TY - JOUR A1 - Dietzsch, Michael A1 - Andrusenko, Iryna A1 - Branscheid, Robert A1 - Emmerling, Franziska A1 - Kolb, Ute A1 - Tremel, Wolfgang T1 - Snapshots of calcium carbonate Formation - a step by step analysis N2 - Recent advances in our understanding of CaCO, nucleation from solution have provoked new and challenging questions. We have studied CaC03 formation using precipitation by carbonate ester hydrolysis which ensures precipitation from a strictly homogeneous solution state and allows “titrating” carbonate to a solution with a given Ca2+ concentration on a timescale suited for kinetic studies. Nucleation and crystallization were traced by combining dynamic light Scattering (DLS) and transmission electron microscopy (TEM). DLS served as in situ technique to identify the nucleation time, to monitor particle size evolution, to discriminate different precipitation mechanisms and to validate reproducibility. TEM snapshots taken during different stages of the precipitation process identified different phases and morphologies. At a high level of supersaturation homogeneous nucleation in solution led to the formation of amorphous CaC03 particles (diameter=30 nm), which transformed via vaterite to calcite. Nucleation occurred uniformly in solution which appears to be unique for the CaC03 System. In the presence of Na-polymethacrylate (Na-PMA), heterogeneous nucleation was suppressed and Ca-polymer aggregates were formed in the prenucleation stage. Beyond a critical threshold supersaturation CaC03 particles formed in solution outside of these aggregates. The nucleation process resembled that without additive, indicating that Na-PMA exerts only a minor effect on the CaC03 nucleation. In the postnucleation stage, the polymer led to the formation of extended liquid-like networks, which served as a precursor phase for solid ACC particles that formed alongside the network. KW - biomineralization KW - calcium carbonate KW - nucleation KW - polymer additives PY - 2017 U6 - https://doi.org/10.1515/zkri-2016-1973 SN - 2194-4946 SN - 2196-7105 VL - 232 IS - 1-3 SP - 255 EP - 265 PB - De Gruyter CY - Berlin AN - OPUS4-39863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -