TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Untersuchung des tribologischen Einsatzverhaltens von lokal dispergierten Presshärtewerkzeugoberflächen N2 - Das Presshärteverfahren hat sich zur ressourceneffizienten Verarbeitung von höchstfesten Stahlwerkstoffen im Karosserieleichtbau weltweit etabliert. Die fehlerfreie Bauteilproduktion wird jedoch durch Reibungs- und Verschleißerscheinungen aufgrund hoher thermo-mechanischer Werkzeugbelastungen und fehlender Schmierstoffsysteme limitiert. Als Lösungsansatz wird eine Modifikation der Werkzeugoberfläche mittels Laserimplantation angestrebt, um folglich deren Verschleißbeständigkeit nachhaltig zu erhöhen. Das Verfahren basiert auf einem lokalen Dispergieren keramischer Hartstoffpartikel in die Werkzeugoberfläche, infolgedessen hochfeste und erhabene Strukturen im Mikrometerbereich entstehen. Aufgrund der signifikanten Reduzierung der Kontaktfläche sowie der hohen Verschleißbeständigkeit der eingesetzten TiB2-Hartstoffe wird ein verbessertes tribologisches Einsatzverhalten unter presshärtetypischen Prozessbedingungen erwartet. Zur Verifizierung dieser Annahmen wurden im Rahmen dieser Arbeit modifizierte Pin-on-Disk Tests durchgeführt, um das Reib- und Verschleißverhalten der laserimplantierten Werkzeugoberflächen unter Presshärtebedingungen zu untersuchen. Zur weiteren Vertiefung des Prozess-verständnisses wurden die verschlissenen Platinen via Tastschnittmessungen und Querschliffaufnahmen analysiert. Durch den Ergebnisvergleich mit konventionellen Werkzeugoberflächen erfolgte eine abschließende Bewertung des tribologischen Einsatzverhaltens der laserimplantierten Strukturen. T2 - 14. Erlanger Workshop Warmblechumformung 2019 CY - Fürth, Germany DA - 19.11.2019 KW - Laser implantation KW - TiB2 KW - X38CrMoV5-3 KW - Presshärten KW - Tribologie PY - 2019 AN - OPUS4-49699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. ED - Merklein, M. T1 - Untersuchung des tribologischen Einsatzverhaltens von lokal dispergierten Presshärtewerkzeugoberflächen N2 - Das Presshärteverfahren hat sich zur ressourceneffizienten Verarbeitung von höchstfesten Stahlwerkstoffen im Karosserieleichtbau weltweit etabliert. Die fehlerfreie Bauteilproduktion wird jedoch durch Reibungs- und Verschleißerscheinungen aufgrund hoher thermo-mechanischer Werkzeugbelastungen und fehlender Schmierstoffsysteme limitiert. Als Lösungsansatz wird eine Modifikation der Werkzeugoberfläche mittels Laserimplantation angestrebt, um folglich deren Verschleißbeständigkeit nachhaltig zu erhöhen. Das Verfahren basiert auf einem lokalen Dispergieren keramischer Hartstoffpartikel in die Werkzeugoberfläche, infolgedessen hochfeste und erhabene Strukturen im Mikrometerbereich entstehen. Aufgrund der signifikanten Reduzierung der Kontaktfläche sowie der hohen Verschleißbeständigkeit der eingesetzten TiB2-Hartstoffe wird ein verbessertes tribologisches Einsatzverhalten unter presshärtetypischen Prozessbedingungen erwartet. Zur Verifizierung dieser Annahmen wurden im Rahmen dieser Arbeit modifizierte Pin-on-Disk Tests durchgeführt, um das Reib- und Verschleißverhalten der laserimplantierten Werkzeugoberflächen unter Presshärtebedingungen zu untersuchen. Zur weiteren Vertiefung des Prozess-verständnisses wurden die verschlissenen Platinen via Tastschnittmessungen und Querschliffaufnahmen analysiert. Durch den Ergebnisvergleich mit konventionellen Werkzeugoberflächen erfolgte eine abschließende Bewertung des tribologischen Einsatzverhaltens der laserimplantierten Strukturen. T2 - 14. Erlanger Workshop Warmblechumformung 2019 CY - Fürth, Germany DA - 19.11.2019 KW - Laserimplantation KW - TiB2 KW - X38CrMoV5-3 KW - Presshärten KW - Tribologie PY - 2019 SP - 169 EP - 178 PB - Meisenbach Verlag Bamberg CY - Bamberg AN - OPUS4-49703 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. ED - M., Oldenburg ED - J., Hardell ED - D., Caellas T1 - Tribological performance of localized dispersed X38CrMoV5-3 surfaces for hot stamping of Al-Si coated 22MnB5 sheets N2 - Over the last years, the weight of modern car bodies has risen significantly due to the increasing customers’ demand for comfort and safety equipment. However, this ongoing trend leads to an increasing fuel consumption and thus to higher carbon dioxide emissions. In order to counteract these problems, hot stamping has been established in the automotive industry as a key technolo-gy for lightweight construction, regarding the manufacturing of safety-relevant car body compo-nents. Hot stamped parts are commonly made out of boron-manganese steel 22MnB5, which is initially austenized and subsequently formed and quenched in one process step. As a result, geo-metrical complex structures with an ultimate tensile strength of 1500 MPa are generated. The surfaces of the workpieces are coated with an Al-Si layer to avoid oxide scale formation and to ensure corrosion protection. However, the coating system leads to an increased adhesive wear on the tool surface due to the high thermo-mechanical tool stresses. Therefore, a time and cost con-suming rework of the hot stamping tools is required. The aim of this study is to increase the tribological performance of hot stamping tools by using a laser implantation process. This tech-nique allows the ma-nufacturing of separated, elevated and dome-shaped microstructures on the tool surface in consequence of a localized dispersing of hard ceramic particles by pulsed laser radiation. The generated surface features offer great potential for reducing the tribological load, due to their high hardness and wear resistance. For this purpose, the friction coefficient of un-modified and laser implanted tool surfaces were examined and compared by using a modified pin-on-disk test. In addition, the surfaces were analyzed by optical measurements in order to quantify the amount of wear. T2 - 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel CHS2-2019 CY - Lulea, Sweden DA - 02.06.2019 KW - Laser implantation KW - Surface texturing KW - X38CrMoV5-3 KW - TiB2 KW - Hot-Stamping PY - 2019 VL - 2019 SP - 357 EP - 364 AN - OPUS4-48285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Tribological performance of localized dispersed X38CrMoV5-3 surfaces for hot stamping of Al-Si coated 22MnB5 sheets N2 - Over the last years, the weight of modern car bodies has risen significantly due to the increasing customers’ demand for comfort and safety equipment. However, this ongoing trend leads to an increasing fuel consumption and thus to higher carbon dioxide emissions. In order to counteract these problems, hot stamping has been established in the automotive industry as a key technology for lightweight construction, regarding the manufacturing of safety-relevant car body components. Hot stamped parts are commonly made out of boron-manganese steel 22MnB5, which is initially austenized and subsequently formed and quenched in one process step. As a result, geometrical complex structures with an ultimate tensile strength of 1500 MPa are generated. The surfaces of the workpieces are coated with an Al-Si layer to avoid oxide scale formation and to ensure corro-sion protection. However, the coating system leads to an increased adhesive wear on the tool sur-face due to the high thermo-mechanical tool stresses. Therefore, a time and cost consuming rework of the hot stamping tools is required. The aim of this study is to increase the tribological perfor-mance of hot stamping tools by using a laser implantation process. This technique allows the ma-nufacturing of separated, elevated and dome-shaped microstructures on the tool surface in conse-quence of a localized dispersing of hard ceramic particles by pulsed laser radiation. The generated surface features offer great potential for reducing the tribological load, due to their high hardness and wear resistance. For this purpose, the friction coefficient of unmodified and laser implanted tool surfaces were examined and compared by using a modified pin-on-disk test. In addition, the surfaces were analyzed by optical measurements in order to quantify the amount of wear. T2 - 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel CHS2-2019 CY - Lulea, Sweden DA - 02.06.2019 KW - Laser implantation KW - Surface texturing KW - Hot stamping PY - 2019 AN - OPUS4-48323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Schirdewahn, S. A1 - Kromm, Arne A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - On the influence of tib2, tic and tin hard particles on the microstructure of localized laser dispersed aisi d2 tool steel surfaces N2 - The control of friction and wear is a major concern in many industrial applications. A promising method for a tailored surface modification is the so-called laser implantation technique. This method combines surface texturing and material optimization in one processing step by a localized dispersing of hard ceramic particles using pulsed laser radiation. Wear resistant, protruding micrometric features (implants) with defined geometry can be created in deterministic pattern where needed on highly stressed surfaces, i.e. on forming or cutting tools. However, in order to maintain the implants over the tool’s lifetime, a suitable selection of hard ceramic particles is a prerequisite. They must provide a defect-free Metal Matrix Composite with a high share of homogeneously distributed particles and especially a high implant hardness. In this study TiN, TiC and TiB2 hard particles were compared as implant materials for the first time. By a systematic variation of the pulse power and pulse duration, their dispersing behavior and influence on the material properties of AISI D2 tool steel was investigated. Although all powder materials had grain sizes smaller than 10 µm, it was possible to disperse them by pulsed laser radiation and to obtain defect-free protruding implants. The highest share of dispersed particles (~64 %) was observed for TiB2. By scanning electron microscopy and energy dispersive X-ray spectroscopy, it was also shown that a significant share of the pre-placed particles was dissolved by the laser beam and precipitated as nanometer sized particles within the matrix during solidification. These in-situ formed particles have a decisive influence on the material properties. While the TiN and TiC implants have shown maximum hardness values of 750 HV1 and 850 HV1, the TiB2 implants have shown the highest hardness values with more than 1600 HV1. By X-ray diffraction, it was possible to ascribe the lower hardness values of TiC and TiN implants to high amounts of retained austenite in the metal matrix. By implanting TiB2, the formation of retained austenite was successfully suppressed due to the in-situ formation of TiC particles, which was proven by electron backscatter diffraction. In conclusion, all the implant materials are basically suitable for laser implantation on AISI D2 tool steel. However, TiB2 has shown the most promising results. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser implantation KW - Surface texturing KW - AISI D2 KW - TiB2 PY - 2019 SN - 978-1-940168-1-42 SP - 1 EP - 10 AN - OPUS4-49317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spranger, Felix A1 - Oliveira Lopes, M. A1 - Schirdewahn, S. A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - Microstructural evolution and geometrical properties of TiB2 metal matrix composite protrusions on hot work tool steel surfaces manufactured by laser implantation N2 - The laser implantation–named technique aims to address the tribological problems frequently seen on tool surfaces during hot stamping. It is based on the creation of elevated dome- or ring-shaped hard structures on the surface of tool steels by a localized dispersing of hard particles. Therefore, a combination of the two distinct approaches that are normally used in surface Technology for optimizing friction and wear, i.e., surface texturing and surface material optimization, are realized in one processing step. In experimental studies, a localized dispersing of TiB2 particles in the surface layer of the hot work tool steel X38CrMoV5-3 was considered and compared with punctual laser–remelted textures. The structures (micro-) hardness was measured at top- and cross-sections. With the aid of a scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction the interaction between the hard particles and the substrate material were studied. From the results, an optimal parameter range was identified for laser implantation. To the investigation’s end, the implant geometry was measured by optical microscopy and White light microscopy. Furthermore, a mathematic model was introduced, which allows a prediction of the implant geometry as a response to the laser parameters. It was shown that the implantation of TiB2 particles leads to a significant hardness increase up to 1600 HV1 due to the dispersion of initial particles and an in situ precipitation of new titanium-rich phases. It was possible to create defect-free dome- and ring-shaped microstructures on the surfaces. It was also shown that the implants geometry highly depends on the applied laser parameters. The applied central composite design shows a good agreement with the experimental results. KW - Laser implantation KW - Surface texturing KW - X38CrMoV5-3 KW - TiB2 KW - Hot-Stamping PY - 2019 U6 - https://doi.org/10.1007/s00170-019-04630-0 SN - 0268-3768 VL - 2019 SP - 1 EP - 23 PB - Springer-Verlag London Ltd. CY - London AN - OPUS4-49827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spranger, Felix A1 - Oliveira Lopes, M. A1 - Schirdewahn, S. A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - Investigations on TaC Localized Dispersed X38CrMoV5-3 Surfaces With Regard to the Manufacturing of Wear Resistant Protruded Surface Textures N2 - The potential of lowered surface features as well as the application of wear resistant coatings have been known for many years to improve the tribological behavior of forming tools. More recent studies also discuss the capability of protruded microfeatures for adjusting the tribological behavior between contacting surfaces. The demand for a high wear resistance of such structures as well as their economical and reliable production, however, often limits the industrial application. The laser implantation process can overcome these limitations. In contrast to conventional cw-laser dispersing processes, where the formation of uniform metal matrix composite layers is intended, this surface engineering technique aims to improve the tribological behavior of contacting surfaces by a localized dispersing of pre-placed hard ceramic particles. This enables the formation of deterministic textures composed of separated wear resistant dome- or ring-shaped microstructures (implants). Since TaC shows very promising material properties for improving the wear resistance of tools exposed to severe operating conditions, this paper analyzes its suitability for pulsed laser implantation on X38CrMoV5-3 tool steel for the first time. In the experiments, the influence of the particles and the laser parameters (pulse power, pulse duration and focal diameter) on the material properties of the localized dispersed zones was studied by optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The composite´s (micro-) hardness was measured and calculated by using a rule of mixture. Additionally, the influence of the laser parameters and the TaC particles on the geometrical properties of the implants was studied by optical microscopy and white light interferometry. The results showed that defect-free implants with hardness values of ~900 HV1 can be obtained at the focal spot, since a localized dispersing of the TaC particles is possible using a pulsed millisecond laser. However, in dependence of the laser intensity, also a partial dissolution of the initial particles occurs. This leads to the precipitation of new dendritic TaC nanoparticles and to varying contents of retained austenite in the matrix. Both effects have a strong influence on the implant hardness and must be considert by the rule of mixture. Regarding the geometrical response it was pointed out that protruded microfeatures with heights up to 10 µm can be created. In comparison to laser remelted zones, the implanted zones showed significantly altered weld pool profiles due to the influence of the particles on the melt convection. A transition of the implant shape from predominantly dome-shaped to predominantly ring-shaped was observed for intensities >1.7∙106 W/cm2 due to the onset of the keyhole effect. KW - Laser implantation KW - Surface texturing KW - TaC KW - Tantalum carbide KW - Hot-Stamping KW - X38CrMoV5-3 KW - Localized Laser Dispersing PY - 2019 U6 - https://doi.org/10.1007/s40516-019-00106-x SN - 2196-7229 VL - 2019 IS - First Online SP - 1 EP - 22 PB - Springer Nature Switzerland AG. Part of Springer Nature. AN - OPUS4-50041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -