TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Alcohol-initiated and Tin(II) 2-ethylhexanoate-catalyzed polymerization of L-lactide in bulk – About separate crystallization of cyclic and linear Poly (L-lactide)s N2 - Alcohol-initiated ROPs of L-Lactide were performed at 140 ◦C in bulk with variation of the initiator/catalyst ratio and time. Lower ratios favor the formation of cycles which upon annealing display a change of the MALDI mass peak distribution towards a new maximum with a “saw-tooth pattern” of the mass peaks representing the cycles. Such a pattern was not observed for the mass peak of the linear chains. The coexistence of these patterns indicate that linear and cyclic poly (L-lactide)s (PLA) crystallize in separate crystals, and that the crystallites of the cycles are made up by extended rings. High Tm and ΔHm values confirm that these extended-ring crystallites represent a thermodynamically optimized form of PLA. Experiments with preformed cyclic and linear PLAs support this interpretation. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2023 DO - https://doi.org/10.1016/j.polymer.2023.126355 VL - 285 IS - 126355 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-58355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed and alcohol-initiated ROPs of L-lactide – About the influence of initiators on chemical reactions in the melt and the solid state N2 - SnOct2 (Sn(II) 2-ethylhexanoate) catalyzed ROPs of L-lactide were performed in bulk with eight different alcohols as initiators. The time was varied between 1 h and 24 h for all initiators. For two initiators the temperature was also lowered to 115 ◦C. Even-numbered chains were predominantly formed in all polymerizations at short times, but the rate of transesterification (e.g. even/odd equilibration) and the molecular weight distribution were found to depend significantly on the nature of the initiator. Observed transesterification reactions also continued in solid poly (L-lactide), and with the most active initiator, almost total equilibration was achieved even at 130 ◦C. This means that all chains including those of the crystallites were involved in transesterification reactions proceeding across the flat surfaces of the crystallites. The more or less equilibrated crystalline polylactides were characterized by DSC and SAXS measurements with regard to their melting temperature (Tm), crystallinity and crystal thickness. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization KW - Catalysts KW - SAXS PY - 2021 DO - https://doi.org/10.1016/j.eurpolymj.2021.110508 VL - 153 SP - 110508 PB - Elsevier Ltd. AN - OPUS4-52633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - Polycondensations and Cyclization of Poly(L-lactide) Ethyl Esters in the Solid State N2 - The usefulness of seven different Tin catalysts, Bismuth subsalicylate and Titan tetra(ethoxide) for the polycondensation of ethyl L-lactate (ELA) was examined at 150 °C/6 d. Dibutyltin bis(phenoxides) proved to be particularly effective. Despite the low reactivity of ELA, weight average molecular masses (Mw) up to 12 500 were found along with partial crystallization. Furthermore, polylactides (PLAs) of similar molecular masses were prepared via ELA-initiated ROPs of L-lactide by means of the four most effective polycondensation catalysts. The crystalline linear PLAs were annealed at 140 or 160 °C in the presence of these catalysts. The consequences of the transesterification reactions in the solid PLAs were studied by means of matrix-assisted laser desorption/ionization (MALDI TOF) mass spectrometry, gel permeation chromatography (GPC) and small-angle X-ray scattering (SAXS). The results indicate that polycondensation and formation of cycles proceed in the solid state via formation of loops on the surface of the crystallites. In summary, five different transesterification reactions are required to explain all results. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592934 DO - https://doi.org/10.1039/d3py01232h SN - 1759-9962 VL - 15 IS - 2 SP - 71 EP - 82 PB - RSC Publ. CY - Cambridge AN - OPUS4-59293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Chatti, S. A1 - Kricheldorf, H. R. T1 - About the transformation of low Tm into high Tm poly(L-lactide)s by annealing under the influence of transesterification catalysts N2 - Cyclic polylactides were prepared in bulk at 170 °C, crystallized at 120 °C and then annealed at temperatures between 130 and 170 C with variation of catalyst, catalyst concentration and annealing time. The transformation of the initially formed low melting (LTm) crystallites, having melting temperatures (Tm) <180 °C into high melting (HTm) crystallites having Tm values > 189 °C was monitored by means of DSC measurements and characterized in selected cases by SAXS measurements. It was confirmed that the formation of HTm crystallites involves a significant growth of the thickness of the lamellar crystallites along with smoothing of their surface. Annealing at 170 °C for 1 d or longer causes thermal degradation with lowering of the molecular weights, a gradual transition of cyclic into linear chains and a moderate decrease of lamellar thickness. An unexpected result revealed by MALDI TOF mass spectrometry is a partial reorganization of the molecular weight distribution driven by a gain of crystallization enthalpy. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization KW - Annealing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521062 DO - https://doi.org/10.1039/d0ra10012a VL - 11 IS - 5 SP - 2872 EP - 2883 PB - Royal Society of Chemistry AN - OPUS4-52106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. A1 - Scheliga, F. T1 - Ring-expansion copolymerization of L-lactide and glycolide N2 - 1:1 Copolymerizations of glycolide (GL) and L-lactide (LA) is performed in bulk at 100°C and at 160°C with four cyclic tin catalysts. The resulting copolyesters are characterized by SEC measurements, 1H and 13C NMR spectroscopy and by MALDI TOF mass spectrometry. At 160°C and longer reaction time (22 h) nearly complete conversion of both monomers is achieved, and cyclic copolymers with nearly random sequences are formed. At shorter times (0.5-3.0 h, depending on catalyst) the conversion of LA is incomplete, and only cyclics having even numbers of lactyl units are obtained. At 100°C at 22 h again cycles mainly consisting of even numbered lactyl units are formed, but with even and odd numbers of glycolyl units. Copolymerization of lactide at 160°C with small amounts of GL show that formation of high Tm crystallites (Tm > 190°C) is hindered even when only > 2% of GL is added. For polyglycolide containing a smaller amount of lactide complete solubility in hexafluoroisopropanol is only observed around and above 20 mol% of lactide. KW - Ring-expansion polymerization KW - Copolymerization KW - MALDI-TOF MS KW - L-lactide KW - Glycolide KW - Crystallization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520270 DO - https://doi.org/10.1002/macp.202000307 SN - 1022-1352 VL - 22 IS - 3 SP - 307 PB - WileyVCH AN - OPUS4-52027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed ROPs of L-lactide initiated by acidic OH- compounds: Switching from ROP to polycondensation and cyclization N2 - Ring-opening polymerizations (ROPs) of L-lactide are performed in bulk at 130°C with tin(II) 2-ethylhexanoate as catalyst and various phenols of differentacidity as initiators. Crystalline polylactides having phenyl ester end groups are isolated, which are almost free of cyclics. The dispersities and molecular weights are higher than those obtained from alcohol-initiated ROPs under identical conditions. Polymerizations at 160°C yield higher molecular weights than expected from the monomer/initiator ratio and a considerable fraction of cycles. The fraction of cycles increases with higher reactivity of the ester end group indicating that the cycles are formed by end-to-end cyclization. KW - Polylactide KW - MALDI-TOF MS KW - Polymerization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540250 DO - https://doi.org/10.1002/pol.20210823 SN - 2642-4150 VL - 60 IS - 5 SP - 785 EP - 793 PB - Wiley AN - OPUS4-54025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Spirocyclic bisphenoxides of Ge, Zr, and Sn as catalysts for ring-expansion polymerizations of L- and meso-lactide N2 - Spirocyclic phenoxides of germanium, zirconium, and tin were prepared from 2,20-dihydroxybiphenyl and 2,20-dihydroxy-1,10-binaphthyl. Ring-expansion polymerizations of L-lactide are mainly studied at 160 or 180 °C. The reactivity of the catalysts increases in the order: Zr < Ge < Sn. Regardless of catalyst, the weight-average molecular weights (Mw) never exceed 50,000 g mol−1. The resulting poly(L-lactide)s are optically pure and have a cyclic architecture. Decreasing temperature and time favor Formation of even-numbered cycles, and at 102 ° cyclics, almost free of odd-numbered rings are obtained. Analogous polymerizations of meso-lactide give similar results >120 °C, but different results at 100 or 80 °C. Surprisingly, bell-shaped narrow molecular weight distributions are obtained <140 °C, resembling the pattern of living polymerizations found for alcohol-initiated polymerizations. An unusual transesterification mechanism yielding narrow distributions of odd-numbered cycles is discovered too. KW - Cyclization KW - Polylactides KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Spirocyclic PY - 2018 DO - https://doi.org/10.1002/pola.29259 SN - 0887-624X SN - 1099-0518 VL - 56 IS - 24 SP - 2730 EP - 2738 PB - Wiley Periodicals AN - OPUS4-46498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. T1 - Transesterification in alcohol-initiated ROPs of l- and meso-lactide catalyzed by Sn(II) and Sn(IV) compounds at low temperatures N2 - The purpose of this study is to shed more light on the transesterification processes in alcohol-initiated and tin(II) 2-ethylhexanoate (SnOct2)-catalyzed polymerizations of lactides at low or moderate temperatures. Ethanol-initiated polymerizations are conducted in concentrated solutions at 80 °C and a strong dependence of even/odd equilibration on the alcohol/Sn ratio. Around or above 120 °C cyclization of poly(l-lactide) via “backbiting” occurs as a third mechanism. However, poly(m-lactide) shows a higher cyclization tendency and yields cyclics even at 100 °C. Combinations of ethanol and certain cyclic dibutyltin(IV) catalysts also yield cyclic oligomers of l-lactide at 80 °C. Reaction conditions allowing for a total suppression of all transesterification reactions are not found, but even-numbered poly(m-lactide)s with a purity >95% are obtained at 70 or 60 °C. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Polylactide KW - Transesterification PY - 2018 DO - https://doi.org/10.1002/macp.201800445 SN - 1022-1352 SN - 1521-3935 VL - 219 IS - 24 SP - 1800445, 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-46705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen T1 - MALDI-ToF mass spectrometry for the characterization of biobased polymers suitable for depollution N2 - In this work, bio-based polymers were synthesized and designed as polymers phases for adsorption of a variety of pollutants from aqueous solutions. The obtained adsorption results showed that the integration of bio-sourced synthons generate attractive hydrophilicity, and wettability of the resulting adsorbent phase. Such polymers phases enable stronger interactions with the organic and inorganic pollutants in water. A wide variety of different bio-based polymers structures (e. g. poly(ethersulfones, poly(etherphosphines or poly(etherpyridines) with different functional groups were successfully designed in order to adapt chemical structure to different pollutants type and matrice nature. In order to characterize and to determine the correlation between polymer structures and nature of interaction with pollutants, different analytical technics (NMR, GPC, ATG, DSC, Mass spectrometry) were successfully used. Amongst them, MALDI TOF mass spectrometry plays a superior role since this technique enables the simultaneous determination of the polymer structure, polymer end groups and molecular weight. This work focusses on the characterization of synthesized polymers. The chemical structure of the repeating unit, the nature of the end groups, as well as the molecular weight, which are all important for the specific interactions of the polymer with the pollutants were clearly determined and suggestions to improve these interactions by changing the synthetic pathway could be given. T2 - 12. Journees maghreb-europe. Matériaux et Applications aux Dispositifs et Capteurs CY - Monastir, Tunisia DA - 08.11.2022 KW - MALDI TOF MS KW - Biobased polymers KW - Depollution PY - 2022 AN - OPUS4-56237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen T1 - MALDI-TOF MS in der Synthese hochmolekularer Polylaktid Homo- und Copolymere N2 - Die MALDI-TOF Massenspektrometrie stellt eine wichtige Methode zur simultanen Bestimmung von Molmassen, Molmassenverteilungen und Endgruppen von synthetischen Polymeren dar. In dem Vortrag wird gezeigt, welche zusätzlichen Informationen über die Art der Polymerisation, der Nebenreaktionen und der Topologie der gebildeten hochmolekularen Polylaktid-Homo- und Copolymere im Verlauf ihrer Synthese erhalten werden können. T2 - Bruker Anwendertreffen CY - Online meeting DA - 05.03.2021 KW - MALDI KW - Polylaktide PY - 2021 AN - OPUS4-52278 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kricheldorf, H. A1 - Scheliga, F. T1 - MALDI-TOF-MS for the determination of polymerization mechanisms of biodegradable polymers N2 - Eine neue Art einer Ring-Expansion Polymerization (REP) von zyklischen Polylaktiden mittels neuer Katalysatoren wird präsentiert. MALDI-TOF Massenspektrometrie und andere analytische Techniken wurden zur Aufklärung des Mechanismus eingesetzt. Dabei zeigte sich, dass im Gegensatz zu anderen REP, ausschließlich zyklische Polymere gebildet wurden. Diese stellen neue Kandidatenmaterialien für zukünftige neue CRM dar. T2 - 22. MALDI-Kolloquium CY - Berlin, Germany DA - 15.05.2018 KW - MALDI-TOF MS KW - Polylaktid KW - Zyklen PY - 2018 AN - OPUS4-44835 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kricheldorf, H. T1 - MALDI TOF MS zur Aufklärung von Kristallisationsprozessen in Polyestern N2 - MALDI TOF Massenspektrometrie wurde verwendet, um Kristallisationsprozesse in Polyestern (Polylactide, Polyglycolide) zu untersuchen. Dabei konnte gezeigt werden, dass Zyklen und Linearen simultan, aber in unterschiedlichen Kristalliten, kristallisieren. Die dabei ablaufenden Umesterungen (Transesterifizierungen) konnten mit der MALDI TOF Massenspektrometrie nachgewiesen werden. Damit wurde ein völlig neues Anwendungsgebiet dieser MS Methode demonstriert. T2 - 28. Kolloquium Massenspektrometrie von Polymeren CY - Berlin, Germany DA - 14.05.2024 KW - MALDI TOF MS KW - Bioabbaubare Polymere KW - Crystallinity PY - 2024 AN - OPUS4-60029 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Häusler, I. A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Emmerling, Franziska A1 - Reiss, P. A1 - Resch-Genger, Ute T1 - One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands N2 - The synthesis of two new families of ZnSe magic-sized clusters (MSCs) is achieved using the thiol ligand 1-dodecanethiol in a simple one-pot heat-up approach. The sizes of the MSCs are controlled with the thiol ligand concentration and reaction temperature. KW - ZnSe KW - Magic-sized cluster KW - Dodecanethiol KW - Semiconductor nanocrystals KW - One-pot synthesis PY - 2022 DO - https://doi.org/10.1021/acs.inorgchem.2c00041 VL - 61 IS - 19 SP - 7207 EP - 7211 PB - ACS Publications CY - Washington, DC (USA) AN - OPUS4-54880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Simone A1 - Altmann, Korinna A1 - Wohlleben, W. T1 - Influence of the pH Value to the Degradation of Ester-Based Thermoplastic Polyurethanes N2 - Microplastics are solid polymeric particles with a size of 1-1000 μm (ISO/TR21960:2020), which can be emitted from mismanaged waste into the environment, where microplastic is now ubiquitous. What happens to the microplastics after ending up in the environment, which risks entail and what effects it has are not sufficiently clarified up to now. The most certain issue is that the plastic particles in the environment are exposed to natural ageing, are fragmenting and degrading, such that the potential risk to ecosystems and humans is increasing due to the formation of smaller and smaller particles, potentially even including nanoplastics, if these are ingested before their further degradation. Therefore, and in view of a possible registration of polymers under REACH in the future, it is necessary to investigate the degradation of thermoplastic polyurethanes (TPU) regarding hydrolysis stability to evaluate possible risks and effects to the environment. In the present studies, one thermoplastic polyurethane – with and without hydrolysis stabilizer – is exposed to different pH buffers at 50°C for 14 days to investigate hydrolysis depending to different pH values (acid, alkali and neutral) based on OECD guideline TG111. The hydrolysis behavior of the TPUs is characterized by surface sensitive techniques and on bulk properties. First degradation effects can be detected by SEC. Hydrolysis, especially under acidic and basic conditions, leads to chain scissions to lower molecular masses. Furthermore, the degradation products which indicate the structure of the bulk material were detected by thermo-analytical methods like TGA-FTIR for the small degradation products and the thermo extraction/desorption-gaschromatography/mass spectrometry (TED-GC/MS) for bigger degradation products. Acidic and basic hydrolysis shows the same degradation behavior which is caused by a preferred scission of the ester and urethane functionalities. Surface-sensitive techniques such as XPS demonstrate less carboxylic acid formation at acidic than at alkaline pH value in the TPU without stabilator, where as the TPU with stabilator ages to the same extent in both pH ranges. Altogether, the hydrolysis of TPUs – independently of added stabilizer or not – in acid and alkali environment is accelerated compared to the neutral hydrolysis. T2 - SETAC CY - Dubin, Ireland DA - 30.04.2023 KW - Degradation KW - Thermoplastic Polyurethane KW - Microplastic KW - Polymer Hydrolysis KW - Polymer 3R KW - REACH PY - 2023 AN - OPUS4-58906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane T1 - A µ‐XANES study of the combined oxidation/sulfidation of Fe–Cr model alloys N2 - The precise analysis of cation diffusion profiles through corrosion scales is an important aspect to evaluate corrosion phenomena under multicomponent chemical load, as during high‐temperature corrosion under deposits and salts. The present study shows a comprehensive analysis of cation diffusion profiles by electron microprobe analysis and microbeam X‐ray absorption near edge structure (µ‐XANES) spectroscopy in mixed oxide/sulfide scales grown on Fe–Cr model alloys after exposing them to 0.5% SO2. The results presented here correspond to depth‐dependent phase identification of oxides and sulfides in the corrosion scales by µ‐XANES and the description of oxidation‐state‐dependent diffusion profiles. Scales grown on low‐ and high‐alloyed materials show both a well‐pronounced diffusion profile with a high concentration of Fe3+ at the gas and a high concentration of Fe2+ at the alloy interface. The distribution of the cations within a close‐packed oxide lattice is strongly influencing the lattice diffusion phenomena due to their different oxidation states and therefore different crystal‐field preference energies. This issue is discussed based on the results obtained by µ‐XANES analysis. KW - X-ray absorption spectroscopy KW - Oxidation KW - Sulfidation PY - 2019 DO - https://doi.org/10.1002/maco.201810644 VL - 70 IS - 8 SP - 1360 EP - 1370 PB - Wiley VCH-Verlag AN - OPUS4-47934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Fähler, Sebastian A1 - Fähler, Sebastian T1 - Thermomagnetic generators with magnetocaloric materials for harvesting low grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we give an overview on our research, covering both materials and systems. We demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Though magnetocaloric materials had been the first choice also for thermomagnetic generators, they require some different properties, which we illustrate with Ashby plots for materials selection. Experimentally we compare La-Fe-Co-Si and Gd plates in the same thermomagnetic generator. Furthermore, we discuss corrosion and deterioration under cyclic use is a severe problem occurring during operation. To amend this, composite plates using polymer as a matrix have been suggested previously. T2 - Dresden Days of Magnetocalorics CY - Dresden, Germany DA - 13.11.2023 KW - Thermomagnetic material KW - Waste heat recovery KW - Generator PY - 2023 AN - OPUS4-58865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Grunwald, Marcel A1 - Moosavi, Robabeh A1 - Redmer, Bernhard A1 - Nazarzadehmoafi, Maryam T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - TU Chemnitz Vortrag CY - Chemnitz, Germany DA - 04.11.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Materials Science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Moosavi, Robabeh A1 - Redmer, Bernhard A1 - Nazarzadehmoafi, Maryam A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - Dcms CY - Stockholm, Sweden DA - 28.08.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocoloric KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Nazarzadehmoafie, Maryam T1 - X-ray non-destructive testing of materials and composites N2 - Functional materials for energy conversion are important technology drivers needed for the implementation of low carbon energy. Therefore, researchers commonly focus on improving the intrinsic properties of a functional material. However, for applications, the extrinsic properties are at least as important as the intrinsic ones. Consequently, it is important to investigate and understand the external and internal structure of semi-finished products and especially defect dependent properties. The extrinsic properties may change during application and the life cycle of the material as well as through processing and molding steps. Our studies show how X-ray tomographic (XCT) investigations can contribute to structure investigations in composites and massive samples using the example of magnetic materials for energy conversion. The components are tested non-destructively in 3D in order to localize and characterize cracks, pores, inclusions as well as other defects and their influence on the functional properties and also “in-time” during the life cycle of the material. Exsitu and in-situ experiments performed with non-destructive XCT are predestinated to follow damaging mechanisms of materials under certain load conditions, atmospheres or liquids, e.g. went through several working cycles of a functional material. By combining microtomography with other methods of magnetic and classical material characterization, unique statements about the structure and the functional properties can be made. From the applications point of view, sometimes complex, three-dimensional geometries are needed to fully exploit the functional properties of the materials, e.g. to ensure a high surface area for heat exchange. Since many functional materials are brittle and difficult to form, shaping is often a big challenge. In principle, additive manufacturing processes offer the possibility to produce complex, porous components from poorly formable alloys. If all stages of additive manufacturing are accompanied by X-ray tomographic imaging, the process of finding the optimal parameters for material processing can be significantly accelerated. Based on the quality control of the initial powder material used and also investigations of the shape and arrangement of defects within the molten structure and their relationship with the melting path scanning strategy, Xray tomography has proven to be an ideal tool for additive manufacturing, even for functional materials. Overall, tomographic methods are important tools for the development of functional materials to application maturity. T2 - Physikalisches Kolloquium TU Chemnitz CY - Chemnitz, Germany DA - 04.12.2019 KW - Non-destructuve testing KW - X-ray imaging KW - Additive manufacturing KW - Materials science PY - 2019 AN - OPUS4-50100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Ethics in research for PhD students N2 - The talk gives a short overview and explains basic principles of research ethics for PhD students. We examine the most important principles in the codes of conduct for good scientific practice on EU and national level. Based on these general rules, we give some hands-on practical tips for daily scientific work and discuss in detail one of the fields most susceptible to conflict, the topic of authorship in scientific publications. T2 - Kick-off meeting ITN USES2 CY - Online meeting DA - 09.11.2023 KW - Research ethics KW - PhD training PY - 2023 AN - OPUS4-58783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Zarinwall, A. A1 - Silbernagl, Dorothee A1 - Garnweitner, G. A1 - Sturm, Heinz T1 - Mechanical coupling of matrix and nanoparticles depending on particle surface modification N2 - Boehmite nanoparticles has been successfully functionalized with APTES. After APTES functionalization further modification with tailored molecules e.g. via carboxylic acids is possible. The tailored surface functionalization is strongly enhanced by improved coupling protocols. Arbitrary variation of the functionalization degree is possible. Thereby the temperature stable APTES functionalization enables a wide range of functional groups. By TGA-MS analysis strong evidence for the bonding situation of the APTES on the boehmite surface has been found. Additionally first experiments has been performed to predict the polymer-particle compatibility enhancement via reverse wetting angle measurements with AFM. T2 - Workshop Acting Principles of Nano-Scaled Matrix Additives for Composite Structures CY - BAM, Berlin, Germany DA - 11.10.2019 KW - Surface modification KW - Nanocomposites KW - Boehmite KW - Silane KW - Thermogravimetry KW - Mass spectrometry PY - 2019 AN - OPUS4-49435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Braun, U. A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The impact of water released from boehmite nanoparticles during curing in epoxy-based nanocomposites N2 - The enhancing effect on mechanical properties of boehmite (γ-AlOOH) nanoparticles (BNP) in epoxy-based nanocomposites on the macroscopic scale encouraged recent research to investigate the micro- and nanoscopic properties. Several studies presented different aspects relatable to an alteration of the epoxy polymer network formation by the BNP with need for further experiments to identify the mode of action. With FTIR-spectroscopic methods this study identifies interactions of the BNP with the epoxy polymer matrix during the curing process as well as in the cured nanocomposite. The data reveals that not the BNP themselves, but the water released from them strongly influences the curing process by hydrolysis of the anhydride hardener or protonation of the amine accelerator. The changes of the curing processes are discussed in detail. The changes of the curing processes enable new explanation for the changed material properties by BNP discussed in recent research like a lowered glass transition temperature region (Tg) and an interphase formation. KW - Spectroscopy KW - Aluminium oxide hydroxide KW - Glass transition temperature KW - Material chemistry KW - Nanocomposites KW - Structure-property relationship PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527202 DO - https://doi.org/10.1002/app.51006 VL - 138 IS - 39 SP - 51006 PB - Wiley Periodicals LLC CY - Hoboken AN - OPUS4-52720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Altmann, Korinna T1 - MNP test and reference material production N2 - Reference materials are essential to analyze the impact of micro- and nanoplastics. The particle size D50 has been chosen as property of interest. They can be produced top-down by milling. For size separation down to a particle size D50 of 50 µm sieving is suitable while smaller particle sizes can be obtained by filtration. After production it is important to control the stability because microplastic in the size range below 10 µm tend to agglomerate. T2 - CUSP early-stage researchers meeting CY - Online meeting DA - 08.11.2022 KW - Particale size KW - Microplastic KW - Reference material KW - Cryo milling KW - Polymer PY - 2022 AN - OPUS4-56214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Crasselt, Claudia A1 - Altmann, Korinna T1 - The practical implementation of MP reference material production according to ISO standards N2 - Micro- and nanoplastic particles became a topic of public concern all over the world e.g. in water, soil, sludge and air. For a profound risk assessment, it is necessary to identify the origins, hotspots, or transport between different media. Therefore, a representative repeatable analysis is required and reference materials (RM) to proof and compare methods. The basis of MNP investigations is a harmonized analysis which includes sampling, sample preparation and detection. In recent years, spectroscopic methods like µRaman and µFTIR for the determination of particle numbers or thermoanalytical methods like Pyrolysis gas chromatography/mass spectrometry (py-GC/MS) and Thermo extraction/ desorption gas chromatography / mass spectrometry (TED-GC/MS) for mass determination have proven to be particularly suitable. The technical committees (TC) of ISO TC 61 “plastics” and TC 147 “water quality" are working on harmonisation processes on international level. For all standardization approaches, it is necessary that the detection methods and analysis processes can be validated. Therefore, BAM develops reference material for microplastic (MP) analysis for several years with focus on the most common polymers PE, PP, PS, PET and PA. MP particles with a close to reality fragment shape are obtained by cryomilling and sieving. For sample preparation purposes with mass detection methods MP particles are pressed into pills with a water-soluble matrix. Thereby losses due to sample preparation e.g. filtration are included in the verification of an analysis. To ensure a constant quality throughout all MP RM batches the homogeneity and stability is controlled according to ISO Guide 35. Next to TED-GC/MS measurements particle size distribution, infrared spectroscopy and differential scanning calorimetry spectra are taken as accompanying parameters. This presentation aims to introduce into the MP RM production process with ensured quality and special focus on pointing out customized setups for particle comminution, separation, and characterization for standardization. T2 - ASTM Syposioum on Microplastic Analytical and Reference Standards - Opportunities to Advance Microplastic Science CY - Seattle, WA, USA DA - 30.06.2022 KW - Microplastic KW - Reference material KW - Cryo milling KW - Polymer PY - 2022 AN - OPUS4-55891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Ghasem Zadeh Khorasani, Media A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Water as side effect of reinforcing boehmite filler Local changes in anhydride cured epoxy resin N2 - Nanocomposites offer wide opportunities for lightweight constructions and enable reduction of weight and volume. Beside macroscopic toughening nanoparticle reinforced polymers show a soft interface around boehmite (AlOOH) filler nanoparticles. A related strong interaction between boehmite and the anhydride cured resin system is widely suspected in literature but not determined by structural Analysis. Determination of the molecular structure is important to allow simulations approaching the real system and predict future reinforcing effects. DRIFT (diffuse refletance infrared fourier transformed) spectra of the boehmite reinforced anhydride cured epoxy show significant changes in the molecular structure compared to the neat polymer. Further investigations of the interactions between the single components of the resin system and the boehmite filler pointed out reactions between released water released from the boehmite filler and the anhydride hardener or amine accelerator. This leads to the discussion of competing polymerisation mechanisms that highly influence the polymer properties. Ongoing experiments and literature research approve that this impact of water is able to locally change the stoichiometrie, alter the curing mechanism or support an inhomogeneous crosslink density. T2 - Polydays 2019 CY - Erwin-Schrödinger-Zentrum, Berlin Adlershof, Germany DA - 11.09.2019 KW - Nanocomposites KW - Epoxy KW - FTIR spectroscopy KW - Boehmite alumina PY - 2019 AN - OPUS4-49010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Ghasem Zadeh Khorasani, Media A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - New Focus On Boehmite-Reinforced Nanocomposites Molecular Approach With Advanced FTIR-Techniques N2 - By FTIR-study it was possible to proof a chemical reaction between boehmite and the hardener of anhydride cured epoxy resins. Future studies can assume that the chemical environment of the resin system is changed in the surrounding of boehmite nanoparticles. This highly affects especially localized properties. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Nanocomposite KW - Boehmite KW - FTIR KW - DRIFTS KW - Epoxy PY - 2019 AN - OPUS4-47785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Z. A1 - Villa Santos, C. A1 - Legrand, A. A1 - Haase, F. A1 - Hara, Y. A1 - Kanamori, K. A1 - Aoyama, T. A1 - Urayama, K. A1 - Doherty, C. M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Colon, Y. J. A1 - Furukawa, S. T1 - Multiscale structural control of linked metal–organic polyhedra gel by aging-induced linkage-reorganization N2 - Assembly of permanently porous metal–organic polyhedra/cages (MOPs) with bifunctional linkers leads to soft supramolecular networks featuring both porosity and processability. However, the amorphous nature of such soft materials complicates their characterization and thus limits rational structural control. Here we demonstrate that aging is an effective strategy to control the hierarchical network of supramolecular gels, which are assembled from organic ligands as linkers and MOPs as junctions. Normally, the initial gel formation by rapid gelation leads to a kinetically trapped structure with low controllability. Through a controlled post-synthetic aging process, we show that it is possible to tune the network of the linked MOP gel over multiple length scales. This process allows control on the molecular-scale rearrangement of interlinking MOPs, mesoscale fusion of colloidal particles and macroscale densification of the whole colloidal network. In this work we elucidate the relationships between the gel properties, such as porosity and rheology, and their hierarchical structures, which suggest that porosity measurement of the dried gels can be used as a powerful tool to characterize the microscale structural transition of their corresponding gels. This aging strategy can be applied in other supramolecular polymer systems particularly containing kinetically controlled structures and shows an opportunity to engineer the structure and the permanent porosity of amorphous materials for further applications. KW - SAXS KW - Metal-organic polyhedra KW - Structural control PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532309 DO - https://doi.org/10.1039/d1sc02883a SN - 1478-6524 SN - 1742-2183 VL - 12 IS - 38 SP - NIL_1 EP - NIL_9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-53230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Ning A1 - Hammerschmidt, Thomas A1 - Hickel, Tilmann A1 - Rogal, Jutta A1 - Drautz, Ralf T1 - Influence of spin fluctuations on structural phase transitions of iron N2 - The effect of spin fluctuations on the α(bcc)-γ(fcc)-δ(bcc) structural phase transitions in iron is investigated with a tight-binding (TB) model. The orthogonal d-valent TB model is combined with thermodynamic integration, spin-space averaging, and Hamiltonian Monte Carlo to compute the temperature-dependent free-energy difference between bcc and fcc iron. We demonstrate that the TB model captures experimentally observed phonon spectra of bcc iron at elevated temperatures. Our calculations show that spin fluctuations are crucial for both the α−γ and γ−δ phase transitions but they enter through different mechanisms. Spin fluctuations impact the α−γ phase transition mainly via the magnetic/electronic free-energy difference between bcc and fcc iron. The γ−δ phase transition, in contrast, is influenced by spin fluctuations only indirectly via the spin-lattice coupling. Combining the two mechanisms, we obtain both the α−γ and γ−δ phase transitions with our TB model. The calculated transition temperatures are in very good agreement with experimental values. KW - Structural phase transition KW - Magnetism KW - Spin-lattice coupling PY - 2023 DO - https://doi.org/10.1103/PhysRevB.107.104108 SN - 2469-9950 VL - 107 IS - 10 SP - 1 EP - 9 PB - American Physical Society (APS) AN - OPUS4-58790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallau, Wilma A1 - Recknagel, Christoph A1 - Smales, Glen Jacob T1 - Structural silicone sealants after exposure to laboratory test for durability assessment N2 - During the service life of structural sealant glazing (SSG) facades, the loadbearing capacity of the silicone bonds needs to be guaranteed. Laboratory Tests can assess the durability of SSG-systems based on mechanical characteristics of the bond after simultaneous exposure to both climatic and mechanical loads. This article studies how the material characteristics of two common structural sealants are affected by laboratory and field exposure. Dynamic mechanical Analysis (DMA) confirms a reduction in the dynamic modulus of exposed Silicone samples. Results from thermogravimetric analysis, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and small-angle X-ray scattering/wide-angle X-ray scattering show differences between the two sealants and indicate no/minor changes in the composition and morphology of the laboratory and field exposed sealants. Mechanical characterization methods, such as DMA, and tensile and shear testing of the structural bond, are shown to be sensitive toward the combined climatic and mechanical loadings, and are hence suitable for studying degradation mechanisms of structural sealants. KW - Aging KW - Analytical methods KW - Fatigue KW - Silicone elastomer KW - Structural sealant glazing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527217 DO - https://doi.org/10.1002/app.50881 VL - 138 IS - 35 SP - 50881 PB - Wiley AN - OPUS4-52721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahl, S. A1 - El-Refaei, S. M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Amsalem, P. A1 - Lee, K.-S. A1 - Koch, N. A1 - Doublet, M.-L. A1 - Pinna, N. T1 - Zn0.35Co0.65O – A Stable and highly active oxygen evolution catalyst formed by zinc leaching and tetrahedral coordinated cobalt in wurtzite structure N2 - To arrive to sustainable hydrogen-based energy solutions, the understanding of water-splitting catalysts plays the most crucial role. Herein, state-of-the-art hypotheses are combined on electrocatalytic active metal sites toward the oxygen evolution reaction (OER) to develop a highly efficient catalyst based on Earth-abundant cobalt and zinc oxides. The precursor catalyst Zn0.35Co0.65O is synthesized via a fast microwaveassisted approach at low temperatures. Subsequently, it transforms in situ from the wurtzite structure to the layered γ-Co(O)OH, while most of its zinc leaches out. This material shows outstanding catalytic Performance and stability toward the OER in 1 m KOH (overpotential at 10 mA cm−2 ηinitial = 306 mV, η98 h = 318 mV). By comparing the electrochemical results and ex situ analyses to today’s literature, clear structureactivity correlations are able to be identified. The findings suggest that coordinately unsaturated cobalt octahedra on the surface are indeed the active centers for the OER. KW - Oxygen Evolution Catalyst KW - XAFS KW - Oxygen evolution reaction (OER) KW - Cobalt and zinc oxides PY - 2019 DO - https://doi.org/10.1002/aenm.201900328 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 20 SP - 1900328,1 EP - 10 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahl, S. A1 - El-Refaei, S. M. A1 - Amsalem, P. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Koch, N. A1 - Pinna, N. T1 - Operando diffuse reflectance UV-vis spectroelectrochemistry for investigating oxygen evolution electrocatalysts N2 - The characterization of the active structure of water-splitting catalysts is crucial to evolve to a sustainable energy future based on hydrogen. Such information can only be obtained by operando methods. We present a diffuse reflectance UV-vis (DRUV) spectroelectrochemical study that allows tracking the changes of solid oxygen evolution catalysts under working conditions. The versatility of our approach is demonstrated on two cobalt-containing catalysts, Zn0.35Co0.65O and CoAl2O4. The changes the catalysts undergo during the oxygen evolution reaction can be tracked by probing the electronic structure using UV-vis spectroscopy. These findings are compared to ex situ analyses, which support the assignments of the structures stabilized under different potentials. Thus, structure–activity correlations can be proposed, and deeper insights into the catalytically active structures can be obtained. KW - EXAFS PY - 2020 DO - https://doi.org/10.1039/c9cy02329a VL - 10 IS - 2 SP - 517 EP - 528 PB - Royal Society of Chemistry AN - OPUS4-50468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völzke, Jule L. A1 - Hodjat Shamami, Parya A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Meyer, Klas A1 - Weller, Michael G. T1 - High-Purity Corundum as Support for Affinity Extractions from Complex Samples N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, EDS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids were used to introduce functional groups for further conjugations. The common crosslinker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter was oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower non-specific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A binding capacity of 1.8 mg IgG per gram of corundum powder was achieved. The advantages of corundum include the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, convenient handling, and flexible application. KW - Corundum KW - Sapphire KW - Affinity chromatography KW - Antibodies KW - Self-assembled monolayers (SAM) KW - Polyglycerol KW - Dendrimer KW - Nonspecific binding (NSB) KW - Purification KW - Solid-phase extraction (SPE) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559342 DO - https://doi.org/10.3390/separations9090252 VL - 9 IS - 9 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Völzke, Jule L. A1 - Hodjat Shamami, P. A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Weller, Michael G. T1 - High-purity corundum as support for affinity extractions from complex samples N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids are used to introduce functional groups for further conjugations. The common cross-linker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter is oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower nonspecific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by SDS-PAGE. A binding capacity of 1.8 mg IgG per g of corundum powder was achieved. The advantages of corundum are the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, and flexible application. KW - Protein KW - Bioseparation KW - Purification KW - Immunoprecipitation KW - Affinity chromatography KW - Polyglycerol KW - Glutaraldehyde KW - Linker KW - Bioconjugation KW - Self-assembled monolayer (SAM) KW - Periodate oxidation KW - Reductive amination KW - Antibodies KW - Igg KW - Immunoglobulins KW - Carrier KW - Solid phase KW - Hyperbranched polymer KW - Aromatic amino acid analysis aaaa PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555142 DO - https://doi.org/10.20944/preprints202208.0004.v1 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Jule L. A1 - Hodjat Shamami, Parya A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Meyer, Klas A1 - Weller, Michael G. T1 - Corundum as a novel affinity platform for the isolation of human IgG from plasma N2 - Nonporous corundum powder was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices.The common crosslinker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter was oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). As a proof of concept, IgG was extracted with protein A from crude human plasma. The advantages of corundum include the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, convenient handling, and flexible application. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Affinity support KW - Affinity chromatography KW - Affinity extraction KW - Phosphonic acids KW - Polyglycerol KW - Reductive amination KW - Amino acid analysis KW - Tyrosine KW - Protein quantification KW - SDS-PAGE KW - Antibodies KW - Antibody purification KW - Downstream processing KW - Bovine serum albumin KW - BSA KW - Protein a KW - TEM KW - ESEM KW - Aluminum oxide KW - Sapphire KW - Human plasma KW - Protein immobilization KW - Protein hydrolysis KW - Glutaraldehyde KW - Aromatic amino acid analysis AAAA PY - 2022 AN - OPUS4-56154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Saloga, Patrick E. J. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - Environmental impact of ZnO nanoparticles evaluated by in vitro simulated digestion N2 - ZnO nanoparticles are found in different food and consumer products, and their toxicological effects are still under investigation. It is therefore important to understand their behavior in the gastrointestinal tract. Here, we used an in vitro model to assess the physicochemical fate of ZnO nanoparticles during the digestive process in artificial saliva, stomach juice, and intestinal juice. Atomic absorption spectrometry and small-angle X-ray scattering were employed to investigate two ZnO nanomaterials, one intensively characterized reference material and soluble ZnCl2 in a broad range of concentrations between 25 and 1000 μg/mL in the intestinal fluid. Because food components may influence the behavior of nanomaterials in the gastrointestinal tract, starch, milk powder, and olive oil were used to mimic carbohydrates, protein, and fat, respectively. Additionally, ion release of all Zn species was assessed in cell culture media and compared to artificial intestinal juice to investigate relevance of typical cell culture conditions in ZnO nanotoxicology. ZnCl2 as well as the ZnO species were present as particles in artificial saliva but were solubilized completely in the acidic stomach juice. Interestingly, in the intestinal fluid a concentration-independent de novo formation of particles in the nanoscale range was shown. This was the case for all particles as well as for ZnCl2, regardless of the concentration used. Neither of the food components affected the behavior of any Zn species. On the contrary, all Zn species showed a Zn-concentration-dependent ion release in common cell culture medium. This questions the suitability of cell culture studies to investigate the effect of ZnO nanoparticles on intestinal cells. Our results show that Zn-containing nanoparticles reach the intestine. This underlines the importance of determining the influence of the test environment on nanoparticle fate. KW - SAXS KW - Digestion KW - Zinc oxide KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02236 VL - 3 IS - 1 SP - 724 EP - 733 AN - OPUS4-50288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hsiao, I-L. A1 - Ebisch, Maximilian A1 - Vidmar, J. A1 - Dreiack, N. A1 - Böhmert, L. A1 - Stock, V. A1 - Braeuning, A. A1 - Loeschner, K. A1 - Laux, P. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - The presence of iron oxide nanoparticles in the food pigment E172 N2 - Iron oxides used as food colorants are listed in the European Union with the number E172. However, there are no specifications concerning the fraction of nanoparticles in these pigments. Here, seven E172 products were thoroughly characterized. Samples of all colors were analyzed with a Broad spectrum of methods to assess their physico-chemical properties. Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), zeta-potential, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), Brunauer-Emmett-Teller analysis (BET), Asymmetric Flow Field-Flow Fractionation (AF4) and in vitro cell viability measurements were used. Nanoparticles were detected in all E172 samples by TEM or SAXS measurements. Quantitative results from both methods were comparable. Five pigments were evaluated by TEM, of which four had a size median below 100 nm, while SAXS showed a size median below 100 nm for six evaluated pigments. Therefore, consumers May be exposed to iron oxide nanoparticles through the consumption of food pigments. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1016/j.foodchem.2020.127000 VL - 327 SP - 127000 PB - Elsevier Ltd. AN - OPUS4-50810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hoche, E. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Sieg, H. T1 - Intestinal and hepatic effects of iron oxide nanoparticles N2 - Iron oxide nanoparticles gain increasing attention due to their broad industrial use. However, safety concerns exist since their effects on human cells are still under investigation. The presence of iron oxide nanoparticles in the food pigment E172 has been shown recently. Here, we studied four iron oxide nanoparticles, one food pigment E172 and the ionic control FeSO4 regarding dissolution in biological media, uptake and transport, and cellular effects in vitro in human intestinal Caco-2 and HepaRG hepatocarcinoma cells. The iron oxide nanoparticles passed the gastrointestinal passage without dissolution and reached the intestine in the form of particles. Minor uptake was seen into Caco-2 cells but almost no transport to the basolateral site was detected for any of the tested particles. HepaRG cells showed higher particle uptake. Caco-2 cells showed no alterations in reactive oxygen species production, apoptosis, or mitochondrial membrane potential, whereas two particles induced apoptosis in HepaRG cells, and one altered mitochondrial membrane potential at non-cytotoxic concentrations. No correlation between physicochemical particle characteristics and cellular effects was observed, thus emphasizing the Need for case-by-case assessment of iron oxide nanoparticles. KW - Nanoparticles PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521651 DO - https://doi.org/10.1007/s00204-020-02960-7 VL - 95 IS - 3 SP - 895 EP - 905 PB - Springer AN - OPUS4-52165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, Heike A1 - Knigge, Xenia A1 - Knapic, D. A1 - Weise, Matthias A1 - Sahre, Mario A1 - Hertwig, Andreas A1 - Sacco, A. A1 - Rossi, A. M. A1 - Radnik, Jörg A1 - Müller, Kai A1 - Wasmuth, Karsten A1 - Krüger, Jörg A1 - Hassel, A. W. A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Picosecond laser processing of hierarchical micro–nanostructures on titanium alloy upon pre- and postanodization: morphological, structural, and chemical effects N2 - Recent publications indicate that the order of electrochemical anodization (before or after the laser processing step) plays an important role for the response of bone-forming osteoblasts—an effect that can be utilized for improving permanent dental or removable bone implants. For exploring these different surface functionalities, multimethod morphological, structural, and chemical characterizations are performed in combination with electrochemical pre- and postanodization for two different characteristic microspikes covered by nanometric laser-induced periodic surface structures on Ti–6Al–4V upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ≈1 ps pulse duration, 67 and 80 kHz pulse repetition frequency) at two distinct sets of laser fluence and beam scanning parameters. This work involves morphological and topographical investigations by scanning electron microscopy and white light interference microscopy, structural material examinations via X-ray diffraction, and micro-Raman spectroscopy, as well as near-surface chemical analyses by X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The results allow to qualify the mean laser ablation depth, assess the spike geometry and surface roughness parameters, and provide new detailed insights into the near-surface oxidation that may affect the different cell growth behavior for pre- or postanodized medical implants. T2 - 2023 E-MRS Spring Meeting, Symposium L "Making light matter: lasers in material sciences and photonics" CY - Strasbourg, France DA - 29.05.2023 KW - Hierarchical micro-nanostructures KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses KW - Ti-6Al-4V alloy KW - X-ray photoelectron spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601962 DO - https://doi.org/10.1002/pssa.202300920 SN - 1862-6319 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-60196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, M. A1 - Curbera, J. A1 - Peltz, U. A1 - Peplinski, Burkhard T1 - Lead isotope analysis in magic artefacts from the Berlin museums N2 - A set of 59 ancient magical artefacts, mainly made of lead, was selected from the collections of the Staatliche Museen zu Berlin in order to unravel their origins. All the selected artefacts have been studied for their Pb isotope compositions, which covered the whole range of the Mediterranean ore deposits. However, the majority (≈86%) were made of lead matching the small compositional range of the Laurion ore deposits. Only eight out of the 59 artefacts were made of recycled lead or lead from other ore deposits. Additionally, all but two were approximately dated based on their inscriptions. The lead isotopic composition together with information obtained from the inscriptions, the resulting dating, the context of the find and the known history of each item allowed us to gain more detailed information about the origins of these magical artefacts. The Attic provenance of 36 curse tablets was confirmed, whereas for 11 curse tablets previously classified as non-Attic, the provenance was either confirmed and specified (six artefacts) or changed to Attic (five artefacts). Surprisingly, the majority (six out of eight) of the analysed curse tablets from the Egyptian collection showed a lead isotopic composition closely matching that of Laurion. A Laurion-like lead isotopic composition was also observed for three of the four analysed oracular tablets from Dodona. Together with the dating information, this points to Laurion as the major and dominant lead source in the Aegean, at least during the fourth–third century B.C. The few curse tablets from earlier than the fourth–third century B.C. point to the use of multiple and thus isotopically more variable lead sources compared with the Roman times. KW - Lead isotopes KW - Pb isotopes KW - Greek curse tablets KW - Antikensammlung Berlin KW - Ägyptisches Museum Berlin PY - 2018 DO - https://doi.org/10.1007/s12520-016-0445-6 SN - 1866-9557 SN - 1866-9565 VL - 10 IS - 5 SP - 1111 EP - 1127 PB - Springer Verlag CY - Berlin AN - OPUS4-45628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vladár, A. E. A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Characterization of nanoparticles by scanning electron microscopy N2 - In this chapter sample preparation, image acquisition, and nanoparticle size and shape characterization methods using the scanning electron microscope (SEM) in reflective and transmitted working modes are described. These help in obtaining reliable, highly repeatable results. The best solutions vary case-by-case and depend on the raw (powdered or suspension) nanoparticle material, the required measurement uncertainty and on the performance of the SEM. KW - Nanoparticles KW - Sample preparation KW - Electron microscopy KW - SEM KW - Size measurement KW - Shape KW - Threshold PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00002-X SP - 7 EP - 27 PB - Elsevier CY - Amsterdam AN - OPUS4-50120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Visileanu, E. A1 - Altmann, Korinna A1 - Brossell, D. A1 - Miclea, P.-T. A1 - Grosu, C. T1 - Methods for the collection and characterization of airborne particles in the textile industry N2 - The presentation summarizes possibilities to sample airborne micro and nanoplastic particles. An example of a textil company is shown. T2 - 5th International Conference on Human Systems Engineering and Design: Future Trends and Applications (IHSED 2023 CY - Dubrovnik, Croatia DA - 27.09.2023 KW - Microplastics KW - Polymer 3R KW - Textile company PY - 2023 AN - OPUS4-58561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Bienert, M. A1 - Gugin, Nikita A1 - Emmerling, Franziska A1 - Maiwald, Michael T1 - A database to select affordable MOFs for volumetric hydrogen cryoadsorption considering the cost of their linkers N2 - Physical adsorption at cryogenic temperature (cryoadsorption) is a reversible mechanism that can reduce the pressure of conventional compressed gas storage systems. Metal–organic framework (MOF) materials are remarkable candidates due to the combination of high specific surface area and density which, in some cases, provide a high volumetric storage capacity. However, such extensive use of MOFs for this application requires the selection of affordable structures, easy to produce and made from feasible metallic and organic components. Herein, we introduce a MOF database detailing the crystallographic and porous properties of 3600 existing MOFs made from industrially relevant metals and their organic composition. The comparison of the available minimum costs of linkers allowed the creation of a database to select affordable structures with high potential for volumetric hydrogen storage by cryoadsorption, considering their composition based on individual or mixed building blocks. A user inter� face, available online, facilitates the selection of MOFs based on the properties or names of structures and linkers. KW - MOF´s PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583619 DO - https://doi.org/10.1039/d3ma00315a VL - 4 IS - 18 SP - 4226 EP - 4237 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. ED - Richter, K. ED - Van de Kulien, J.-W. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect wood from termite attack. KW - Holzschutzmittel KW - Nanoparticles KW - Fluorides KW - Termites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514325 DO - https://doi.org/10.1007/s00107-020-01522-z VL - 78 SP - 493 EP - 499 PB - Springer CY - Berlin AN - OPUS4-51432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Unger, Wolfgang A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Auger electron spectroscopy N2 - An introduction in the application of Auger Electron Spectroscopy to surface chemical analysis of nanoparticles is given. Auger Electron Spectroscopy is a mature method in the field of surface chemical analysis. The chapter addresses the physical basis of the method, the principal design of recent instruments together with modes of operation and options for the presentation of spectra, as well as different approaches for qualitative (including identification of chemical species) and quantitative surface analysis of elements. An application paragraph on surface chemical analysis of nanoparticles by AES or SAM introduces the different measurement approaches and sample preparation strategies applied by analysts. The analysis of nanoparticle ensembles, the so-called selected point analysis where a narrow primary electron beam is centered on an individual nanoparticle, and chemical mapping of individual nanoparticles (or a line scan across) are addressed. Existing literature is reviewed and informative case studies presented. Limitations and pitfalls in the application of AES in surface chemical analysis of nanoparticles are also addressed. KW - Auger Electron Spectroscopy KW - Surface chemical analysis KW - Imaging surface chemical analysis KW - Nanoparticles KW - Nanotechnology PY - 2020 SN - 978-0-12-814182-3 DO - https://doi.org/10.1016/B978-0-12-814182-3.00020-1 SP - 373 EP - 395 PB - Elsevier CY - Amsterdam AN - OPUS4-50119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Stockmann, Jörg M. A1 - Senoner, Mathias A1 - Weimann, T. A1 - Bütefisch, S. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Introduction to lateral resolution and analysis area measurements in XPS N2 - Imaging and small-spot (small area) XPS have become increasingly important components of surface chemical analysis during the last three decades, and its use is growing. Some ambiguity in the use of terminology, understanding of concepts, and lack of appropriate reference materials leads to confusing and not always reproducible data. In this paper, it is shown that by using existing knowledge, appropriate test specimens, and standardized approaches, problems of comparability and such reproducibility issues recently observed for XPS data reported in the scientific literature can be overcome. The standardized methods of ISO 18516:2019, (i) the straight-edge, (ii) the narrow-line, and (iii) the grating method, can be used to characterize and compare the lateral resolution achieved by imaging XPS instruments and are described by reporting examples. The respective measurements are made using new test specimens. When running an XPS instrument in the small-spot (small area) mode for a quantitative analysis of a feature of interest, the question arises as to what contribution to the intensity originates from outside the analysis area. A valid measurement approach to control the intensity from outside the nominal analysis area is also described. As always, the relevant resolution depends on the specific question that needs to be addressed. The strengths and limitations of methods defining resolution are indicated. KW - Imaging XPS KW - Lateral resolution KW - Analysis area measurements KW - Small-spot XPS PY - 2020 DO - https://doi.org/10.1116/6.0000398 VL - 38 IS - 5 SP - 053206 AN - OPUS4-51394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Fujimoto, T. T1 - The Surface Analysis Working Group at the Consultative Committee for Amount of Substance, Metrology in Chemistry and Biology: A successful initiative by Martin Seah N2 - Dr Martin Seah, NPL, was the initiator, founder, and first chairman of the Surface Analysis Working Group (SAWG) at the Consultative Committee for Amount of Substance, Metrology in Chemistry and Biology (CCQM) at the Bureau International des Poids et Mesures (BIPM), the international organization established by the Metre Convention. This tribute letter summarizes his achievements during his chairmanship and his long-running impact on the successful work of the group after his retirement. KW - CCQM (Consultative Committee for Amount of Substance) KW - Metrology in Chemistry and Biology KW - Martin Seah KW - Metrology KW - Quantitative surface chemical analysis KW - Surface Analysis Working Group PY - 2021 DO - https://doi.org/10.1002/sia.7033 SN - 0142-2421 VL - 54 IS - 4 SP - 314 EP - 319 PB - John Wiley & Sons Ltd AN - OPUS4-53714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang T1 - International standardization and metrology as tools to address the comparability and reproducibility challenges in XPS measurements N2 - The status of standardization related to x-ray photoelectron spectroscopy (XPS, ESCA) at ASTM International (Subcommittee E42.03) and ISO (TC 201) is presented and commented upon in a structured manner. The survey also identifies other active bodies, here VAMAS Technical Working Area 2 and the Surface Analysis Working Group at the International Meter Convention, contributing to prestandardization Research and metrology of XPS and reports their specific activities. It is concluded that existing standardization is delivering good practices in the use of XPS and has a high potential to avoid the recently observed erroneous use, misapplications, and misinterpretation by new and inexperienced users of the method—which seems to be the main reason for the “reproducibility crisis” in the field of XPS applications. A need for a more proactive publicizing of international documentary standards by experienced XPS users, specifically those who are involved in standardization, is identified. Because the existing portfolio of standards addressing the use of XPS is not complete, future standardization projects planned or already ongoing are mentioned. The way the standardization bodies are identifying future needs is shortly explained. KW - Standardisation KW - Comparability KW - Reproducibility KW - XPS KW - VAMAS KW - Metrology PY - 2020 DO - https://doi.org/10.1116/1.5131074 VL - 38 IS - 2 SP - 021201-1 EP - 021201-8 PB - AVS AN - OPUS4-50560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ueltzen, Katharina A1 - George, Janine T1 - Bonding analysis results for "Chemical ordering and magnetism in face-centered cubic CrCoNi alloy" N2 - This repository contains the code and data to produce the results of chapter IIIC. Covalent bonding analysis for L12/L10 type configurations of the publication Chemical ordering and magnetism in face-centered cubic CrCoNi alloy by Sheuly Ghosh et al. KW - Magnetism KW - Bonding Analysis KW - Medium Entropy Alloys PY - 2024 DO - https://doi.org/10.5281/zenodo.11104874 PB - Zenodo CY - Geneva AN - OPUS4-59987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tumanova, N. A1 - Tumanov, N. A1 - Robeyns, K. A1 - Fischer, Franziska A1 - Fusaro, L. A1 - Morelle, F. A1 - Ban, V. A1 - Hautier, G. A1 - Filinchuk, Y. A1 - Wouters, J. A1 - Leyssens, T. A1 - Emmerling, Franziska T1 - Opening Pandora’s Box: Chirality, Polymorphism, and Stoichiometric Diversity in Flurbiprofen/Proline Cocrystals N2 - Proline has been widely used for various cocrystallization applications, including pharmaceutical cocrystals. Combining enantiopure and racemic flurbiprofen and proline, we discovered 18 new crystal structures. Liquid-assisted grinding proved highly efficient to explore all the variety of crystal forms. A unique combination of stateof-the-art characterization techniques, comprising variable temperature in situ X-ray diffraction and in situ ball-milling, along with other physicochemical methods and density functional theory calculations, was indispensable for identifying all the phases. Analyzing the results of in situ ball-milling, we established a stepwise mechanism for the formation of several 1:1 cocrystals via an intermediate 2:1 phase. The nature of the solvent in liquidassisted grinding was found to significantly affect the reaction rate and, in some cases, the reaction pathway. KW - Mechanochemistry KW - Polymorphs KW - In situ PY - 2018 UR - https://pubs.acs.org/doi/abs/10.1021/acs.cgd.7b01436 DO - https://doi.org/10.1021/acs.cgd.7b01436 VL - 18 IS - 2 SP - 954 EP - 961 PB - American Chemical Society AN - OPUS4-44365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tumanov, I. A1 - Tumanov, E. A1 - Michalchuk, Adam T1 - Ball size or ball mass – what matters in organic mechanochemical synthesis? N2 - Ball mass is an important parameter that is known to have an influence on the outcome of a mechanochemical reaction induced by ball-milling. A standard way of modifying the ball mass is to change the size of the ball made of the same material. In this case, however, a change in mass is accompanied by a simulatneous change in the ball size. It is therefore not possible to disentangle the effects of mass and Surface area in these cases. In the present work we report the results of experiments with specially designed and manufactured balls in which (1) milling ball mass is held constant, but their size differs, and (2) the ball mass is altered, with the diameter of the milling ball being held constant. Using the cocrystallisation of theophylline + nicotinamide as a case study it was found that both diameter and ball mass play crucial roles in determining the rate of a mechanochemical reaction. For comparison, we have also used milling balls with the same size (different mass), and others with the same mass (different size) made of different materials, as would be “traditional”. It was found that, despite having the same size, the lightest milling ball (nylon) was the most efficient in initiating the co-crystallisation, presumably due to the sorption of EtOH. Hence, the results of this manuscript also demonstrate how milling ball material can in fact be the most influential parameter, and potentially counterintuitive to classical mechanics. KW - Mechanochemistry KW - XRD PY - 2019 DO - https://doi.org/0.1039/c8ce02109k VL - 21 SP - 2174 EP - 2179 PB - RSC Royal Society of Chemistry AN - OPUS4-47851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tu, Z. A1 - Donskyi, Ievgen A1 - Qiao, H. A1 - Zhu, Z. A1 - Unger, Wolfgang A1 - Hackenberger, C. P. R. A1 - Chen, W. A1 - Adeli, M. A1 - Haag, R. T1 - Graphene Oxide-Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple-Drug Resistance N2 - Multidrug resistance resulting from a variety of defensive pathways in Cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, highloading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers. KW - Graphen Oxide KW - Nanoplatform KW - Cancer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510061 DO - https://doi.org/10.1002/adfm.202000933 VL - 30 IS - 35 SP - 2000933 PB - Wiley VCH AN - OPUS4-51006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsibidis, G. D. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Stratakis, E. T1 - Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams N2 - We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications. KW - Laser-induced periodic surface structures KW - Femtosecond laser ablation KW - Steel PY - 2018 UR - https://link.springer.com/article/10.1007/s00339-017-1443-y DO - https://doi.org/10.1007/s00339-017-1443-y SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 1 SP - 27, 1 EP - 13 PB - Springer-Verlag AN - OPUS4-43626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Ponader, Marco A1 - Raab, Christopher A1 - Weider, Prisca S. A1 - Hartfiel, Reni A1 - Kaufmann, Jan Ole A1 - Völzke, Jule L. A1 - Bosc-Bierne, Gaby A1 - Prinz, Carsten A1 - Schwaar, T. A1 - Andrle, Paul A1 - Bäßler, Henriette A1 - Nguyen, Khoa A1 - Zhu, Y. A1 - Mey, A. S. J. S. A1 - Mostafa, A. A1 - Bald, I. A1 - Weller, Michael G. T1 - Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer N2 - The cowpea chlorotic mottle virus (CCMV) is a plant virus explored as a nanotechnological platform. The robust self-assembly mechanism of its capsid protein allows for drug encapsulation and targeted delivery. Additionally, the capsid nanoparticle can be used as a programmable platform to display different molecular moieties. In view of future applications, efficient production and purification of plant viruses are key steps. In established protocols, the need for ultracentrifugation is a significant limitation due to cost, difficult scalability, and safety issues. In addition, the purity of the final virus isolate often remains unclear. Here, an advanced protocol for the purification of the CCMV from infected plant tissue was developed, focusing on efficiency, economy, and final purity. The protocol involves precipitation with PEG 8000, followed by affinity extraction using a novel peptide aptamer. The efficiency of the protocol was validated using size exclusion chromatography, MALDI-TOF mass spectrometry, reversed-phase HPLC, and sandwich immunoassay. Furthermore, it was demonstrated that the final eluate of the affinity column is of exceptional purity (98.4%) determined by HPLC and detection at 220 nm. The scale-up of our proposed method seems to be straightforward, which opens the way to the large-scale production of such nanomaterials. This highly improved protocol may facilitate the use and implementation of plant viruses as nanotechnological platforms for in vitro and in vivo applications. N2 - Das Cowpea Chlorotic Mottle Virus (CCMV) ist ein Pflanzenvirus, das als nanotechnologische Plattform erforscht wird. Der robuste Selbstorganisationsmechanismus seines Kapsidproteins ermöglicht die Verkapselung und gezielte Abgabe von Medikamenten. Darüber hinaus kann das Kapsid-Nanopartikel als programmierbare Plattform für die Präsentation verschiedener molekularer Komponenten verwendet werden. Im Hinblick auf künftige Anwendungen ist eine effiziente Produktion und Reinigung von Pflanzenviren von entscheidender Bedeutung. In etablierten Protokollen stellt die notwendige Ultrazentrifugation aufgrund von Kosten, schwieriger Skalierbarkeit und Sicherheitsaspekten eine erhebliche Einschränkung dar. Darüber hinaus bleibt die Reinheit des endgültigen Virusisolats oft unklar. Hier wurde ein fortschrittliches Protokoll für die Reinigung von CCMV aus infiziertem Pflanzengewebe entwickelt, wobei der Schwerpunkt auf Effizienz, Wirtschaftlichkeit und Reinheit lag. Das Protokoll beinhaltet eine Fällung mit Polyethylenglycol (PEG 8000), gefolgt von einer Affinitätsextraktion mit einem neuartigen Peptid-Aptamer. Die Effizienz des Protokolls wurde mithilfe von Größenausschluss-Chromatographie (SEC), MALDI-TOF-Massenspektrometrie, Umkehrphasen-HPLC und Sandwich-Immunoassay validiert. Darüber hinaus wurde nachgewiesen, dass das endgültige Eluat der Affinitätssäule eine außergewöhnliche Reinheit (98,4 %) aufweist, die durch HPLC und Detektion bei 220 nm bestimmt wurde. Die Skalierung der von uns vorgeschlagenen Methode scheint einfach zu sein, was den Weg für eine größer angelegte Produktion solcher Nanomaterialien ebnet. Dieses stark verbesserte Protokoll könnte die Verwendung und Umsetzung von Pflanzenviren als nanotechnologische Plattformen für In-vitro- und In-vivo-Anwendungen erleichtern. KW - Affinity chromatography KW - Nanoparticles KW - Nanoscience KW - Carrier protein KW - Encapsulation KW - Combinatorial peptide library KW - Peptide binder KW - Vigna unguiculata KW - Augenbohne KW - Schlangenbohne KW - Pflanzenvirus KW - Plant virus KW - Upscaling KW - Commercialization KW - Reference material KW - Nanocarrier PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572645 DO - https://doi.org/10.3390/v15030697 VL - 15 IS - 3 SP - 1 EP - 24 PB - MDPI CY - Basel, Schweiz AN - OPUS4-57264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Maskless Micropatterning of Polydopamine for versatile surface functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA has been shown as one of the most versatile platforms for altering the properties and incorporating new functionalities to nearby any material surface despite its nature. Rich chemistry of PDA enables broad variety of surface modification and diverse secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. Despite high potential of polydopamine, the lack of deposition control and precision in existed methods limits their applications in microdevices and miniaturized functional systems like, for example, MEMS, microfluidic and sensorics. Herein, we demonstrate a novel maskless approach for surface micropatterning with polydopamine based on Multiphoton Lithography that overcomes present limitations. Neither strong oxidants, metal ions nor adjustment of pH to alkaline is required by this technique. The spatial resolution down to 0.8 µm has been achieved which is at least an order of magnitude smaller than shown by other existed methods. We are able to control the morphology and thickness of the micropattern by altering fabrication parameters allowing structure gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. Post-modification of polydopamine micropatterns with protein enzyme like trypsin is demonstrated to highlight its sensing potential. Presented in this work microfabrication technique empowers advanced applications of mussel-inspired materials in single-molecule bioassays, sensors and other complex microdevices. T2 - International Conference on Precision Engineering and Sustainable Manufacturing CY - Okinawa, Japan DA - 18.07.2023 KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2023 AN - OPUS4-58878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dietmar A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Boehmite Nanofillers in Epoxy Oligosiloxane Resins: Influencing the Curing Process by Complex Physical and Chemical Interactions N2 - In this work, a novel boehmite (BA)-embedded organic/inorganic nanocomposite coating based on cycloaliphatic epoxy oligosiloxane (CEOS) resin was fabricated applying UV-induced cationic polymerization. The main changes of the material behavior caused by the nanofiller were investigated with regard to its photocuring kinetics, thermal stability, and glass transition. The role of the particle surface was of particular interest, thus, unmodified nanoparticles (HP14) and particles modified with p-toluenesulfonic acid (OS1) were incorporated into a CEOS matrix in the concentration range of 1–10 wt.%. Resulting nanocomposites exhibited improved thermal properties, with the glass transition temperature (Tg) being shifted from 30 °C for unfilled CEOS to 54 °C (2 wt.% HP14) and 73 °C (2 wt.% OS1) for filled CEOS. Additionally, TGA analysis showed increased thermal stability of samples filled with nanoparticles. An attractive interaction between boehmite and CEOS matrix influenced the curing. Real-time infrared spectroscopy (RT-IR) experiments demonstrated that the epoxide conversion rate of nanocomposites was slightly increased compared to neat resin. The beneficial role of the BA can be explained by the participation of hydroxyl groups at the particle surface in photopolymerization processes and by the complementary contribution of p-toluenesulfonic acid surface modifier and water molecules introduced into the system with nanoparticles. KW - Real-time infrared spectroscopy KW - Boehmite KW - Nanocomposite KW - Cationic photocuring KW - Cycloaliphatic epoxy oligosiloxane KW - Epoxy conversion degree PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479628 DO - https://doi.org/10.3390/ma12091513 VL - 12 IS - 9 SP - 1513 PB - MDPI AN - OPUS4-47962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Ghasem Zadeh Khorasani, Media A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Versatile role of boehmite particles in epoxy-based nanocomposites N2 - Thermosetting materials are gaining increasing attention in many structural composite applications. However, the incorporation of inorganic nanoparticles (NPs) into polymer matrix is a promising approach to enhance their functional characteristics, and thus, to enable the development of thermosets advanced application. It has been shown that Boehmite Alumina (BA) used as nanofillers can improve different parameters of polymers. This NPs can be easily tailored enabling desirable interactions with a big range of polymers. However, the overall effect of nanofiller depends on many factors, therefore, making it hard to predict the resulted performance of nanocomposites. In the current contribution we would like to discuss the impact of Boehmite NPs on two different epoxy resin nanocomposite systems with the focus on the possible influence mechanisms of this nanofiller. As the first system, UV curable Cycloaliphatic-Epoxy Oligosiloxane (CEOS) resin/Boehmite nanocomposites were investigated by FTIR, TGA, DSC and T-SEM. It was observed that incorporation of BA leads to the reinforcement of glass transition (Tg) and overall thermal stability indicating the attractive interactions between BA and CEOS network. In addition, an increase in epoxy conversion of CEOS was concluded for nanocomposites assuming that particles are involved in UV polymerisation processes. The second epoxy/Boehmite nanocomposite is based on the bisphenol-A-diglycidyl ether (DGEBA) cured with methyl tetrahydrophtalic acid anhydride (MTHPA). Thermomechanical as well as nanomechanical properties of this material were investigated by DMTA and IR spectroscopy and the advanced Intermodulation AFM, respectively. In contrast to the first system, it was found that BA leads to a decrease of Tg and crosslink density of the polymer while the young’s modulus of the composite and local stiffness of polymer matrix increase significantly. As a result, the versatile role of Boehmite was detected depending on the investigated systems. Based on the obtained results, the parameters indicating property-efficient epoxy/Boehmite system are suggested. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Epoxy KW - Boehmite KW - Curing KW - Nanocomposite PY - 2019 AN - OPUS4-47640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Ciftci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - High precision micropatterning of polydopamine by Multiphoton Lithography N2 - Mussel-inspired polydopamine (PDA) initiated a multifunctional modification route that leads to the generation of novel advanced materials and their applications. However, existing PDA deposition techniques still exhibit poor spatial control, have a very limited capability of micropatterning and do not allow to locally tune PDA topography. Herein, we demonstrate PDA deposition based on Multiphoton Lithography (MPL) that enables full spatial and temporal control with nearly total freedom of patterning design. Using MPL, we achieve 2D microstructures of complex design with pattern precision of 0.8 μm without the need of a photomask or stamp. Moreover, this approach permits adjusting the morphology and thickness of the fabricated microstructure within one deposition step, resulting in a unique tunability of materials properties. The chemical composition of PDA is confirmed and its ability for protein enzyme immobilization is demonstrated. This work presents a new methodology for high precision and complete control of PDA deposition, enabling PDA incorporation in applications where fine and precise local surface functionalization is required. Possible applications include multicomponent functional elements and devices in microfluidics or lab-on-a-chip systems. KW - Multiphoton lithography KW - Polydopamine KW - Micropatterning PY - 2022 DO - https://doi.org/10.1002/adma.202109509 VL - 34 IS - 18 SP - e2109509 PB - Wiley online library AN - OPUS4-54535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cifci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Polydopamine micropatterning for selective substrate bio-functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) exhibits strong adhesion to nearly any kind of organic or inorganic surface and shows high ability for surface post-modification and secondary reactions. As a result, PDA has been widely used as a base adlayer to enable versatile surface chemistry and functionalization. It has shown great potential in wide range of applications including biomedical field (e.g., drug delivery, adhesives, photothermal therapy, bone and tissue engineering, cell adhesion, biosensing). However, implementation of PDA in microdevices is still hindered by insufficient spatial and temporal control of excited deposition methods. In this work we present a novel approach to fabricate tunable micropatterned substrates where mussel-inspired chemistry provides base for various surface modification [2]. Current approach applies Multiphoton Lithography (MPL) to initiate local PDA formation, and, therefore, does not require use of microstamp or photomask. As a result, the microstructures of complex designs can be produced with the spatial resolution down to 0.8 μm (Figure 1). The desired design can be easily altered by adjusting the stl model or the fabrication code. Unlike the conventional deposition of PDA based on dopamine auto-oxidation, our method does not require presence of strong oxidants, metal ions or alkaline pH. Herein-demonstrated deposition approach will significantly facilitate applications of polydopamine and other mussel-inspired materials in microdevices and high-resolution active microcomponents (e.g., in MEMS and microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we performed PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We tested different composition of dopamine solution for its ability of PDA buildup. Solutions containing Tris buffer, phosphate buffer or DI water only as well as different pH (6.0, 7.0 and 8.5) could be successfully applied for high-precision PDA micropatterning. Moreover, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. In all cases, no decrease of deposition efficiency was observed. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. T2 - Laser Precision Microfabrication CY - Dresden, Germany DA - 07.06.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-55064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Pfeifer, Dietmar A1 - Sturm, Heinz T1 - Reinforced UV curable cycloaliphatic epoxy oligosiloxane resin nanocomposite for coating applications N2 - Coating materials are nowadays often required to deliver not only sufficient barrier performance and suited optical appearance but a broad range of other functional properties. The incorporation of inorganic nanoparticles (NPs) is known to improve many key characteristics and provide new functionalities in polymer materials. Presented work aims to prepare and characterize an organic-inorganic coating material designed to bring together advantageous properties of hybrid materials and reinforcement effect delivered from the inorganic NPs embedment. Siloxane-based hybrid resins hold great advantages as coating materials as their properties can be tuned between those of polymers and those of glasses, thus, the compositions with superior thermal and mechanical properties can be achieved. We used Cycloaliphatic Epoxy Oligosiloxane (CEOS) resin as a polymeric matrix where the network formation was achieved by UV induced cationic polymerisation. Boehmite Alumina (BA) nanoparticles were added to CEOS resin as a reinforcing agent and resultant material was processed into films either by bar-coating or by spin-coating depending on further characterization procedure. Two different types of BA NPs, hydrophilic and organophilic, were used in order to assess the impact of particles surface on the resin characteristics. CEOS synthesis by condensation reaction was confirmed using 13C and 29Si NMR. Changes in CEOS photocuring process, resulting from particles incorporation, were monitored by real-time IR spectroscopy. At the same time, the thermal behaviour was evaluated by DSC and TGA methods. Morphology of the coatings was investigated by means of SEM operated in transmission mode. It was observed that BA presence increased the epoxy conversion degree and glass transition temperature. Material formulations providing best film characteristics were determined with regard to the particle type and loading. Compared to the hydrophilic nanoparticles, organophilic BA NPs yield superior overall performance of the foils. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2019 AN - OPUS4-47641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia T1 - Micropatterning of mussel-inspired materials - Empower selective functionality N2 - Surface-modification platforms that are universally applicable are vital for the development of new materials, surfaces, and nanoparticles. Mussel-inspired materials (MIMs) are widely used in various fields because of their strong adhesive properties and post-functionalization reactivity. However, conventional MIM coating techniques have limited deposition selectivity and lack structural control, which has limited their use in microdevices that require full control over deposition. To overcome these limitations, we developed a micropatterning technique for MIMs using multiphoton lithography, which does not require photomasks, stamps, or multistep procedures. This method enables the creation of MIM patterns with micrometer resolution and full design freedom and paves the way for innovative applications of MIMs in various multifunctional systems and microdevices, such as microsensors, MEMS, and microfluidics. T2 - BioCHIP Berlin - International Forum on Biochips and Microfabrication CY - Berlin, Germany DA - 28.05.2024 KW - Mussel inspired materials KW - Multiphoton lithography KW - Two photon polymerisation PY - 2024 AN - OPUS4-60254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Pfeifer, Dietmar A1 - Sturm, Heinz T1 - Novel Boehmite-embedded organic/inorganic hybrid nanocomposite: cure behaviour, morphology and thermal properties N2 - Hybrid materials have attracted growing interest during the last decade, particularly due to their extraordinary properties. Cycloalyphatic-epoxy oligosiloxane (CEO) resin was shown to be a good candidate as a barrier material for the encapsulation purposes. Incorporation of inorganic nanoparticles such as Boehmite (BA) into polymers was observed to modify their specific characteristics, in particular, thermal, thermo-oxidative and barrier ones. In this work, novel BA-embedded organic inorganic hybrid nanocomposite material was engineered by combining the advantageous properties of hybrid polymers and nanoparticle enhancement effect. Impacts of particles on the photocuring kinetics, degree of crosslinking and the resultant changes in the thermal properties of the cured films were investigated. CEO synthesis via condensation reaction was confirmed by 1H and 29Si NMR. The particle distribution within the films was verified by SEM including transmission mode coupled with EDX elemental analysis. Photocuring kinetics and thermal properties of the films were studied by in situ FTIR spectroscopy and DSC with TGA, respectively. T2 - Deutschen Physikalischen Gesellschaft CY - Berlin, Germany DA - 11.03.2018 KW - Boehmite KW - Nanocomposite KW - Cycloalyphatic epoxy oligosiloxane KW - CEO PY - 2018 AN - OPUS4-44520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cinar Ciftci, G. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Direct laser surface micropatterning with polydopamine N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) is one of the simplest and most versatile approaches to confer new functionalities to nearly any material surface. Moreover, PDA exhibits high potential for surface modification and diversified secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. PDA has undergone significant expansion in its applications and is one of the most attractive areas within the materials field. Nevertheless, PDA integration in microdevices is still constrained by poor spatial and temporal control of excited deposition methods. Herein, we demonstrate a novel maskless approach for PDA micropatterning based on Direct Laser Writing (DLW) that overcomes present limitations. The pattern is formed upon exposure of the dopamine solution by light produced by tightly-focused fs NIR laser that scans substrate surface accordingly to the selected pattern design. Neither strong oxidants, metal ions nor adjusting pH to alkaline is required by this technique. Our method achieves the PDA micropatterns with the spatial resolution of 0.8 µm, at least an order of magnitude smaller than what is possible with other PDA microplanning techniques. The here introduced PDA deposition technique will uniquely unravel applications of polydopamine and other catecholamine-based mussel-inspired materials in various multifunctional systems and microdevices (e.g., MEMS elements, microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. Presented in this work DLW-based microfabrication technique and the possibilities for further PDA surface post-functionalization empowers advanced applications of this material in single-molecule bioassays, sensors and other complex microdevices. T2 - Swiss ePrint 2022 CY - Buchs, Switzerland DA - 05.09.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-56422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Influence of Boehmite nanofiller on the properties of cycloaliphatic-epoxy oligosiloxane resin coatings N2 - Organic-inorganic nanostructured materials have drawn much attention over the past decade, particularly due to their versatile and outstanding properties. Possessing the properties between those of polymers and those of glasses, siloxane-based resins are non-toxic, easy to synthesize and process hybrid materials, that hold a promising potential in the field of advanced coatings. Photocurable resins are nowadays widely used as coatings due to their unique advantages. In particular, cationic ring-opening curing is not inhibited by oxygen, leads to low degree of shrinkage and superior adhesion. The most important, it enables production of high-quality coatings within short exposure times without applying temperature, thus, minimizing the presence of the thermal stress in the substrate. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO properties is desired to achieve requested device lifetime. One of the common approaches to improve material characteristics is by embedding inorganic nanoparticles into polymer matrix. It has been shown that the resulted nanocomposites exhibit enhanced functional properties included but not limited by optical, mechanical, thermal and barrier ones. In this work we focused on the incorporation of Boehmite nanoparticles (BA) into CEO matrix as a tool to strengthen the film properties and to study the main changes occurred in the material behavior with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. A slight increase of final convention degree with particle incorporation was observed in contrast to the considerable decrease of curing efficiency reported previously for similar system. Further, the cured hybrid nanocomposite films were analyzed by TGA and DSC, which revealed impact of surface modifier on thermal stability and glass transition temperature. T2 - Kyiv Conference on Analytical Chemistry: Modern Trends CY - Kyiv, Ukraine DA - 17.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2018 AN - OPUS4-47642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cinar Ciftci, G. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Direct laser writing of mussel inspired polydopamine N2 - Polydopamine (PDA) is one of the simplest and most versatile approaches for forming an excellent binding exterior to confer new functionalities to nearly any material surface. Inspired by nature, it mimics the behavior of mussels and can be easily deposited on virtually all types of inorganic and organic substrates, including superhydrophobic surfaces. Moreover, PDA exhibits high potential for surface modification and diversified secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. PDA has undergone significant expansion in its applications and is one of the most attractive areas within the materials field. Nevertheless, PDA integration in microdevices is still constrained by poor spatial and temporal control of excited deposition methods. Herein, we demonstrate a novel maskless approach for PDA micropatterning based on Direct Laser Writing that overcomes present limitations. The pattern is formed upon exposure of the dopamine solution by light produced by tightly-focused fs NIR laser that scans substrate surface accordingly to the selected pattern design. Neither strong oxidants, metal ions nor adjusting pH to alkaline is required by this technique to perform dopamine polymerization. Our method achieves the PDA micropatterns with the spatial resolution of 0.8 µm, at least an order of magnitude smaller than what is possible with other PDA microplanning techniques. Some examples of PDA patterns are shown in Figure 1. The here introduced PDA deposition technique will uniquely unravel applications of polydopamine and other catecholamine-based mussel-inspired materials in various multifunctional systems and microdevices (e.g., MEMS elements, microfluidics). The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. Moreover, the morphology and thickness of PDA microstructure can be controlled by the laser power and scanning velocity revealing the possibility of fabricating the structures with gradient. In most of the applied conditions the increase of the laser intensity and decrease of the scanning velocity would lead to the thicker PDA pattern. Different morphologies from smooth and bulky-like to grain like has been obtained. PDA was produced in the presence of tris buffer, phosphate buffer and DI water only. We also tested the effect of the solution pH applying pH 6.0, 7.0 and 8.5. Furthermore, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. Summarizing, we could see that the structures could be produced in all the given conditions, however their thickness and quality, morphology and roughness would differ. We did not observe negative impact of the antioxidants and nitrogen purging on the performance of PDA build up indicating that the PDA formation mechanism is different to common autooxidation. The current mechanism is based on the interaction of dopamine molecules with the photoinitiator added to solution as active to DLW laser light component. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We also performed facile posts-modification of the PDA surface with protein enzymes like trypsin that was confirmed by XPS. Obtained bioactive pattern could be further integrated in the protein sensing devices. Presented in this work DLW-based microfabrication technique and the possibilities for further PDA surface post-functionalization empowers advanced applications of this material in single-molecule bioassays, sensors and other complex microdevices. T2 - MNE EUROSENSORS CY - Leuven, Belgium DA - 19.09.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-56421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Impact of Boehmite nanoparticles on the curing behaviour and thermal properties of cycloaliphatic-epoxy oligosiloxane hybrid N2 - UV-curing coatings are nowadays widely used due to their unique advantages. High-quality coatings can be obtained at short curing times and low temperatures so that thermal stress to the substrate is minimised. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO film properties is desired to achieve requested device lifetime. In this work we introduced Boehmite nanoparticles (BA) into CEO matrix in order to modify the film properties and study the main changes of the material behaviour with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. No significant modification of final convention degree with particle incorporation was observed in contrast to considerable decrease of curing efficiency reported previously for similar system by Esposito et al.,2008. Further, cured hybrid nanocomposite films were analysed by TGA and DSC, which revealed impact of surface modifier on film thermal properties. T2 - E-MRS CY - Warsaw, Poland DA - 15.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - DSC KW - TGA KW - UV-curing PY - 2018 AN - OPUS4-47643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tleuova, A. A1 - Schenderlein, Matthias A1 - Mutaliyeva, B. A1 - Aidarova, S. A1 - Sharipova, A. A1 - Bekturganova, N. A1 - Miller, R. A1 - Grigoriev, D. T1 - Selection and study of alkoxysilanes as loading in submicrocapsules for self-lubricating coatings N2 - The possibility and conditions for the formation of nano- or submicrocapsules loaded with hydrophobic active ingredients (alkoxysilanes) into the matrix of coatings with self-lubricating effect are considered. The optimal composition of the alkoxysilane submicrocapsules, and their physicochemical properties were determined. The longer the radical chain length is, the lower is the rate of hydrolysis, and, accordingly, the more stable is the formed emulsion. The methods of laser correlation spectroscopy in measuring the size and zeta potentials of the submicrocapsules with different loads of the active agent allowed to determine the optimal ratios of the active ingredients. The optimal concentration of the active agent is between 4 and 9%. Based on contact angle studies, octadecyltrimethoxysilane was selected as optimum compound. The introduction of 4 wt% of octadecyltrimethoxysilane reduces the friction coefficient of coatings by 20–30% under vibrating motion and by 15–20% under continuous motion. The data obtained can also be useful for the encapsulation of other hydrophobic active agents and for various other purposes, for example, for the introduction of biocidal agents. KW - Microencapsulation KW - Spontaneous emulsification KW - Self-lubricating coating KW - Antifriction coefficient KW - Alkoxysilanes PY - 2019 DO - https://doi.org/10.1016/j.colsurfa.2018.12.018 SN - 0927-7757 SN - 1873-4359 IS - 563 SP - 359 EP - 369 PB - Elsevier AN - OPUS4-47233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thünemann, Andreas A1 - Gruber, Alexandra A1 - Klinger, Daniel T1 - Amphiphilic Nanogels: Fuzzy Spheres with a Pseudo-Periodic Internal Structure N2 - Amphiphilic polymer nanogels (NGs) are promising drug delivery vehicles that extend the application of conventional hydrophilic NGs to hydrophobic cargoes. By randomly introducing hydrophobic groups into a hydrophilic polymer network, loading and release profiles as well as surface characteristics of these colloids can be tuned. However, very little is known about the underlying internal structure of such complex colloidal architectures. Of special interest is the question how the amphiphilic network composition influences the internal morphology and the “fuzzy” surface structure. To shine light into the influence of varying network amphiphilicity on these structural features, we investigated a small library of water-swollen amphiphilic NGs using small-angle X-ray scattering (SAXS). It was found that overall hydrophilic NGs, consisting of pure poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA), display a disordered internal structure as indicated by the absence of a SAXS peak. In contrast, a SAXS peak is present for amphiphilic NGs with various amounts of incorporated hydrophobic groups such as cholesteryl (CHOLA) or dodecyl (DODA). The internal composition of the NGs is considered structurally homologous to microgels. Application of the Teubner–Strey model reveals that hydrophilic PHPMA NGs have a disordered internal structure (positive amphiphilicity factor) while CHOLA and DODA samples have an ordered internal structure (negative amphiphilicity factor). From the SAXS data it can be derived that the internal structure of the amphiphilic NGs consists of regularly alternating hydrophilic and hydrophobic domains with repeat distances of 3.45–5.83 nm. KW - Polymer KW - Nanoparticle KW - SAXS PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c01812 VL - 36 IS - 37 SP - 10979 EP - 10988 PB - American Chemical Society AN - OPUS4-51302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Self-healing materials: structure elucidation with SAXS N2 - Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. Future technologies require smart materials with advanced properties including responsiveness to external stimuli and particularly the ability to autonomously repair inflicted damage. The introduction of reversible connections in the polymer architecture, either in a non-covalent fashion, such as in supramolecular polymers, or by using dynamic covalent chemistry. One facile approach involves the implementation of reversible polymer networks as they offer high mechanical strength and thermal properties that are readily modified by the nature of the connecting dynamic bonds and the crosslinking density. In this context, small-angle scattering allows a detailed insight into the network structure of self-healing polymers either in bulk materials or in form of hydrogels. Here we report on how small-angle scattering can contribute to reveal the network structure. A first example is the conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light. Typical experimental SAXS curves of a photo- and thermal switchable polymer are shown. The scattering pattern show three characteristics. Region 1 is dominated by a forward scattering interpreted as resultant from large scale inhomogeneities of the bulk polymers (characterized by a first correlation length). The second scattering contribution can be interpreted as resultant from the network and is characterized by its entanglement distance. The mesh size of this network can be described by a second correlation length. Region 3 of the scattering pattern is dominated by a broad peak. Taking all effects into account, we approximate the total scattering as a sum of the three scattering contributions. In particular, the Debye-Büche function is used for I1 the Ornstein-Zernike function for the crosslinking contribution I2 and a Lorentzian peak function. We discussed this simple and more sophisticated approaches for revealing network structures. Examples of studies from hydrogel networks are provided as important materials with polymeric networks in life science applications. Finally, the determination of mesh size distributions as a function of temperature, time and healing efficiency is discussed in detail. T2 - XVII International Small Angle Scattering Conference - SAS2018 CY - Traverse City, Michigan, USA DA - 7.10.2018 KW - Small-angle x-ray scattering KW - Nanomaterial KW - Saxs PY - 2018 AN - OPUS4-46317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Characterization of (bio)macromolecules and polymeric materials with modern scattering methods N2 - The analysis of polymers, biopolymers and polymeric materials is of great interest in biomaterials science. Here small-angle x-ray scattering (SAXS), static light scatterin (SLS) and dynamic light scattering (DLS) are described. Current efforts for digitalization of this methods are explaind with respect to modern data science in biomedical research. T2 - MacroBio Summer School 2018: Biomaterial Science in View of Digitalization CY - Teltow, Germany DA - 24.09.2018 KW - Small-angle x-ray scattering KW - SAXS KW - Static light scattering KW - SLS KW - Dynamic light scattering KW - DLS KW - Biomaterials PY - 2018 AN - OPUS4-46051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - A look inside nanoparticles N2 - Small-angle scattering is the method of choice when it comes to obtaining information about the interior of nanoparticles. The aim is to make nanotechnology safer. While the use of small-angle neutron scattering (SANS) is limited to a few instruments in the world, small-angle X-ray scattering (SAXS) is widely accessible, with an upward trend. The example of core-shell particles shows how simple their analysis is with data from an Anton Paar laboratory system. Here, SAXS is a central tool for the development of new reference materials based on poly(methyl) acrylate-PVDF core-shell particles. The dimensions of the cores and shells can be precisely determined. A detailed analysis makes it possible to show that the cores contain fluorinated and nonfluorinated polymers, whereas the shell consist only of PVDF. This core-shell particles with a diameter around 40 nm show a significantly higher PVDF beta phase content than the PVDF homopolymer when using an emulsion polymerization technique. This finding is of importance with respect to applications in electroactive devices. T2 - SAXS excites: International SAXS Symposium 2019 CY - Graz, Austria DA - 24.09.2019 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoplastics PY - 2019 AN - OPUS4-49126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Challenges of synthesis and analysis of core-shell nanoparticles for reference materials N2 - Core-shell nanoparticles are widespread in nature, industrial applications and nanotechnology research. Facile ways of modern synthesis will be discussed and possibilities to reveal their structures with small-angle X-ray scattering (SAXS). A recent review on using block copolymer templates as one of the most reliable routes for tuning size and shape of nanoparticles is provided by Li et al.1 Ferritin and apoferritin are archetypical examples for protein-based core-shell nanoparticles. Their structures are easily accessed by synchrotron SAXS2 but also with commercial instruments and allow fast performance tests.3 SASfit4 is a suitable program tool based on classical curve fitting and McSAS5 is a complementary program based on a Monte Carlo technique. Detailed refinements of SAXS data evaluation are on the way for better data analysis.6 A sub nanometer resolution is state-of-the-art for quantification of the size distribution of polyacrylic acid stabilized silver nanoparticles.3 Such particles are useful in catalysis.7 It was observed that the catalytic activity can be tuned easily by varying the shell material of the particles. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2018 AN - OPUS4-44903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - SAXS for the development of reference materials: Silver nanoparticles, a case study N2 - Today there are hundreds of products available containing silver in form of nanoparticles, so-called nanosilver. This situation and the foreseeable future growing market of nanosilver will supposedly cause an increased release of silver into the environment. In this way, silver can be also incorporated into the human body and accumulated in different organs, which can be toxic or at least an unknown risk to human health. For these reasons, it is important to constantly study materials containing silver nanoparticles, their production, application in products and technical processes, dissemination of silver nanoparticles in the environment, and effects on humans and nature. The state-of-the-art nanoparticle size and concentration characterization are illustrated in an extensive interlaboratory comparison. To guarantee the traceability of measurements and to secure the comparison of results of different analytical methods, reference materials (RM) and certified reference materials (CRM) are essential. As a case study, the objective of the presented project was to provide an aqueous suspension of silver nanoparticles as a reference material with a nominal diameter below 10 nm for application in the determination of the size and concentration of nanoparticles in an aqueous surrounding. Measurands are the particles’ diameter D, size distribution width σ, number density N, and concentration c. Target uncertainties, defined as one sigma of the measurand values, are 5% for D, 10% for σ, 20% for N, and 20% for c. The certification was carried out based on ISO 17867 and the relevant ISO-Guides to produce reference material. The process of using SAXS as a reliable method for testing homogeneity and short-term and long-term stability of the material is reported. The particle preparation is described in detail so that the user can carry out the steps of synthesis and characterization in his own laboratory if required. Optionally, one can also contact the author for the provision of the silver nanoparticles. Detailed information can be found elsewhere (BAM Certification Reports, BAM-N008 (2022)). T2 - SAXS excites CY - Graz, Austria DA - 04.04.2023 KW - Nanoparticles KW - SAXS KW - Nanosilver KW - Small-angle x-ray scattering PY - 2023 AN - OPUS4-57283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - The Single Chain Architecture of (Bio)Polymers in Contact with Nanoplastics N2 - In contrast to microplastics, little is known about nanoplastics (1 to 100 nm). In order to make the dectecability of nanoplasics more reliable, we started to develop nanoplastic reference materials. This project also aims to anser the question of how the single chain conformation of bio(polymers) changes in contact with nanoplastics. Small-angle X-ray and neutron scattering methods are suitable methods for studing this topic. Recently the soft and hard interactions between polystyrene nanoplasics and human serum albumin corona was investigated with small-angle neutron scattering. Here we concentrate on small-angle X-ray scattering as our favorite method to study how (bio)polymers change their conformation in contact with nanoplastics. The scattering of bovine serum albumin in its native state can be detected easily. The scattering pattern of this biopolymer changes dramatically when its globular stucture changes to a coil structure. Modeling of chain conformations and the calculation of the scattering pattern is relatively easy to perform. Numerous model calculations will be provided to predict the changes of conformation of single bio(polymer) chains when in conatact with nanoplastics. These predictions will be compared with recent experimenal results from in situ measurments of bio(polymers) in contact with nanoplastics. The impact of temperature, polymer concentration and salt on the single-chain conformation changes will be discussed. T2 - PolyDays 2019 CY - Berlin, Germany DA - 11.09.2019 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Protein KW - Nanoplastics PY - 2019 AN - OPUS4-48959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thekkeppat, N. P. A1 - Bhattacharya, Biswajit A1 - Tothadi, S. A1 - Ghosh, S. T1 - Mechanically flexible crystals of styryl quinoline derivatives N2 - Herein, we report three crystals of styryl quinoline derivatives. All these three crystals are mechanically flexible crystals, isostructural and also all of them comply with the common underlying features for elas- tic flexibility like absence of slip plane, criss-cross packing arrangement of neighbouring tapes, presence of weak and dispersive interactions such as halogen bonds, hydrogen bonds etc. The interactions facilitate easy movement of molecules under application of pressure thereby imparting elasticity. Further, the crys- tals were found to be blue light emitting making them promising candidates for optical waveguides. The optical properties were combined with flexibility by using crystal engineering approach towards achiev- ing various applications such as flexible OLEDs, optical waveguides, flexible optoelectronics etc. KW - Mechanical flexibility KW - Halogen bond KW - Fluorescence PY - 2022 DO - https://doi.org/10.1016/j.molstruc.2022.133293 SN - 0022-2860 VL - 1265 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-55549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Geraldine A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Weidner, Steffen T1 - Effects of UV radiation on the friction behavior of thermoplastic polyurethanes N2 - The effects of weathering exposure on unfilled and filled thermoplastic polyurethanes (TPU) materials are described as performed under different humidity conditions. For this purpose, a weathering device was used with UV-A 340 nm lamps at a constant temperature of 40 °C. The effects of environmental (UV and humidity condition) degradation on the frictional properties of TPU materials are presented along with surface analyses to characterize the chemistry of the degradative process. Photooxidative degradation of unfilled polymer leads to deterioration of physical and mechanical properties, which affects its tribological behavior significantly. Due to crosslinking, the stiffness of the material increases, reducing drastically the friction coefficient of unfilled TPUs. The frictional behavior of glass fiber reinforced TPU is less affected by radiation. KW - Photooxidation KW - UV radiation KW - Friction KW - TPU KW - Humidity PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.08.006 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 467 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-45709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Procop, Mathias T1 - Theoretical calculation and experimental determination of x-ray production efficiencies for copper, zirconium, and tungsten N2 - The X-ray intensities of the K-, L- and M-lines of copper, zirconium and tungsten have been measured with an energy-dispersive X-ray spectrometer of known efficiency as function of photon energy. X-ray production efficiencies were determined from the measured intensities for Kα- and L-series of Cu and Zr and for the L- and M-series of W. These data were compared to calculated X-ray production efficiencies based on the widely used matrix correction models of Pouchou and Pichoir (XPP) and Bastin (PROZA96). Our results indicate that a replacement of the stopping power in the PROZA96 algorithm by expressions of Joy and Jablonski has only a minor influence on the calculated X-ray production efficiencies. In contrast, the modifications of the ionization cross-section show a stronger effect. We replaced the ionization cross-sections for K lines of the PROZA96 algorithm with different models. The results for L- and M-Lines are different. For the L-lines of Cu the original XPP and PROZA96 models show the best agreement while using the Bote cross-sections result in an overestimation. For the Zr-L and W-L1, -L2, -L3 X-ray production efficiencies, the Bote cross-sections lead to a significant improvement compared to all other models. The original XPP model represents the best agreement for the M5 efficiencies but underestimates the M4 efficiencies. There is no superior model or modification because the parameter sets in the models need to be aligned to each other. However, using the ionization cross-sections of Bote, which are based on quantum mechanical calculations, show promising results in many cases. KW - X-ray production efficiency KW - EPMA KW - Copper KW - Zirconium KW - Tungsten PY - 2023 DO - https://doi.org/10.1093/micmic/ozad067.110 SN - 1435-8115 VL - 29 IS - Supplement 1 SP - 245 EP - 246 PB - Oxford University Press CY - Oxford AN - OPUS4-58339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Kim, K. J. A1 - Hodoroaba, Vasile-Dan T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - The thickness of thin films can be measured by various methods, e.g., profilometry, ellipsometry, atomic force microscopy (AFM), or X-ray reflectometry. For the additional determination of thin film composition, techniques like X-ray photoelectron spectroscopy (XPS) or mass spectrometry-based techniques can be used. An alternative non-destructive technique is electron probe microanalysis (EPMA). This method assumes a sample of homogenous (bulk) chemical composition, so that it cannot be usually applied to thin film samples. However, in combination with the thin film software StrataGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). These samples were used for an international round robin test. In 2021, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BadgerFilm software package and compared the resulting composition and thickness with the results of the established StrataGEM software and other reference methods. With the current evaluation, the BadgerFilm software shows good agreement with the composition and thickness calculated by StrataGEM and as the reference values provided by the KRISS. KW - Thin films KW - Elemental composition KW - Film thickness KW - EPMA (Electron Probe Microanalysis) PY - 2022 DO - https://doi.org/10.1017/S143192762200318X VL - 28 IS - Suppl. 1 SP - 672 EP - 673 PB - Cambridge University Press AN - OPUS4-55437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terborg, R. A1 - Kim, K. J. A1 - Hodoroaba, Vasile-Dan T1 - Elemental composition and thickness determination of thin films by electron probe microanalysis N2 - Electron probe microanalysis (EPMA) applies to solid samples of homogenous (bulk) chemical composition and can usually not be applied to structures which are inhomogeneous in the micrometer range such as thin film systems down to a few nm. However, in combination with the established thin film software Stratagem, the thickness as well as the elemental composition of thin films on a substrate can be determined. This has been recently successfully demonstrated for Fe-Ni on Si and Si-Ge on Al2O3 thin film systems. For both systems five samples of different elemental composition and a reference were produced and characterised by inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM) as reference values. Last year, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we reevaluated the data acquired for the Fe-Ni and Si-Ge systems using the BadgerFilm software package and compared the obtained elemental compositions and thickness values with the results of the Stratagem software and the reference methods. The conclusion is that the BadgerFilm software shows good agreement with the elemental composition and thickness calculated by Stratagem (mostly <2% for both composition and thickness) and with the reference values for two representative thin film systems (<1%–2% for composition and <10%–20% for thickness). KW - Elemental composition KW - EPMA KW - Film thickness KW - Thin films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576368 DO - https://doi.org/10.1002/sia.7183 SN - 0142-2421 VL - 55 SP - 496 EP - 500 PB - Wiley AN - OPUS4-57636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan A1 - Kim, K. J. T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - Electron Probe Microanalysis (EPMA) provides a non-destructive approach in the dedicated thin film analysis mode with the commercial StrataGem software. Recently, the open-source programme BadgerFilm by Moy and Fournelle became available. Similarly to StrataGem, it is based on the algorithm of Pouchou and Pichoir and needs intensity ratios of the unknown sample and standards (k-values). We have evaluated the k-values measured for the FeNi and SiGe film systems using the BadgerFilm software package and compared the thickness and composition with the results obtained with the established StrataGem software and other reference methods. The thicknesses of the SiGe films obtained by the BadgerFilm software agree within 20% with the StrataGem and TEM results; the elemental compositions BadgerFilm-StrataGEM agree within 2% with one exception (9%). T2 - Microscopy and Microanalysis 2022 CY - Portland, OR, USA DA - 31.07.2022 KW - Thin films KW - Thickness KW - Elemental composition KW - FeNi KW - SiGe KW - BadgerFilm KW - Electron Probe Microanalysis (EPMA) PY - 2022 AN - OPUS4-55522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan A1 - Kim, K.J. T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - Electron probe microanalysis (EPMA)is a non-destructive technique which assumes a sample of homogenous (bulk) chemical composition and can, therefore, not be used for thin film samples. However, in combination with one of the possible thin film software packages, STRATAGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by the Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). In 2021, a new and open source thin film evaluation programme called BADGERFILM has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BADGERFILM software package and compared the resulting composition and thickness with the results of the established STRATAGEM software and other reference methods. With the current evaluation, the BADGERFILM software shows good agreement with the composition and thickness calculated by STRATAGEM and provided by the KRISS. These results between two well-known layered material systems analysed with available conventional EMPA approaches (STRATAGEM and direct thickness measurement by TEM) and a new one (BADGERFILM) proves that reliable non-destructive thin film analysis is possible. In this way, we validate the performance of the new software, which is not at all self-explanatory for such complex quantification algorithms lying behind the final quantified results. T2 - EMAS 2023 - 17th European Workshop on Modern Developments and Applications in Microbeam Analysis CY - Krakow, Poland DA - 07.05.2023 KW - Thin films KW - BADGER film KW - Electron probe microanallysis (EPMA) KW - FeNi thin film KW - Al2O3 thin films PY - 2023 UR - https://www.microbeamanalysis.eu/events/event/60-emas-2023-17th-european-workshop-on-modern-developments-and-applications-in-microbeam-analysis AN - OPUS4-57484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tehranchi, Ali A1 - Chakraborty, Poulami A1 - López Freixes, Martí A1 - McEniry, Eunan J. A1 - Gault, Baptiste A1 - Hickel, Tilmann A1 - Neugebauer, Jörg T1 - Tailoring negative pressure by crystal defects: Microcrack induced hydride formation in Al alloys N2 - Climate change motivates the search for non-carbon-emitting energy generation and storage solutions. Metal hydrides show promising characteristics for this purpose. They can be further stabilized by tailoring the negative pressure of microstructural and structural defects. Using systematic ab initio and atomistic simulations, we demonstrate that an enhancement in the formation of hydrides at the negatively pressurized tip region of the microcrack is feasible by increasing the mechanical tensile load on the specimen. The theoretical predictions have been used to reassess and interpret atom probe tomography experiments for a high-strength 7XXX-aluminium alloy that show a substantial enhancement of hydrogen concentration at structural defects near a stress-corrosion crack tip. These results contain important implications for enhancing the capability of metals as H-storage materials. KW - Physics and Astronomy (miscellaneous) KW - Hydrogen storage KW - Ab initio Simulation KW - Microcracks PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587878 DO - https://doi.org/10.1103/PhysRevMaterials.7.105401 SN - 2475-9953 VL - 7 IS - 10 SP - 105401-1 EP - 105401-12 PB - American Physical Society (APS) AN - OPUS4-58787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavasolyzadeh, Zeynab A1 - Tang, Peng A1 - Hahn, Marc Benjamin A1 - Hweidi, Gada A1 - Nordholt, Niclas A1 - Haag, Rainer A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - 2D and 3D Micropatterning of Mussel‐Inspired Functional Materials by Direct Laser Writing N2 - AbstractThis work addresses the critical need for multifunctional materials and substrate‐independent high‐precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel‐inspired materials (MIMs) is combined with state‐of‐the‐art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub‐micron to micron resolution and extensive post‐functionalization capabilities. This study includes polydopamine (PDA), mussel‐inspired linear, and dendritic polyglycerols (MI‐lPG and MI‐dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single‐stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential. KW - Direct laser writing KW - Mussel-inspired materials KW - Polyglycerol KW - Polydopamine KW - Micropatterning PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588778 DO - https://doi.org/10.1002/smll.202309394 SN - 1613-6829 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tantardini, C. A1 - Michalchuk, Adam A1 - Samtsevich, A. A1 - Rota, C. A1 - Kvashnin, A. G. T1 - The Volumetric Source Function: Looking Inside van der Waals Interactions N2 - The study of van der Waals interactions plays a central role in the understanding of bonding across a range of biological, chemical and physical phenomena. The presence of van der Waals interactions can be identified through analysis of the reduced density gradient, a fundamental parameter at the core of Density Functional Theory. An extension of Bader’s Quantum Theory of Atoms in Molecules is developed here through combination with the analysis of the reduced density gradient. Through this development, a new quantum chemical topological tool is presented: the volumetric source function. This technique allows insight into the atomic composition of van der Waals interactions, offering the first route towards applying the highly successful source function to these disperse interactions. A new algorithm has been implemented in the open-source code, CRITIC2, and tested on acetone, adipic and maleic acids molecular crystals, each stabilized by van der Waals interactions. This novel technique for studying van der Waals interactions at an atomic level offers unprecedented opportunities in the fundamental study of intermolecular interactions and molecular design for crystal engineering, drug design and bio-macromolecular processes. KW - Noncovalent interactions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507911 DO - https://doi.org/10.1038/s41598-020-64261-4 VL - 10 IS - 1 SP - 7816 AN - OPUS4-50791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tache, O. A1 - Durand, B. A1 - Barruet, E. A1 - Gobeaux, F. A1 - Pauw, Brian Richard A1 - Thill, A. T1 - Synthesis of SiO2 Nanoparticles as reference materials: Metrological measurements and in-situ kinetics in lab with Small Angle X-Ray Scattering N2 - The unambiguous correlation of possible health and sustainability risks to nanoparticle size must be enabled by reliable measurement of nanoparticle size, to ensure comparability and compatibility between results measured under different methods. The NPSIZE project funded by European Metrology Program (EMPIR) develop methods, reference materials and modelling to improve the traceability chain, comparability and compatibility of nanoparticle size measurements. In this work, we present how spherical silica nanoparticles are synthetized with controlled monomodal or bimodal dispersion to be use as reference materials and international round-robin. Improving the fabrication requires a fine understanding of synthesis (1), coupled with an expertise of in-situ or ex-situ analysis methods. This is a new challenge for the analysis : determining not only average characteristics (size, chemical composition and shape ...) but also the concentration and the distribution over the population studied (2). Small-Angle X-ray Scattering (3) allows very precise measurements of the nanoparticles size and concentration that can be directly link to the metric system (4) (metrological traceability) . We developed a SAXS laboratory instrument dedicated to the in-situ characterization of nanoparticles, which enable fast measurements, and the monitoring of the synthesis parameters. Measurement protocols and software processing chain (5) (i.e. size distribution) are also combined & optimized. T2 - CNANO2021 CY - Toulouse, France DA - 25.11.2021 KW - X-ray scattering KW - Silica particles KW - Synthesis KW - Reference materials PY - 2021 DO - https://doi.org/10.5281/zenodo.5749256 AN - OPUS4-53931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sözen, H.I. A1 - Mendive-Tapia, E. A1 - Hickel, Tilmann A1 - Neugebauer, J. T1 - Ab initio investigations of point and complex defect structures in B2-FeAl N2 - We study single-site and two-site defect structures in B2-type Fe-Al alloys by means of density functional theory supercell calculations. The defect formation energies are calculated as functions of the chemical potential, which are used to obtain the dependence of the defect concentrations on Al content at different temperatures. We also examine the converging behavior of the formation energies with respect to the supercell size to study the corresponding limit of dilute defects. The effect of magnetism is investigated by considering nonmagnetic, ferromagnetic, and paramagnetic states, calculations for the latter showing that the magnitude of the local magnetic moments strongly impacts the defect formation energies. The methodological studies are used to provide explanations for the wide spread of defect formation energies reported by experiments and other theoretical investigations. Based on these insights, the stability of the B2-FeAl structure as a function of Al concentration is obtained and discussed. KW - Atomistic models KW - Defects KW - Thermodynamics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546956 DO - https://doi.org/10.1103/PhysRevMaterials.6.023603 SN - 2475-9953 VL - 6 IS - 2 SP - 1 EP - 11 PB - APS CY - College Park, MD AN - OPUS4-54695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sözen, H.I. A1 - Ener, S. A1 - Maccari, F. A1 - Fayyazi, B. A1 - Gutfleisch, O. A1 - Neugebauer, J. A1 - Hickel, Tilmann T1 - Combined ab initio and experimental screening of phase stabilities in the Ce-Fe-Ti-X system (X = 3d and 4d metals) N2 - One of the main challenges for the synthesis and application of the promising hard-magnetic compound CeFe11Ti is the formation of Laves phases that are detrimental for their thermodynamic stability and magnetic properties. In this paper, we present an ab initio based approach to modify the stability of these phases in the Ce-Fe-Ti system by additions of 3d and 4d elements. We combine highly accurate free-energy calculations with an efficient screening technique to determine the critical annealing temperature for the formation of Ce(Fe,X)11Ti. The central findings are the dominant role of the formation enthalpy at T = 0 K on chemical trends and the major relevance of partial chemical decompositions. Based on these insights, promising transition metals to promote the stability of the hard-magnetic phase, such as Zn and Tc, were predicted. The comparison with suction casting and reactive crucible melting experiments for Ce-Fe-Ti-X (X = Cu, Ga, Co, and Cr) highlights the relevance of additional phases and quaternary elements. KW - Density functional theory KW - Phase stability KW - Energy materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568850 DO - https://doi.org/10.1103/PhysRevMaterials.7.014410 SN - 2475-9953 VL - 7 SP - 1 EP - 15 AN - OPUS4-56885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Sturm, Heinz A1 - Günster, Jens T1 - First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing N2 - Methods and materials are presented here, which enable the manufacturing of fine structures using a 3D-printing method known as two-photon polymerization (2PP). As traditional photolithography methods for structuring ceramic slurries do not function with 2PP, due to light scattering on ceramic particles, a novel water-based photoresist with high ceramic loading of extremely well dispersed ceramic nano particles was developed. This photoresist is basically a ceramic slurry containing a photocurable agent and a photoinitiator to be crosslinkable with the 780 nm wavelength femtosecond laser light source of the 2PP machine. It is demonstrated that it is possible to gain a highly transparent and low viscous slurry suitable for 2PP processing. This work shows the development of the slurry, first printing results and the post-printing processes required to form three dimensional ceramic microstructures consisting of alumina toughened zirconia (ATZ). KW - 3D-printing KW - Two-photon polymerization KW - 2PP KW - Ceramic nano particles KW - Slurry KW - Alumina toughened zirconia KW - ATZ KW - Additive manufacturing KW - SchwarzP cells KW - Nano-ceramic-additive-manufacturing photoresin KW - NanoCAM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517441 DO - https://doi.org/10.1016/j.oceram.2020.100040 VL - 4 SP - 100040 PB - Elsevier Ltd. AN - OPUS4-51744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna C. A1 - Riechers, Birte A1 - Pauw, Brian R. A1 - Maaß, Robert A1 - Günster, Jens T1 - Microplastic response of 2PP‐printed ceramics N2 - AbstractTwo‐photon polymerization (2PP) additive manufacturing (AM) utilizes feedstocks of ceramic nanoparticles of a few nanometers in diameter, enabling the fabrication of highly accurate technical ceramic design with structural details as small as 500 nm. The performance of these materials is expected to differ from conventional AM ceramics, as nanoparticles and three‐dimensional printing at high resolution introduce new microstructural aspects. This study applies 2PP‐AM of yttria‐stabilized zirconia to investigate the mechanical response behavior under compressive load, probing the influence of smallest structural units induced by the line packing during the printing process, design of sintered microblocks, and sintering temperature and thereby microstructure. We find a dissipative mechanical response enhanced by sintering at lower temperatures than conventional. The pursued 2PP‐AM approach yields a microstructured material with an increased number of grain boundaries that proposedly play a major role in facilitating energy dissipation within the here printed ceramic material. This microplastic response is further triggered by the filigree structures induced by hollow line packing at the order of the critical defect size of ceramics. Together, these unique aspects made accessible by the 2PP‐AM approach contribute to a heterogeneous nano‐ and microstructure, and hint toward opportunities for tailoring the mechanical response in future ceramic applications. KW - Manufacturing KW - Mechanical properties KW - Microstructure KW - Plasticity KW - Zirconia: yttria stabilized PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605176 DO - https://doi.org/10.1111/jace.19849 SN - 1551-2916 SP - 1 EP - 10 PB - Wiley CY - Oxford [u.a.] AN - OPUS4-60517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Szymoniak, Paulina A1 - Schönhals, Andreas ED - Schönhals, Andreas ED - Szymoniak, Paulina T1 - Epoxy-Based Nanocomposites—What Can Be Learned from Dielectric and Calorimetric Investigations? N2 - Epoxy-based nanocomposites are promisingmaterials for industrial applications (i.e., aerospace, marine, and automotive industries) due to their extraordinary mechanical and thermal properties. Regardless of the broad field of applications, there is still a considerable need to identify their structure–property relationships. Here, a detailed dielectric and calorimetric (DSC and fast scanning calorimetry) study on different epoxy-based nanocomposites was performed. Bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) was employed as the polymeric matrix, which was reinforced with three diverse nanofillers that exhibit different interaction strengths with the epoxy matrix (halloysite nanotubes, surface modified halloysite nanotubes, and taurine-modified layered double hydroxide). The structure, molecular mobility, and vitrification behavior are discussed in detail, focusing on the intrinsic structural and dynamic heterogeneity, as well as interfacial properties. KW - Nanocomposites KW - Epoxi nanocomposites KW - Dynamics KW - Interphase KW - Ridis amorphous fraction KW - Dielectric spectroscopy KW - Flash DSC KW - Temparatur modulated Flash DSC KW - Temperature modulated DSC PY - 2022 DO - https://doi.org/10.1007/978-3-030-89723-9_11 SP - 335 EP - 367 PB - Springer CY - Cham, Switzerland AN - OPUS4-54566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Madkour, Sherif T1 - Broadband dielectric spectroscopy on miscible polymer blends in the bulk and in nanometer thick films - Comparison of the different confinement situations N2 - Broadband dielectric spectroscopy in the frequency range from 10-1 to 109 Hz is employed to revisit the segmental dynamics of the miscible blend system poly(vinyl methyl ether)/polystyrene (PVME/PS) in dependence on the composition firstly in the bulk state. Here especially the case of high polystyrene concentrations is considered. It is important to note that only the molecular dynamics of PVME segments as affected by PS is observed because the dipole moment of polystyrene is negligible. Three relaxation processes are found which are due to fluctuations of differently constrained or confined PVME segments. The degree of the confinement of PVME segments due to PS is discussed in dependence on the composition. Further a spatial confinement is considered by investigating thin films of the PVME/PS blend where the film thickness was varied from 100 nm down to 5 nm. Two concentrations of PVME/PS (50/50 wt% and 25/75 wt%) are investigated. To measure nanometer thick films a novel electrode system based on nanostructured electrodes was employed. Nanostructured electrodes can be considered as a cut-edge technology in dielectric spectroscopy. The relaxation spectra of the films showed multiple processes which are discussed in dependence on the film thickness. T2 - Spring Meeting of the American Physical Scociety CY - Boston, Ma, USA DA - 03.03.2019 KW - Polymer blends PY - 2019 AN - OPUS4-47518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Schönhals, Andreas A1 - Sturm, Heinz ED - Sinapius, M. ED - Ziegmann, G. T1 - Characterization of Polymer Nanocomposites N2 - The complex effect of nanoparticles on an epoxy-based and anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered in this chapter. A combination of X-ray scattering, calorimetry (fast scanning and temperature modulated calorimetry) and dielectric spectroscopy was employed to characterize the structure, vitrification kinetics and the molecular dynamics of the nanocomposites. Firstly, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. Moreover, the glass transition temperature decreases with increasing nanoparticle concentration, as a result of changes in the crosslinking density. In addition, it was shown that the incorporation of nanoparticles can result in simultaneous increase in the number of mobile segments for low nanoparticle concentrations and on the other hand, for higher loading degrees the number of mobile segments decreases, due to the formation of an immobilized interphase. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 DO - https://doi.org/10.1007/978-3-030-68523-2_4 SP - 55 EP - 77 PB - Springer Nature AN - OPUS4-52698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Abbasi, M. A1 - Pauw, Brian Richard A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schick, C. A1 - Saalwächter, K. A1 - Schönhals, Andreas T1 - Spatial inhomogeneity, Interfaces and Complex Vitrification Kinetics in a Network Forming Nanocomposite N2 - A detailed calorimetric study on an epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) as the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) as nanofiller. The -NH2 group of taurine can react with DGEBA improving the interaction of the polymer with the filler. The combined X-ray scattering, and electron microscopy data showed that the nanocomposite has a partially exfoliated morphology. Calorimetric studies were performed with conventional DSC, temperature modulated DSC (TMDSC) and fast scanning calorimetry (FSC) in the temperature modulated approach (TMFSC) to investigate the vitrification and molecular mobility in dependence of the filler concentration. First, TMDSC and NMR were used to estimate the amount of the rigid amorphous fraction which consists of immobilized polymer segments at the nanoparticle surface. It was found to be 40 wt% for the highest filler concentration, indicating that the interface dominates the overall macroscopic properties and behavior of the material to a great extent. Second, the relaxation rates of the α-relaxation obtained by TMDSC and TMFSC were compared with the thermal and dielectric relaxation rates measured by static FSC. The investigation revealed that the system shows two distinct α-relaxation processes. Furthermore, also two separate vitrification mechanisms were found for a bulk network-former without geometrical confinement as also confirmed by NMR. This was discussed in terms of the intrinsic spatial heterogeneity on a molecular scale, which becomes more pronounced with increasing nanofiller content. KW - Polymer based Nanocomposites PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523199 DO - https://doi.org/10.1039/d0sm01992e SN - 1744-6848 VL - 17 IS - 10 SP - 2775 EP - 2790 PB - Royal Society of Chemistry AN - OPUS4-52319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Pauw, Brian Richard A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite N2 - The complex effects of nanoparticles on a thermosetting material based on an anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered. A combination of X-ray scattering, calorimetry, including fast scanning calorimetry as well as temperature modulated calorimetry and dielectric spectroscopy, was employed to study the structure, the vitrification kinetics and the molecular dynamics of the nanocomposites. For the first time in the literature for an epoxy-based composite a detailed analysis of the X-ray data was carried out. Moreover, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. The glass transition temperature decreases with increasing nanoparticle concentration, resulting from a change in the crosslinking density. Moreover, on the one hand, for nanocomposites the incorporation of nanofiller increased the number of mobile segments for low nanoparticle concentrations, due to the altered crosslinking density. On the other hand, for higher loading degrees the number of mobile segments decreased, resulting from the formation of an immobilized interphase (RAF). The simultaneous mobilization and immobilization of the segmental dynamics cannot be separated unambiguously. Taking the sample with highest number of mobile segments as reference state it was possible to estimate the amount of RAF. KW - Nanocomposite PY - 2020 DO - https://doi.org/10.1039/d0sm00744g SN - 1744-683X VL - 16 IS - 23 SP - 5406 EP - 5421 PB - Royal Chemical Society AN - OPUS4-50883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Gawek, Marcel A1 - Hertwik, Andreas A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Investigation of the behavior of thin polymeric films including the adsorbed layer on the substrate by nano-sized relaxation spectroscopy and complementary methods N2 - Thin polymeric films are of great importance of high number of high-tech applications for instance in sensors and nanoelectronics. Form the scientific point of view thin films with thickness below 100 nm are ideal model systems to study confinement effects on its properties for instance on the molecular relaxation processes. In this contribution an overview is presented about the behavior of different systems as investigated by nanosized relaxation spectroscopy like broadband dielectric spectroscopy employing nano structured capacitors and AC chip calorimetry complimented by ellipsometry. The systems considered are PVME1, PVME/PS blends2,3 P2VP4, PBAC5 and polysulfone6. Besides the film also the adsorbed layer on the substrate prepared by a leaching approach and investigated by AFM is considered.1,4-7. For these investigationsss it is found that the adsorbed layer itself exhibits a relaxation dynamics which might be assigned either to molecular motions or to adsorptions desorption kinetics. T2 - 9. International Discussion Meeting Relaxation Complex Systems CY - Chiba, Japan DA - 12.08.2023 KW - Thin polymer films PY - 2023 AN - OPUS4-58103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Molecular dynamics of the asymmetric blend PVME/PS revisited by broadband dielectric and specific heat spectroscopy: Evidence of multiple glassy dynamics N2 - The molecular mobility of the highly asymmetric miscible blend poly(vinyl methyl ether)/polystyrene was investigated by broadband dielectric (frequency range 10^-1 Hz – 10^9 Hz) and specific heat spectroscopy (frequency range 10^1 Hz – 10^4 Hz). The dielectric spectra revealed a complex molecular dynamic behavior, where three different relaxation processes were observed. At temperatures below the glass transition temperature an α´-relaxation was found, with an Arrhenius-like temperature dependence of its relaxation rates. It is assigned to localized fluctuations of the confined PVME segments within a frozen glassy matrix dominated by PS. Above the thermal glass transition temperature two processes with a VFT behavior of their relaxation rates were detected called α1- and α2-relaxation, both originating from PVME dipoles fluctuating in PS-rich environments, however with diverse PS concentrations. The relevant length scales for the processes are assumed to be different, corresponding to the Kuhn segment length for the former relaxation and to the CRR for the latter one. The observed multiple glassy dynamics result from spatial local compositional heterogeneities on a microscopic level. Additionally, SHS investigations were performed for the first time for this system, proving an existence of a fourth relaxation process (α3-relaxation) due to the cooperative fluctuations of both PS and PVME segments. The separation between the thermal α3- and dielectric α2-relaxation increases dramatically with increasing polystyrene concentration, proving that the thermal response is dominated by PS. KW - Polymer blends KW - Dynamic heterogeneity KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1021/acs.macromol.8b02697 SN - 0024-9297 VL - 52 IS - 4 SP - 1620 EP - 1631 PB - ACS Publications AN - OPUS4-47516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schoenhals, Andreas T1 - Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller N2 - Nanocomposites based on MgAL layered double hydroxides (LDH) and an epoxy resin were prepared and investigated by a combination of complementary methods. As epoxy resin Bisphenol A diglycidyl ether (DGEBA) was used with Diethylenetriamine as curing agent. The LDH was modified with taurine, which acts as an additional crosslinking agent due to its amine groups. The epoxy resin was cured in a presence of the nanofiller, which was added to the system in various concentrations. X-ray scattering, by combination of SAXS and WAXS was used to characterize the morphology of the obtained nanocomposites. These investigations show that the filler is distributed in the matrix as small stacks of ca. 10 layers. The molecular dynamics of the system, as probe for structure, was investigated by broadband dielectric spectroscopy. In addition to the - and -relaxation (dynamic glass transition), characteristic for the unfilled materials, a further process was found which was assigned to localized fluctuations of segments physically adsorbed or chemically bonded to the nanoparticles. The dielectric -relaxation is shifted to higher temperatures for the nanocomposites in comparison to the pure material but depends weakly on the content of nanoparticles. Further, for the first time Flash DSC was employed to a thermosetting system to investigate the glass transition behavior of the nanocomposites. The heating rates were converted in to relaxation rates. For low concentrations of the nanofiller the thermal data overlap more or less with that of the pure epoxy. For higher concentrations the thermal data are shifted significantly to higher temperatures. This is discussed in terms the cooperativity approach to the glass transition. KW - Nanocomposites KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.010 SN - 0040-6031 VL - 677 SP - 151 EP - 161 PB - Elsevier AN - OPUS4-48218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Juranyi, Fanni A1 - Böhning, Martin A1 - Zorn, Reiner A1 - Schönhals, Andreas T1 - Low-Frequency Vibrational Density of State of Janus-Polynorbornenes: The Dependence of the Boson Peak on the Nanophase-Separated Structure N2 - Inelastic incoherent neutron time-of-flight scattering was employed to investigate the low-frequency vibrational density of states (VDOSs) for a series of glassy Janus-poly(tricyclononenes), which consist of a rigid main chain and flexible alkyl side chains. Here, the length of the flexible side chains was systematically varied from propyl to octyl. Such materials have potential applications as active separation layers in gas separation membranes as a green future technology, especially for the separation of higher hydrocarbons. From the morphological point of view, the Janus polynorbornenes undergo a nanophase separation into alkyl side chain-rich nanodomains surrounded by a rigid polynorbornene matrix. Here, the influence of the nanophase-separated structure on the low-frequency VDOS is investigated from a fundamental point of view. The low-frequency VDOSs of these Janus polynorbornene show excess contributions to the Debye type VDOS known as the Boson peak (BP) for all side chain lengths. Due to the high incoherent scattering cross-section of hydrogen, most of the scattering comes from the alkyl side chain-rich domains. Compared to conventional glass-forming materials, in the considered Janus polynorbornenes, the BP has a much lower intensity and its frequency position is shifted to higher values. These experimental results are discussed in terms of the nanophase-separated structure where the alkyl chain-rich domains were constrained by the surrounding matrix dominated by the rigid backbone. With increasing alkyl chain length, the size of the alkyl chain-rich domains increases. The frequency position of the BP shifts linearly to lower frequencies with the size of these nanodomains estimated from X-ray measurements. The obtained results support the sound wave interpretation to the BP KW - Inelastic neutron scattering PY - 2023 DO - https://doi.org/10.1021/acs.macromol.3c00913 SN - 0024-9297 SP - 1 EP - 10 PB - ACS AN - OPUS4-57972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Gawek, Marcel A1 - Madkour, S. A1 - Schönhals, Andreas T1 - Confinement and localization effects revealed for thin films of the miscible blend Poly(vinyl methyl ether) / Polystyrene with a composition of 25/75 wt% N2 - Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface. KW - Thin polymer films KW - Broadband dielectric spectroscopy PY - 2019 DO - https://doi.org/10.1140/epje/i2019-11870-3 SN - 1292-895X VL - 42 IS - 8 SP - 101, 1 EP - 11 PB - Springer AN - OPUS4-48651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Böhning, Martin A1 - Zorn, Reiner A1 - Schönhals, Andreas T1 - Inelastic and quasielastic neutron scattering experiments on microporous membranes fro green separation processes N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. These polymers are characterized by a high permeability and reasonable permselectivity. The latter point is somehow surprising because for microporous systems a more Knudson-like diffusion is expected then a size dependent temperature activated sieving process. It was argued in the framework of a random gate model that molecular fluctuations on a time scale from ps to ns are responsible for the permselectivity. Here series of polymers of intrinsic microporosity (PIMs) as well as microporous polynorbornenes with bulky Si side groups and a rigid backbone are considered. The polymers have different microporosity characterized by high BET surface area values. First inelastic time-of-flight neutron scattering measurements were carried out to investigate the low frequency density of state (VDOS). The measured data show the characteristic low frequency excess contribution to the VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. It was found that the frequency of the maximum position of the Boson peak correlates with the BET surface area value. Secondly elastic scans as well as quasielastic neutron scattering measurements by a combination of neutron time-of-flight and backscattering have been out. A low temperature relaxation process was found for both polymers. This process was assigned to the methyl group rotation. It was analysed in terms of a jump diffusion in a three-fold potential. The analysis of the dependence of the elastic incoherent structure factor on the scattering vector yields the number of methyl groups which might be immobilized. The neutron scattering experiments were accompanied by fast scanning calorimetry and broadband dielectric investigations as well as atomistic molecular dynamic simulations. T2 - Kolloquiumsvortrag an der Technischen Universität München CY - Garching, Germany DA - 20.11.2023 KW - Polymers with intrinsic microporosity PY - 2023 AN - OPUS4-59036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas T1 - Spatial Inhomogeneity, Interfaces and Complex Vitrification Behavior of Epoxy-based Materials N2 - This work deals with an in-depth comparative investigation of the structure, molecular mobility and vitrification kinetics of three bisphenol A diglycidyl ether (DGEBA)-based materials with different nanofillers: taurine-modified layered double hydroxide (T-LDH) and halloysite nanotubes (HNTs). The chosen methodology comprises I) small – and wide – angle X-ray scattering (SAXS/WAXS) II) calorimetry in the forms of a) conventional DSC and b) static fast scanning calorimetry (FSC), III) broadband dielectric spectroscopy (BDS), as well as IV) specific heat spectroscopy in the forms of a) temperature modulated DSC, and b) temperature modulated FSC. T2 - Abteilungsseminar 6. - FB 6.6 CY - Online meeting DA - 06.05.2021 KW - Broadband dielectric spectroscopy KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Rigid amorphous fraction KW - Flash DSC PY - 2021 AN - OPUS4-52697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -