TY - JOUR A1 - Musil, B. A1 - Böhning, Martin A1 - Johlitz, M. A1 - Lion, A. T1 - On the inhomogenous chemo-mechanical ageing behaviour of nitrile rubber: experimental investigations, modelling and parameter identification JF - Continuum Mechanics and Thermodynamics N2 - Elastomers are used in almost all areas of industrial applications, such as tires, engine mounts, bridge bearings, seals or coatings. During their use in operation, they are exposed to different environmental influences. These include, in particular, climatic factors such as air oxygen, high temperatures, light (UV radiation) and the influence of media (e.g. oils, fuels). A very important result of these factors is the chemical ageing of elastomers. In this case, the elastomer degenerates and changes its chemical structure in the aged regions, which leads to an irreversible change in the material properties in connection with the reduction in its usability. In this paper, chemical ageing of nitrile butadiene rubber (NBR) is investigated. Especially in case of thermo-oxidative ageing at elevated operating temperatures, the ageing processes run inhomogeneously. These effects are known as diffusion-limited oxidation (DLO) and are associated with the diffusion–reaction behaviour of atmospheric oxygen with the elastomer network. For these reasons, NBR samples are artificially aged in air and subjected to different experimental methods, which are presented and discussed. Additional results from inhomogeneous mechanical tests and permeation tests indicate the causes of the DLO-effect, show the influence of chemical ageing and are subsequently used for parameter identification in relation to the diffusion–reaction equation. A continuum-mechanical modelling approach is also presented here, which describes the finite hyperelasticity, diffusion–reaction processes as well as chemical degradation and reformation of the elastomer network. This multifield problem leads to a system of partial and ordinary differential equations and constitutive equations and is solved within the finite element method. KW - Rubber KW - Ageing KW - Gas permeability KW - DLO KW - NBR PY - 2019 DO - https://doi.org/10.1007/s00161-019-00791-1 SN - 0935-1175 SN - 1432-0959 VL - 32 IS - 1 SP - 127 EP - 146 PB - Springer CY - Heidelberg AN - OPUS4-48560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -