TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - New aspects about the search for the most relevant parameters optimizing SLM materials N2 - While the volumetric energy density is commonly used to qualify a process parameter set, and to quantify its influence on the microstructure and performance of additively manufactured (AM) materials and components, it has been already shown that this description is by no means exhaustive. In this work, new aspects of the optimization of the selective laser melting process are investigated for AM Ti-6Al-4V. We focus on the amount of near-surface residual stress (RS), often blamed for the failure of components, and on the porosity characteristics (amount and spatial distribution). First, using synchrotron x-ray diffraction we show that higher RS in the subsurface region is generated if a lower energy density is used. Second, we show that laser de-focusing and sample positioning inside the build chamber also play an eminent role, and we quantify this influence. In parallel, using X-ray Computed Tomography, we observe that porosity is mainly concentrated in the contour region, except in the case where the laser speed is small. The low values of porosity (less than 1%) do not influence RS. KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Computed tomography PY - 2019 DO - https://doi.org/10.1016/j.addma.2018.11.023 SN - 2214-8604 VL - 25 SP - 325 EP - 334 PB - Elsevier AN - OPUS4-46737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Non destructive characterization in Additive manufacturing N2 - An overview of non destructive characterisation in additively manufactured materials using computed tomography, refraction and diffraction based stress analysis T2 - BAM-IFW workshop CY - IFW Dresden, Germany DA - 28.03.2019 KW - Residual stress analysis KW - Additive manufacturing KW - Computed tomography KW - Diffraction KW - X-ray refraction PY - 2019 AN - OPUS4-49842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for an yield function description of additively manufactured (AM) parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. EBSD/CT-Scans from in-house additively manufactured specimen extract the unique microstructural topology which is converted to a representative volume element (RVE) with grain structure and crystal orientations. Crystal plasticity model parameters on this RVE are calibrated and validated by means of mechanical testing under different texture angles. From virtual experiments on this RVE, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - The First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-49376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - How Temperature Gradient Influences the Formation of Residual Stresses in Metallic Parts Made by L-PBF N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured (AM) parts and important factors for residual stress formation which have implications on structural integrity. This study examined the influence of heat input on the distribution of residual stresses in two prisms produced by laser powder bed fusion (L-PBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two distinct helix scanning strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. Residual stresses were characterised at one plane perpendicular to the building direction at half of its build height using neutron diffraction. In addition, the defect distribution was analysed via micro X-ray computed tomography (µCT) in a twin specimen. Both scanning strategies reveal residual stress distributions typical for AM: compressive stresses in the bulk and tensile stresses at the surface. However, temperature gradients and maximum stress levels differ due to the different heat input. Regarding the X-ray µCT results, they show an accumulation of defects at the corners where the laser direction turned through 90°. The results demonstrate that neutron diffraction and X-ray µCT can be successfully used as non-destructive methods to analyse through-thickness residual stress and defect distribution in AM parts, and in the presented case, illustrate the influence of scanning strategies. This approach contributes to deeper assessment of structural integrity of AM materials and components. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norwegen DA - 09.09.2019 KW - AGIL KW - Neutron diffraction KW - Thermography KW - Additive manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - New aspects about the search for the most relevant parameters optimizing SLM materials N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. The pore shape and spatial distribution obtained by computed tomography varied for samples produced with the same Ev. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ESIAM 2019 CY - Trondheim, Norway DA - 09.09.2019 KW - Additive manufacturing KW - Computed tomography KW - Residual stress PY - 2019 AN - OPUS4-49216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492190 DO - https://doi.org/10.1002/admt.201900506 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hlavacek, Petr A1 - Gluth, Gregor A1 - Lüchtenborg, Jörg A1 - Sturm, Patrick A1 - Mühler, T. A1 - Kühne, Hans-Carsten A1 - Günster, Jens T1 - A Novel Approach to Additive Manufacturing of Alkali-activated Materials: Laser-induced Slip Casting (LIS) of Lithium Aluminate/Silica Slurries N2 - Additive manufacturing of alkali-activated materials currently attracts a lot of attention, because of the possibility to produce customized high-performance elements for a range of applications, potentially being more resource-efficient than conventionally produced parts. Here, we describe a new additive manufacturing process for alkali-activated materials that is based on selective laser-heating of lithium aluminate/microsilica slurries. The new process-material combination allows to manufacture elements with complex geometries at high building rates and high accuracy. The process is versatile and transferrable to structures of sizes differing by orders of magnitude. The mechanical strength of the obtained materials was in the range of values reported for conventional metakaolin-based geopolymers, and superior to what has been hitherto reported for alkali-activated materials produced by additive manufacturing. This mechanical performance was obtained despite the fact that the degree of reaction of the lithium aluminate and the microsilica was low, suggesting that significant reactions took place only at the surface of the microsilica particles. KW - Laser-induced slip casting KW - Alkali-activated materials KW - Additive manufacturing PY - 2019 DO - https://doi.org/10.29272/cmt.2018.0011 SN - 2612-4882 VL - 1 IS - 2 SP - 138 EP - 144 PB - Techna Group AN - OPUS4-49142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Nano polymer (composite) printing N2 - This talk introduces the PolyPoly, a new device at BAM which enables the three-dimensional structuring of polymer nanocomposites with an extremely high resolution of 150x150x600 nm. Initial examples and findings will be shown. T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - Multiphoton laser structuring KW - Polymer nanocomposites KW - 3d structuring KW - Additive manufacturing PY - 2019 AN - OPUS4-48041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer embedded MOF N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the Bundesanstalt für Materialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography with submicron resolution at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, metal organic frameworks (MOFs) embedded in polymer are characterized using differential tomography. MOFs are microporous structures of metal ions, coordinated by organic linker molecules, that can be used in a broad field of applications, especially in gas storage and catalysis. In this work, polymer embedded MOFs were extruded into filaments, which were subsequently used for 3d-printing to profit from the specific properties of the MOFs in polymeric materials combined with the arbitrary shapes provided by 3d-printing. For the extrusion, different polymer classes like ABS, polyester- and polyetherurethanes, as well as different MOFs (ZIF-8, ZIF-67, HKUST-1) were used to create MOF containing filaments with a nominal diameter of 3.0 mm. Differential tomography at the edges of the Zn, Co, and Cu was then used to find the distribution of the corresponding MOF in the filament and to analyze the shape of the inclusions. T2 - Beamline Jockey Workshop CY - Abingdon, Oxfordshire, UK DA - 19.02.2020 KW - Additive manufacturing KW - Absorption edge tomography KW - Metal organic framework KW - Synchrotron CT PY - 2019 AN - OPUS4-50350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -