polymers of intrinsic microporosity KW - Gas separation membranes KW - Quasielastic neutron scattering PY - 2021 DO - https://doi.org/10.1016/j.memsci.2021.119972 SN - 0376-7388 VL - 642 PB - Elesevier B.V. AN - OPUS4-53508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Dynamics ooof Composite Materials N2 - Historically, to tune the properties of a polymer or more general soft matter systems by a second phase is not a new concept and dates back to the 40s of the last century. Beside some successes, the improvement of the properties remained somehow limited. The expectations of the enhancement of the properties of composites changed by the developments of Toyota Central research in the 1990s. It was shown that the incorporation of 5 vol% exfoliated layers of a clay system into a polymer leads to a strong improvement of the mechanical and thermal properties. This discovery stimulated a broad research interest of both fundamental and applied character. Today, polymer-based nanocomposites have reached a billion-dollar global market. The corresponding applications span from components for transportation, commodity plastics with enhanced barrier and/or flame retardancy characteristics, to polymers with electrical properties for shielding, electronics, sensors, and solar cells as well as to live science. Important fields are filled rubbers, reinforced thermoplastics, or thermosets for automotive, aircraft/space and marine industries, but also membranes for separation processes as well as barrier layers, just to mention a few. For a variety of applications, the molecular mobility in nanocomposites is of great importance. This concerns the molecular mobility needed to form a percolating filler network in rubbers used in tires or in composites employed in electric shielding applications. In general, it is also essential for processing polymer-based nanocomposites. Furthermore, separation processes in composite materials for membranes require a certain molecular mobility. This also concern nanodielectrics used in electrical applications or sensors where the mobility of charge carriers can be related to the fluctuations of molecular groups etc. Finally, the molecular mobility can be taken as probe for structure on a molecular scale. Broadband dielectric spectroscopy is a powerful tool to investigate the molecular mobility in polymer systems. It is due to the extremely broad frequency and sensitivity range that can be covered by this technique. Information about localized and cooperative molecular fluctuations, polarization effects at interfaces, as well as charge transport processes can be deduced. Therefore, this book focusses on broadband dielectric spectroscopy of composite materials. Moreover, the dielectric studies are accompanied by mechanical spectroscopy, advanced calorimetry, NMR techniques, as well as transmission electron microscopy and X-ray scattering investigations. Besides a brief introduction to (nano)composites, the book aims to address fundamental aspects of the molecular mobility in this innovative group of materials. Selected examples with scientific interest and some cases with high industrial impact were chosen. Due to the breadth of the subject, unfortunately not all topics could be addressed in detail, such as processing for instance. Berlin, Andreas Schönhals July 2021 Paulina Szymoniak KW - Composite materials KW - Nanocomposites PY - 2022 SN - 978-3-030-89722-2 SN - 978-3-030-89723-9 DO - https://doi.org/10.1007/978-3-030-89723-9 VL - 2022 SP - 1 EP - 375 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-54538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schönhals, Andreas A1 - Frick, B. A1 - Zorn, R. ED - Kremer, Friedrich ED - Loidl, Alois T1 - The scaling of the molecular dynamics of liquid crystals as revealed by broadband dielectric, specific heat, and neutron spectroscopy N2 - A combination of different complementary methods is employed to investigate scaling of the molecular dynamics of two different liquid crystals. Each method is sensitive to different kind of fluctuations and provides therefore a different window to look at the molecular dynamics. In detail, broadband dielectric spectroscopy is combined with specific heat spectroscopy and neutron scattering. As systems the nematic liquid crystal E7 and a discotic liquid crystalline pyrene are considered. First of all it was proven that both systems show all peculiarities which are characteristic for glassy dynamics and the glassy state. Especially for the nematic liquid crystal E7 it could be unambiguously shown by a combination of dielectric and specific heat spectroscopy that the tumbling mode is the underlying motional process responsible for glassy dynamics. Dielectric investigations on the discotic liquid crystalline pyrene reveal that at the phase transition from the plastic crystalline to the hexagonal columnar liquid crystalline phase the molecular dynamics changes from a more strong to fragile temperature dependence of the relaxation rates. Moreover a combination of results obtained by specific heat spectroscopy with structural methods allows an estimation of the length scale relevant for the glass transition. KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy KW - Rod-like liquid crystals KW - Discotic liquid crystals PY - 2018 UR - https://link.springer.com/content/pdf/10.1007%2F978-3-319-72706-6.pdf SN - 978-3-319-72705-9 SN - 978-3-319-72706-6 DO - https://doi.org/10.1007/978-3-319-72706-6_9 SN - 2190-930X SN - 2190-9318 SP - 279 EP - 306 PB - Springer International publishing AG CY - Cham, Switzerland ET - 1. AN - OPUS4-45624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schönhals, Andreas A1 - Böhning, Martin A1 - Szymoniak, Paulina ED - Schönhals, Andreas ED - Szymoniak, Paulina T1 - (Nano)Composite Materials—An Introduction N2 - The chapter gives a brief introduction to (nano)compositecomposite materials having the focus on polymer-based nanocomposites. The different dimensionalities of nanoparticles are introduced, along with their distribution in the matrix. Different application fields of polymer-based nanocomposites, like flame retardancy, filled rubbers, nanofilled thermosets and thermoplastics, separation membranes and nanodielectrics, are considered in greater detail. KW - Polymer-based nanocomposites KW - Nanoparticle KW - Distribution of nanoparticles KW - Filled rubbers KW - Filled thermosets and plastics KW - Separation membranes KW - Nanodielectrics PY - 2022 DO - https://doi.org/10.1007/978-3-030-89723-9_1 SP - 1 EP - 31 PB - Springer CY - Cham, Switzerland AN - OPUS4-54565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Yin, Huajie A1 - Konnerts, Nora A1 - Böhning, Martin T1 - Molecular mobility and physical aging of polymers with intrinsic microporosity as revealed by dielectric spectroscopy N2 - The dielectric properties of different polymers with intrinsic microporosity are investigated by braodband dielectric spectroscopy. The results are discussed with regard to the structure T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Polymers with intrinsic microporosity KW - Gas separation membranes KW - Dielectric spectroscopy PY - 2018 AN - OPUS4-44490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -