TY - JOUR A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Bruno, Giovanni T1 - 3D shape analysis of powder for laser beam melting by synchrotron X-ray CT N2 - The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density <1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of the particle’s intrinsic porosity, as well as the packing density of micrometric powder used for LBM, have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti–6Al–4V produced by plasma atomization and stainless steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles were comparable in size according to the equivalent diameter. The packing density was lower (i.e., the powder bed contained more voids in between particles) for the Ti–6Al–4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurement technique, proved to be in agreement. KW - Additive manufacturing KW - Laser beam melting KW - Synchrotron computed tomography KW - Powder analysis KW - Imaging PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-474070 SN - 2412-382X VL - 3 IS - 1 SP - 3, 1 EP - 12 PB - MDPI AN - OPUS4-47407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Burger, M. A1 - Neitzel, F. T1 - A Four-Point Bending Test Apparatus for Measurement- and Model-based Structural Analysis N2 - By means of a small-scale truss bridge, the ability of the Measurement- and Model-based Structural Analysis to detect and localize damage was examined. Although there was no noteworthy difficulty in detecting damage, it turned out that damage localization responds sensitively to systematic influences, i.e. non-modelled properties of the mechanical model. Therefore, another experiment is being conducted to re-examine the Measurement- and Model-based Structural Analysis. For this purpose, the bending test is carried out as it has been already theoretically respectively numerically discussed. In this attempt, the systematic influences such as residual stress are kept as low as possible. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Damage detection KW - Adjustment calculation KW - Finite element method PY - 2019 SN - 978-80-261-0876-4 SP - 63 EP - 64 CY - Pilsen, Czech Republic AN - OPUS4-49290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Fritsch, Tobias T1 - A Multiscale Analysis of Additively Manufactured Lattice Structures N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The Deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Surface roughness analysis KW - Computed tomography PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-470418 SP - 1 EP - 97 PB - Universitätsbibliothek Potsdam CY - Potsdam AN - OPUS4-53476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. A1 - Kadoke, Daniel A1 - Fischer, Michael A1 - Kohlhoff, Harald ED - Pastramă, Ştefan Dan ED - Constantinescu, Dan Mihai T1 - A Small-Scale Test Bridge for Measurement and Model-based Structural Analysis N2 - The Measurement- and Model-based Structural Analysis (MeMoS) integrates a finite element model into least squares adjustment and thus allows to evaluate a mechanical model and measurements in a combined analysis. To examine the capability to detect and localise damage using this integrated analysis MeMoS, a small-scale truss bridge made of aluminium profiles is built as a test specimen for this purpose. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Structural analysis KW - Damage detection and localisation KW - Finite element method KW - Photogrammetry KW - Adjustment calculation PY - 2019 UR - http://www.sciencedirect.com/science/article/pii/S2214785319304894 U6 - https://doi.org/10.1016/j.matpr.2019.03.130 SN - 2214-7853 VL - 12 IS - 2 SP - 319 EP - 328 PB - Elsevier Ltd. AN - OPUS4-48053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A thermomagnetic generator for harvesting low-grade waste heat N2 - To date, there are only very few technologies available for the conversion of low temperature waste heat to electricity. In this talk, we first describe the principle of thermomagnetic generators. Then we focus on the impact of topology of the magnetic circuit within thermomagnetic generators. We demonstrate that the key operational parameters strongly depend on the genus, i.e. the number of holes within the magnetic circuit. T2 - Eingeladener Vortrag / Symposiumsorganisation und Vortrag CY - Uppsala, Sweden DA - 28.08.2019 KW - Energy harvesting KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Dzekan, D. A1 - Stork, A. A1 - Sellschopp, K. A1 - Berger, D. A1 - Nielsch, K. A1 - Fähler, S. T1 - A thermomagnetic generator with novel magnetic field topology N2 - To date, there are only very few technologies available for the conversion of low temperature waste heat to electricity. In this talk, we first describe the principle of thermomagnetic generators. Then we focus on the impact of topology of the magnetic circuit within thermomagnetic generators. We demonstrate that the key operational parameters strongly depend on the genus, i.e. the number of holes within the magnetic circuit. T2 - 2019 Joint MMM-Intermag Conference CY - Washington, DC, USA DA - 14.01.2019 KW - Energy harvesting KW - Magnetocaloric KW - Materials Science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kockert, M. A1 - Mitdank, R. A1 - Zykov, A. A1 - Kowarik, Stefan A1 - Fischer, F. T1 - Absolute Seebeck coefficient of thin platinum films N2 - The influence of size effects on the thermoelectric properties of thin platinum films is investigated and compared to the bulk. Structural properties, like the film thickness and the grain size, are varied. We correlate the electron mean free path with the temperature dependence of the electrical conductivity and the absolute Seebeck coefficient SPt of platinum. A measurement platform was developed as a standardized method to determine SPt and show that SPt,film is reduced compared to SPt,bulk. Boundary and surface scattering reduce the thermodiffusion and the phonon drag contribution to SPt,film by nearly the same factor. We discuss in detail on behalf of a model, which describes the temperature dependence of the absolute Seebeck coefficient, the influence of size effects of electron-phonon and phonon-phonon interaction on SPt. KW - Thin magnetic films PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-499007 SN - 0021-8979 VL - 126 SP - 105106 PB - AIP AN - OPUS4-49900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niemz, P. A1 - Baensch, Franziska A1 - Brunner, A. J. A1 - Gaff, M. T1 - Acoustic Emission Analysis and Synchrotron- Based Microtomography on Glued Shear Strength Samples from Spruce Solid Wood N2 - For a better understanding of the damage of glued wood tensile tests on miniature specimens made of glued spruce wood with acoustic emission and in-situ synchrotron-based X-ray computer microtomography has been monitored. As adhesive, urea-formaldehyde resin was used. For comparison purposes, tensile tests were carried out on solid wood and bonded miniature tensile shear samples with acoustic emission. The acoustic emission signals of all experiments were with classified pattern recognition. This resulted in two classes of signals for each two frequency peaks. In one class was the low-frequency, in the other the higher frequency peak of higher intensity, but this essentially independent from the structure (solid wood or plywood) and the size scale of the test specimens. The influence of the adhesive layers was determined on plywood test specimens in laboratory scale and on miniature test specimens with an adhesive layer and selected fiber orientations examined. This gave evidence that the sound emission signals from the failure of the adhesive layer presumably of the class with low frequency signals peak in the range of services can be assigned. T2 - 21st International Nondestructive Testing and Evaluation of Wood Symposium CY - Freiburg, Germany DA - 24.09.2019 KW - Bondline KW - Insitu test KW - Acoustic emission KW - Sychrotron tomography PY - 2019 SP - 168 EP - 175 AN - OPUS4-49558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska T1 - Acoustic Emission Monitoring of materials, production processes, infrastructures N2 - Acoustic Emission testing is a usable tool for failure Analysis of materials as well as to monitor infrastructurs or production processes. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Acoustic Emission (AE) KW - Laser Metal Deposition (LMD) KW - Pipeline KW - NDT Monitoring PY - 2019 AN - OPUS4-49696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering as well as of acrylonitrile butadiene styrene (ABS) by Fused Layer Modelling, were characterised with active thermography directly after manufacturing and after artificial weathering. For this, two different excitation methods (flash and pulse heating) were used and compared, regarding their suitability for the detection of constructed and imprinted defects inside the test specimens. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier Transformation after TSR were applied. To further investigate the long-term stability of the additively manufactured test specimens towards environmental stress, like UV radiation, heat, humidity, water contact and frost with active thermography, an artificial weathering test over 2000 hours (~3 months) was applied to the specimens. The monitoring of the changes in the optical properties of the weathered plastics was supplemented by spectral reflectance and UV/VIS spectroscopy. KW - Additive manufacturing KW - Polymers KW - Artificial weathering KW - Active thermography KW - UV/VIS spectroscopy PY - 2019 U6 - https://doi.org/10.1080/17686733.2019.1686896 SN - 1768-6733 (Print) 2116-7176 (Online) VL - 18 IS - 1 SP - 50 EP - 72 PB - Taylor & Francis AN - OPUS4-49817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -