TY - JOUR A1 - Wiesholler, L. M. A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Hirsch, T. ED - Resch-Genger, Ute ED - Hirsch, Thomas T1 - Yb,Nd,Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation N2 - Yb,Nd,Er-doped upconversion nanoparticles (UCNPs) have attracted considerable interest as luminescent reporters for bioimaging, sensing, energy conversion/shaping, and anticounterfeiting due to their capability to convert multiple near-infrared (NIR) photons into shorter wavelength ultraviolet, visible or NIR luminescence by successive absorption of two or more NIR photons. This enables optical measurements in complex media with very little background and high penetration depths for bioimaging. The use of Nd3+ as substitute for the commonly employed sensitizer Yb3+ or in combination with Yb3+ shifts the excitation wavelength from about 980 nm, where the absorption of water can weaken upconversion luminescence, to about 800 nm, and laser-induced local overheating effects in cells, tissue, and live animal studies can be minimized. To systematically investigate the potential of Nd3+ doping, we assessed the performance of a set of similarly sized Yb3+,Nd3+,Er3+-doped core- and core–shell UCNPs of different particle architecture in water at broadly varied excitation power densities (P) with steady state and time-resolved fluorometry for excitation at 980 nm and 808 nm. As a measure for UCNPs performance, the P-dependent upconversion quantum yield (Φ) and its saturation behavior were used as well as particle brightness (B). Based upon spectroscopic measurements at both excitation wavelengths in water and in a lipid phantom and B-based calculations of signal size at different penetration depths, conditions under which excitation at 808 nm is advantageous are derived and parameters for the further optimization of triple-doped UCNPs are given. KW - Lanthanide KW - Upconversion KW - Nanoparticle KW - Photoluminescence KW - Quantum yield KW - Lifetime KW - Brightness KW - Nd excitation KW - Excitation power density KW - Modelling KW - NIR PY - 2019 U6 - https://doi.org/10.1039/C9NR03127H SN - 2040-3372 SN - 2040-3364 VL - 11 IS - 28 SP - 13440 EP - 13449 PB - Royal Society of Chemistry CY - London AN - OPUS4-48608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Weigert, Florian A1 - Raevskaya, A. A1 - Spranger, F. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Gaponik, N. A1 - Zahn, D. R. T. T1 - Inherently broadband photoluminescence in Ag−In−S/ZnS quantum dots observed in ensemble and single-particle studies N2 - We present a series of results that demonstrate that the broadband photoluminescence (PL) of aqueous glutathione-capped Ag−In−S (AIS) nanocrystals (NCs) is an inherent property of each NC, rather than a collective characteristic of an NC ensemble. By analyzing parameters affecting the PL features such as the postsynthesis annealing and the deposition of a passivating ZnS shell, we found no correlation between the spectral width of the PL band of AIS (AIS/ZnS) NCs and the density of the lattice defects. Analysis of the PL spectra of a series of size-selected AIS/ZnS NCs revealed that the PL width of fractionated NCs does not depend on the NC size and size distribution. The PL measurements in a broad temperature window from 320 to 10 K demonstrated that the PL width does not decrease with decreasing temperature as expected for an emission arising from thermally activated detrapping processes. Also, we show that the model of the self-trapped exciton can be versatilely applied to reconstruct the PL spectra of different AIS NCs and can account for the effects typically attributed to variations in defect state energy. Measurements of the PL properties of single AIS/ZnS NCs highlighted the broadband nature of the emission of individual NCs. The presented results show that the broadband PL of ternary NCs most probably does not originate from lattice defects but involves the NC lattice as a whole, and, therefore, by tailoring the NC structure, PL efficiencies as high as those reported for binary cadmium or lead chalcogenide NCs can be potentially reached. KW - Nano KW - Nanomaterial KW - Ternary quantum dots KW - AIS KW - Semiconductor nanocrystal KW - Photoluminescence KW - Mechanism KW - Single particle spectroscopy KW - Quantum yield KW - Photophysics PY - 2019 U6 - https://doi.org/10.1021/acs.jpcc.8b11835 SN - 1932-7447 VL - 123 IS - 4 SP - 2632 EP - 2641 PB - ACS AN - OPUS4-47419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraft, Marco A1 - Würth, Christian A1 - Palo, Emilia A1 - Soukka, Tero A1 - Resch-Genger, Ute T1 - Colour-optimized quantum yields of Yb, Tm Co-doped upconversion nanocrystals N2 - Wepresent here a systematic analysis of the influence of Tm3+ Doping concentrations (xTm) on the excitation power (P)-dependent upconversion luminescence and -performance of hexagonal-Phase NaYF4: 20% Yb3+, xTm%Tm3+ upconversion nanoparticles (UCNPs) for xTm of 0.2, 0.5, 0.8, 1.2, and 2.0, respectively. Our results reveal the influence of these differentTm3+ doping concentrations with respect to optimized upconversion quantum yield (ΦUC) values of the variousTm3+ upconversion emission bands, with the highestΦUC values of theTm3+ emission bands above 700 nmresulting for different xTm values as theTm3+ emission bands below 700 nm. This underlines the potential ofTm3+ dopant concentration for colour tuning. Special emphasis was dedicated to the spectroscopic parameters that can be linked to the (de)population pathways of the variousTm3+ energy levels, like the P- and xTm-dependent slope factors and the intensity ratios of selected emission bands. The evaluation of all parameters indicates that not only energy transfer upconversion-, but also crossrelaxation processes between neighbouringTm3+ ions play a vital role in the (de)population of the excited energy levels of Yb3+, Tm3+ codoped nanocrystals. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Mechanism KW - Quantum yield KW - Photophysics KW - Lifetime PY - 2019 U6 - https://doi.org/10.1088/2050-6120/ab023b SN - 2050-6120 VL - 7 IS - 2 SP - 024001, 1 EP - 6 PB - IOP AN - OPUS4-47420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bergstrand, J. A1 - Li, Q. A1 - Huang, B. A1 - Peng, X. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Zhan, Q. A1 - Widengren, J. A1 - Agren, H. A1 - Liu, H. T1 - On the decay time of upconversion luminescence N2 - In this study, we systematically investigate the decay characteristics of upconversion luminescence (UCL) under anti-Stokes excitation through numerical simulations based on rate-equation models. We find that a UCL decay profile generally involves contributions from the sensitizer’s excited-state lifetime, energy transfer and cross-relaxation processes. It should thus be regarded as the overall temporal response of the whole upconversion system to the excitation function rather than the intrinsic lifetime of the luminescence emitting state. Only under certain conditions, such as when the effective lifetime of the sensitizer’s excited state is significantly shorter than that of the UCL emitting state and of the absence of cross-relaxation processes involving the emitting energy level, the UCL decay time approaches the intrinsic lifetime of the emitting state. Subsequently, Stokes excitation is generally preferred in order to accurately quantify the intrinsic lifetime of the emitting state. However, possible cross-relaxation between doped ions at high doping levels can complicate the decay characteristics of the luminescence and even make the Stokesexcitation approach fail. A strong cross-relaxation process can also account for the power dependence of the decay characteristics of UCL. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Mechanism KW - Quantum yield KW - Photophysics KW - Lifetime KW - Modeling PY - 2019 U6 - https://doi.org/10.1039/c8nr10332a VL - 11 IS - 11 SP - 4959 EP - 4969 PB - RSC Royal Society of Chemistry AN - OPUS4-47888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -