TY - THES A1 - Fritsch, Tobias T1 - A Multiscale Analysis of Additively Manufactured Lattice Structures N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The Deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Surface roughness analysis KW - Computed tomography PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-470418 DO - https://doi.org/10.25932/publishup-47041 SP - 1 EP - 97 PB - Universitätsbibliothek Potsdam CY - Potsdam AN - OPUS4-53476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Thewes, R. T1 - Einsatz der Wirbelstromprüfung in der additiven Fertigung für die in-situ Prüfung N2 - Additive Fertigung hat in den letzten Jahren aufgrund der hohen Flexibilität stark an Bedeutung gewonnen. Insbesondere in der Luft- und Raumfahrttechnik werden hohe Anforderungen an die Qualitätskontrolle additiv gefertigter Bauteile gestellt. Teile die mit dem selektiven Laserschmelzen (SLM) hergestellt werden, bilden schon währen des Fertigungsprozesses Poren oder Risse aus. Aus diesem Grund ist die zerstörungsfreie Prüfung jedes Bauteils notwendig. Erste Versuche haben gezeigt, dass die ex-situ Wirbelstromprüfung von SLM-Bauteilen mit hochauflösenden MR Sonden möglich ist und dass Fehler im Bereich von einiger µm detektiert werden können. In dem Vortrag wird eine automatisierte in-situ Wirbelstromprüfung von SLM-Bauteilen vorgestellt. Für die Prüfung wird eine Vielzahl hochauflösender MR Sensoren verwendet, um die benötige hohe Ortsauflösung bei gleichzeitig kurzer Prüfzeit zu erreichen. Zusätzlich werden klassische Methoden der Signalverarbeitung verwendet, um die Kosten und die Komplexität des Systems trotz hoher Prüffrequenz zu minimieren. Das vorgestellte System kann in der Zukunft helfen automatisiert Prüfberichte zu generieren, den SLM-Prozess zu kontrollieren oder automatisiert Fehlstellen auszuheilen. T2 - DGZfP Arbeitskreis 406 CY - Berlin, Germany DA - 05.03.2019 KW - 316L KW - Additive Fertigung KW - GMR KW - LBM KW - SLM KW - Wirbelstrom KW - Eddy Current KW - Additive manufacturing PY - 2019 AN - OPUS4-47496 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer embedded MOF N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the Bundesanstalt für Materialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography with submicron resolution at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, metal organic frameworks (MOFs) embedded in polymer are characterized using differential tomography. MOFs are microporous structures of metal ions, coordinated by organic linker molecules, that can be used in a broad field of applications, especially in gas storage and catalysis. In this work, polymer embedded MOFs were extruded into filaments, which were subsequently used for 3d-printing to profit from the specific properties of the MOFs in polymeric materials combined with the arbitrary shapes provided by 3d-printing. For the extrusion, different polymer classes like ABS, polyester- and polyetherurethanes, as well as different MOFs (ZIF-8, ZIF-67, HKUST-1) were used to create MOF containing filaments with a nominal diameter of 3.0 mm. Differential tomography at the edges of the Zn, Co, and Cu was then used to find the distribution of the corresponding MOF in the filament and to analyze the shape of the inclusions. T2 - Beamline Jockey Workshop CY - Abingdon, Oxfordshire, UK DA - 19.02.2020 KW - Additive manufacturing KW - Absorption edge tomography KW - Metal organic framework KW - Synchrotron CT PY - 2019 AN - OPUS4-50350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biegler, M. A1 - Wang, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Automated tool-path generation for rapid manufacturing and numerical simulation of additive manufacturing LMD geometries N2 - In additive manufacturing (AM) Laser Metal Deposition (LMD), parts are built by welding layers of powder feedstock onto a substrate. Applications for steel powders include forging tools and structural components for various industries. For large parts, the choice of tool-paths influences the build-rate, the part performance and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool path generation is essential for the usability of LMD processes. In this contribution, automated tool-path generation approaches are shown and their results are discussed for arbitrary geometries. The investigated path strategies are the classical approaches: “Zig-zag-” and “contour-parallel-strategies”. After generation, the tool-paths are automatically formatted into g-code for experimental build-up and ASCII for a numerical simulation model. Finally, the tool paths are discussed in regards to volume-fill, microstructure and porosity for the experimental samples. This work presents a part of the IGF project 18737N “Welding distortion simulation” (FOSTA P1140) T2 - 4th European Steel Technology and Application Days CY - Dusseldorf, Germany DA - 24.06.2019 KW - Additive manufacturing KW - Directed Energy Deposition KW - Path planning KW - DED KW - Mechanical properties KW - Porosity PY - 2019 SP - 1 AN - OPUS4-50045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition N2 - The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be taken into account, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20x20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, it can be seen that at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow have to be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties. KW - Direct energy deposition KW - Porosity KW - Inconel 718 KW - Additive manufacturing KW - Laser metal deposition PY - 2019 SN - 2351-9789 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-50007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering as well as of acrylonitrile butadiene styrene (ABS) by Fused Layer Modelling, were characterised with active thermography directly after manufacturing and after artificial weathering. For this, two different excitation methods (flash and pulse heating) were used and compared, regarding their suitability for the detection of constructed and imprinted defects inside the test specimens. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier Transformation after TSR were applied. To further investigate the long-term stability of the additively manufactured test specimens towards environmental stress, like UV radiation, heat, humidity, water contact and frost with active thermography, an artificial weathering test over 2000 hours (~3 months) was applied to the specimens. The monitoring of the changes in the optical properties of the weathered plastics was supplemented by spectral reflectance and UV/VIS spectroscopy. KW - Additive manufacturing KW - Polymers KW - Artificial weathering KW - Active thermography KW - UV/VIS spectroscopy PY - 2019 DO - https://doi.org/10.1080/17686733.2019.1686896 SN - 1768-6733 (Print) 2116-7176 (Online) VL - 18 IS - 1 SP - 50 EP - 72 PB - Taylor & Francis AN - OPUS4-49817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Léonard, Fabien A1 - Laquai, René A1 - Ulbricht, Alexander A1 - Serrano Munoz, Itziar A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Non destructive characterization in Additive manufacturing N2 - An overview of non destructive characterisation in additively manufactured materials using computed tomography, refraction and diffraction based stress analysis T2 - BAM-IFW workshop CY - IFW Dresden, Germany DA - 28.03.2019 KW - Residual stress analysis KW - Additive manufacturing KW - Computed tomography KW - Diffraction KW - X-ray refraction PY - 2019 AN - OPUS4-49842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - How Temperature Gradient Influences the Formation of Residual Stresses in Metallic Parts Made by L-PBF N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured (AM) parts and important factors for residual stress formation which have implications on structural integrity. This study examined the influence of heat input on the distribution of residual stresses in two prisms produced by laser powder bed fusion (L-PBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two distinct helix scanning strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. Residual stresses were characterised at one plane perpendicular to the building direction at half of its build height using neutron diffraction. In addition, the defect distribution was analysed via micro X-ray computed tomography (µCT) in a twin specimen. Both scanning strategies reveal residual stress distributions typical for AM: compressive stresses in the bulk and tensile stresses at the surface. However, temperature gradients and maximum stress levels differ due to the different heat input. Regarding the X-ray µCT results, they show an accumulation of defects at the corners where the laser direction turned through 90°. The results demonstrate that neutron diffraction and X-ray µCT can be successfully used as non-destructive methods to analyse through-thickness residual stress and defect distribution in AM parts, and in the presented case, illustrate the influence of scanning strategies. This approach contributes to deeper assessment of structural integrity of AM materials and components. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norwegen DA - 09.09.2019 KW - AGIL KW - Neutron diffraction KW - Thermography KW - Additive manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Nazarzadehmoafie, Maryam T1 - X-ray non-destructive testing of materials and composites N2 - Functional materials for energy conversion are important technology drivers needed for the implementation of low carbon energy. Therefore, researchers commonly focus on improving the intrinsic properties of a functional material. However, for applications, the extrinsic properties are at least as important as the intrinsic ones. Consequently, it is important to investigate and understand the external and internal structure of semi-finished products and especially defect dependent properties. The extrinsic properties may change during application and the life cycle of the material as well as through processing and molding steps. Our studies show how X-ray tomographic (XCT) investigations can contribute to structure investigations in composites and massive samples using the example of magnetic materials for energy conversion. The components are tested non-destructively in 3D in order to localize and characterize cracks, pores, inclusions as well as other defects and their influence on the functional properties and also “in-time” during the life cycle of the material. Exsitu and in-situ experiments performed with non-destructive XCT are predestinated to follow damaging mechanisms of materials under certain load conditions, atmospheres or liquids, e.g. went through several working cycles of a functional material. By combining microtomography with other methods of magnetic and classical material characterization, unique statements about the structure and the functional properties can be made. From the applications point of view, sometimes complex, three-dimensional geometries are needed to fully exploit the functional properties of the materials, e.g. to ensure a high surface area for heat exchange. Since many functional materials are brittle and difficult to form, shaping is often a big challenge. In principle, additive manufacturing processes offer the possibility to produce complex, porous components from poorly formable alloys. If all stages of additive manufacturing are accompanied by X-ray tomographic imaging, the process of finding the optimal parameters for material processing can be significantly accelerated. Based on the quality control of the initial powder material used and also investigations of the shape and arrangement of defects within the molten structure and their relationship with the melting path scanning strategy, Xray tomography has proven to be an ideal tool for additive manufacturing, even for functional materials. Overall, tomographic methods are important tools for the development of functional materials to application maturity. T2 - Physikalisches Kolloquium TU Chemnitz CY - Chemnitz, Germany DA - 04.12.2019 KW - Non-destructuve testing KW - X-ray imaging KW - Additive manufacturing KW - Materials science PY - 2019 AN - OPUS4-50100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Thermografische Prozessüberwachung bei der BAM – Additive Fertigung von Metallen N2 - Vorstellung des TF-Projektes ProMoAM und von Ergebnissen des in-situ Monitorings mit Thermografie T2 - Sitzung des VDI-GPL-FA 105.2 Additive Manufacturing-Metalle CY - Online meeting DA - 27.02.2019 KW - Additive manufacturing KW - In situ Monitoring KW - Thermograhy PY - 2019 AN - OPUS4-53534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -