TY - CONF A1 - Fabry, Cagtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Digitalization and Open Science in Welding Research N2 - The talk will give an overview of past, ongoing and future activities at BAM welding divisions, specifically those regarding prospects and challenges of the ongoing digital transformation and the move to more accessible research data (open science) with concerns to welding research. We will discuss current ways to publish and share research results inside the welding community and highlight approaches and advancements from other scientific fields to improve accessibility and reproducibility. We would also like to discuss the feasibility of integrating open science principles into the current IIW landscape of meetings, publications and education. In Addition we will introduce our upcoming series of workshops organized by BAM focusing on defining and implementing an open source file format specifically designed to publish and exchange high quality welding research data. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - Digitalization KW - Open science KW - Welding KW - Open data KW - Research data management PY - 2019 AN - OPUS4-49381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Cagtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX - towards a common file format for open science in welding N2 - WelDX is a newly started research project at BAM publicly funded by the German Federal Ministry of Education and Research. Over the course of three years the project aims to build the foundation for a publicly accessible file format and to foster research collaboration in arc welding on a national and international level. The talk will motivate benefits and discuss challenges of using a common file format designed to describe, store and share arc welding research data in the scope of "Open Science". By using common open source software and tools, welding data will be made more accessible and reusable so that new scientific practices may emerge. The proposed file format aims to be easy to use for common welding applications while also offering the possibility to describe complex experiments for state of the art welding research. In addition the talk will illustrate how in the future other facilities and researchers will be able to use experimental arc welding data generated at BAM for their own research, for example to conduct their own data analysis or welding process and thermo-mechanical simulations. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - Welding KW - Research data management KW - Open science KW - Open data KW - Digitalization PY - 2019 AN - OPUS4-49382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Cagtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX – data and quality standards for welding research N2 - The WelDX research project aims to foster the exchange of scientific data inside the welding community by developing and establishing a new open source file format suitable for documentation of experimental welding data and upholding associated quality standards. In addition to fostering scientific collaboration inside the national and international welding community an associated advisory committee will be established to oversee the future development of the file format. The proposed file format will be developed with regards to current needs of the community regarding interoperability, data quality and performance and will be published under an appropriate open source license. By using the file format objectivity, comparability and reproducibility across different institutes and experimental setups can be improved. T2 - Open Research Data - Open your data for research CY - Berlin, Germany DA - 21.10.2019 KW - Welding KW - Research data management KW - Open science KW - Open data KW - Digitalization PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-493842 DO - https://doi.org/10.5281/zenodo.3514199 AN - OPUS4-49384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Schröpfer, Dirk A1 - Lausch, T. T1 - Issues and challenges in component welding of high strength fine-grained structural steels N2 - When assessing the performance of welded components residual stresses are vital. The possibilities of transferring the real boundary conditions of welding, which influence the residual stress, into the laboratory are highlighted in this contribution. The potentials of a test system specially developed for this purpose are demonstrated. The component design induces global process-, geometry- and material-dependent stresses, which can be simulated and quantified in the system. In addition, the resulting local residual stress distribution can be exactly determined with high spatial resolution with the aid of X-ray diffraction. Examples are presented of how the conditions to be found during production are simulated in the laboratory. T2 - AJP 2019 CY - Ponta Delgada, Azores (Portugal) DA - 24.10.2019 KW - Residual stress KW - Welding KW - X-ray diffraction KW - Creep-resistant steel KW - Large-scale test PY - 2019 AN - OPUS4-50036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Lausch, T. A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new creep-resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a good resistance against creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. Nevertheless, processing of this type of steel requires extreme care during the welding procedure. This is due to its low toughness and high strength in the welded state when not post weld heat treated combined with increased susceptibility to cracking during stress relaxation. Previous research into crack formation in creep-resistant steels has largely focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment considering real-life manufacturing conditions. The influence of heat control on the mechanical properties has been investigated by simulating the welding and subsequent post weld heat treatment operations during the construction of petrochemical reactors using a special 3-D testing facility on the laboratory scale. This work is subdivided in two parts. In part I of this study the stresses resulting from preheating, welding, dehydrogenation heat treatment and the final post weld heat treatment were analyzed during experiments under varied heat control. In all experiments stress relief cracks formed during post weld heat treatment could be observed. The total crack lengths correlated with the welding induced stresses. Part II of this work is dedicated to the characterization of the cracks and the microstructure. The application of a special acoustic emission analysis indicated that the cracks formed in a temperature range between 300 °C and 500 °C during the post weld heat treatment. In comparison to small scale specimens welded without additional shrinkage restraint, the toughness of the restrained welds was significantly decreased. SEM and TEM analyses of all samples revealed accelerated aging due to early precipitation of special carbides during post weld heat treatment under component relevant restraint. T2 - IIW Annual Assembly CY - Bratislava, Slovakia DA - 08.07.2019 KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2019 AN - OPUS4-48580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Schaupp, Thomas A1 - Mente, Tobias T1 - Hydrogen in weld joints - An underestimated risk? - Utilization potential of gas analytics versus safety of welded components N2 - Hydrogen was once called “the versatile embrittler” [1], which summarizes very well the effect on reduction of ductility and/or toughness in technical alloys like steel. In that connection, welding is one of the most important component fabrication technologies. During welding, hydrogen can be transferred to the weld pool from manifold sources (like contaminations, residuals at the surface, etc.). As hydrogen embrittles a material, the safety of welded components with hydrogen is always a critical issue. Weld heat input causes additional changes in the microstructure like grain growth or partial dissolution of precipitates and many more. All these things influence the mechanical properties and also represent hydrogen traps. These traps decrease the hydrogen diffusion compared to the ideal lattice. The result can be so-called delayed hydrogen assisted cracking (HAC) of the weld joint due to the significantly decreased diffusivity by trapped hydrogen. This is often an underestimated risk as those cracks can appear in the weld joint even after some days! It is essential to know about hydrogen ingress during welding and the microstructure specific hydrogen diffusion. Both are depended on weld parameter influence and the chemical composition of the base material and weld metal. For that purpose, gas analytic methods like solid-state carrier gas hot extraction (CGHE) are useful tools to: (1) identify detrimental hydrogen concentrations from weld joints, (2) binding energies from hydrogen traps by thermal desorption analysis or (3) high-temperature diffusion coefficients. Those values are extremely important for welding practice in terms of recommendations on realistic hydrogen removal heat treatment (HRHT) after welding. Considering the increasing use of “digital” experiments, the data is also needed for reliable numerical simulations of HAC process or HRHT-effectiveness. The present contribution gives an overview on the influence of hydrogen on weld joints, the necessity, methods and standards for hydrogen determination (CGHE) with the aim of fabrication of safe welded and crack-free components. [1] R. A. Oriani (1987), Corrosion 43(7):390-397. doi: 10.5006/1.3583875 T2 - 20. Tagung Festkörperanalyse - FKA20 CY - Vienna, Austria DA - 01.07.2019 KW - Hydrogen KW - Welding KW - Gas analytic PY - 2019 AN - OPUS4-48402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schroepfer, Dirk A1 - Hannemann, Andreas T1 - In-situ Observation of Stress Evolution and Cracking during High Strength Steel Welding T2 - Proceedings of Visual-JW 2019 & WSE 2019 N2 - Residual stresses are crucial when assessing the performance of welded components. The present work deals with the possibilities of transferring the real-life boundary conditions of welding, which influence the residual stress, into the laboratory. The possibilities of a test system with a load capacity of 2 MN specifically developed for online monitoring of stress formation and cracking are shown. Due to the structural design, global process, geometry and material-dependent stresses are induced, which can be quantified in-situ during welding and post weld heat treatment. Examples are presented how the conditions to be found during production are simulated in the laboratory. It is shown how welding residual stresses in high-strength steels are affected by the heat control. Elevated working temperatures significantly increase the tensile residual stresses in the heat affected zone (HAZ). The effect of mechanical stresses resulting from welding on stress relief cracking is demonstrated by the example of a creep resistant steel. Reheat cracks were monitored online during post weld heat treatment. T2 - Visual-JW 2019 & WSE 2019 The 5th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation & The 8th International Conference of Welding Science and Engineering CY - Osaka, Japan DA - 21.11.2019 KW - Residual stress KW - Restraint KW - Welding KW - Large-scale test KW - Reheat cracking PY - 2019 SP - 83 EP - 84 PB - SEIEI Printing Co., Ltd CY - Osaka, Japan AN - OPUS4-49773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schroepfer, Dirk T1 - In-situ Observation of Stress Evolution during High Strength Steel Welding N2 - Residual stresses are crucial when assessing the performance of welded components. The present work deals with the possibilities of transferring the real-life boundary conditions of welding, which influence the residual stress, into the laboratory. The possibilities of a test system with a load capacity of 2 MN specifically developed for online monitoring of stress formation and cracking are shown. Due to the structural design, global process, geometry and material-dependent stresses are induced, which can be quantified in-situ during welding and post weld heat treatment. Examples are presented how the conditions to be found during production are simulated in the laboratory. It is shown how welding residual stresses in high-strength steels are affected by the heat control. Elevated working temperatures significantly increase the tensile residual stresses in the heat affected zone (HAZ). The effect of mechanical stresses resulting from welding on stress relief cracking is demonstrated by the example of a creep resistant steel. Reheat cracks were monitored online during post weld heat treatment. T2 - Visual-JW 2019 & WSE 2019 The 5th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation & The 8th International Conference of Welding Science and Engineering CY - Osaka, Japan DA - 21.11.2019 KW - Residual stress KW - Restraint KW - Welding KW - Large-scale test KW - Reheat cracking PY - 2019 AN - OPUS4-49763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Lausch, Thomas A1 - Kromm, Arne A1 - Rhode, Michael A1 - Kannegiesser, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel - Part I N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new creep-resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a good resistance against creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. Nevertheless, processing of this type of steel requires extreme care during the welding procedure. This is due to its low toughness and high strength in the welded state when not post weld heat treated combined with increased susceptibility to cracking during stress relaxation. Previous research into crack formation in creep-resistant steels has largely focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment considering real-life manufacturing conditions. The influence of heat control on the mechanical properties has been investigated by simulating the welding and subsequent post weld heat treatment operations during the construction of petrochemical reactors using a special 3-D testing facility on the laboratory scale. This work is subdivided in two parts. In part I of this study the stresses resulting from preheating, welding, dehydrogenation heat treatment and the final post weld heat treatment were analyzed during experiments under varied heat control. In all experiments stress relief cracks formed during post weld heat treatment could be observed. The total crack lengths correlated with the welding induced stresses. Part II of this work is dedicated to the characterization of the cracks and the microstructure. The application of a special acoustic emission analysis indicated that the cracks formed in a temperature range between 300 °C and 500 °C during the post weld heat treatment. In comparison to small scale specimens welded without additional shrinkage restraint, the toughness of the restrained welds was significantly decreased. SEM and TEM analyses of all samples revealed accelerated aging due to early precipitation of special carbides during post weld heat treatment under component relevant restraint. T2 - IIW Annual Assembly CY - Bratislava, Slovakia DA - 08.07.2019 KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking KW - Welding PY - 2019 AN - OPUS4-50277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lausch, Thomas A1 - Kromm, Arne A1 - Schroepfer, Dirk A1 - Kannengießer, Thomas A1 - Schaupp, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new creep-resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a good resistance against creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. Nevertheless, processing of this type of steel requires extreme care during the welding procedure. This is due to its low toughness and high strength in the welded state when not post weld heat treated combined with increased susceptibility to cracking during stress relaxation. Previous research into crack formation in creep-resistant steels has largely focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment considering real-life manufacturing conditions. In this work, the influence of heat control on the mechanical properties has been investigated by simulating the real-life manufacturing conditions prevailing during the construction of petrochemical reactors using a special 3-D testing facility. The stresses resulting from preheating, welding, dehydrogenation heat treatment and the final post weld heat treatment were measured during experiments under varied heat control. In all experiments stress relief cracks formed during post weld heat treatment could be observed. The total crack lengths correlated with the stresses due to welding. The application of a special acoustic emission analysis indicated that the cracks formed during post weld heat treatment in a temperature range between 300 °C and 500 °C. In comparison to small scale samples welded without additional shrinkage restraint, the toughness of the restrained welds was significantly decreased. SEM and TEM analyses of all samples revealed accelerated aging due to early precipitation of special carbides during post weld heat treatment under component relevant restraint. T2 - IIW Intermediate Meeting: Commission II-A CY - Miami, FL, USA DA - 12.03.2019 KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2019 AN - OPUS4-47610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -