TY - JOUR A1 - Neubert, S. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Influence of non-uniform martensitic transformation on residual stresses and distortion of GMA-welding JF - Journal of Constructional Steel Research N2 - A combined experimental and numerical approach is applied for a numerical analysis of the non-uniform martensitic transformation kinetic on welding residual stresses and distortion of a single pass weld. The (γ → α)-transformation kinetic within the weld pool region is governed by a non-uniform distribution of the elements chromium and nickel. The single-pass weld was performed by use of the low-alloyed high-strength steel S960QL with the high-alloyed high-strength filler wire CN 13/4-IG®. A thermo-mechanical FE model of the welding process was experimentally validated against temperature field, solid phase distribution, transformation behaviour, X-Ray stress measurements and transient optical distortion measurements. The experimentally determined and calculated weld residual stresses and transient distortion are in good agreement. It can be shown that the change on the (γ → α)-transformation kinetic driven by the inhomogeneous distribution of the chemical contents causes a strong influence on the weld residual stresses within the volume of the weld pool, which could promote crack propagation within the solidified weld pool by use of high-alloyed filler materials. Furthermore, a significant influence on the development of the transient welding distortion is visible. This influence should be respected during numerically calculation of welding distortion in case of multi-pass welding using interpass temperatures and high-alloyed filler materials. KW - Welding residual stresses KW - FEA KW - Welding simulation KW - Dissimilar welding KW - Transformable steels PY - 2017 DO - https://doi.org/10.1016/j.jcsr.2016.08.020 SN - 0143-974X SN - 1873-5983 VL - 128 SP - 193 EP - 200 PB - Elsevier Ltd. AN - OPUS4-37276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gollnow, C. A1 - Griesche, Axel A1 - Weidemann, Jens A1 - Kannengießer, Thomas T1 - Influence of external loads on a characteristic angle between grains and solidus line as an indicator for hot cracking susceptibility during GTA welding JF - Journal of Materials Processing Technology N2 - A long list of criteria determining the hot cracking susceptibility already exists. A main influence on solidification cracking can result from the design of the welded construction, i.e. from the influence of external loads. Using the Controlled Tensile Weldability (CTW) test, an external load hot cracking test, the influence of constant pre-load and different extension rates on the solidification cracking behavior of GTA (Gas Tungsten Arc) welds in an austenitic (AISI 309) and a ferritic (AISI 441) steel were investigated. Compared to specimens welded allowing free shrinkage and welded with an applied constant tensile pre-load, the specimens welded during the application of increasing tensile load show solidification cracks. In the weld seams, a characteristic angle α between the predominantly columnar grains and the fusion line can be observed. Specimens showing solidification cracks show a significantly larger angle α compared to the crack-free specimens. Based on these observations, the characteristic angle α is proposed as a new hot cracking criterion. KW - Hot cracking KW - External load test KW - Component design KW - Crack criterion KW - Grain growth PY - 2017 DO - https://doi.org/10.1016/j.jmatprotec.2016.08.013 VL - 239 SP - 172 EP - 177 PB - Elsevier AN - OPUS4-37278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Hielscher, R. A1 - Winkelmann, Aimo T1 - Electron backscatter diffraction beyond the mainstream JF - Crystal Research and Technology N2 - We present special applications of electron backscatter diffraction (EBSD) which aim to overcome some of the limitations of this technique as it is currently applied in the scanning electron microscope. We stress that the raw EBSD signal carries additional information which is useful beyond the conventional orientation determination. The background signal underlying the backscattered Kikuchi diffraction (BKD) patterns reflects the chemical composition and surface topography but also contains channeling-in information which is used for qualitative real-time orientation imaging using various backscattered electron signals. A significantly improved orientation precision can be achieved when dynamically simulated pattern are matched to the experimental BKD patterns. The breaking of Friedel’s rule makes it possible to obtain orientation mappings with respect to the point-group symmetries. Finally, we discuss the determination of lattice parameters from individual BKD patterns. Subgrain structure in a single quartz grain. The increased noise level in the left map reflects the lower precision of a standard orientation determination using band detection by the Hough transform. The right map results from the same experimental raw data after orientation refinement using a pattern matching approach. The colors correspond an adapted inverse pole figure color key with a maximum angular deviation of about 2° from the mean orientation. KW - Electron backscatter diffraction PY - 2017 DO - https://doi.org/10.1002/crat.201600252 SN - Online 1521-4079 VL - 52 IS - 1 SP - Special Issue - Article Number: UNSP 1600252, 1 EP - 24 PB - WILEY-VCH AN - OPUS4-37935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin, S. A1 - Walnsch, A. A1 - Nolze, Gert A1 - Leineweber, A. A1 - Léaux, F. A1 - Scheuerlein, C. T1 - The crystal structure of (Nb0.75Cu0.25)Sn-2 in the Cu-Nb-Sn system JF - Intermetallics N2 - During the processing of superconducting Nb3Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.75Cu0.25)Sn2 phase described here has occasionally been referred to as Nausite. KW - Electron backscatter diffraction KW - X-ray diffraction KW - Intermetallic compound KW - Structure solution KW - Superconductor PY - 2017 DO - https://doi.org/10.1016/j.intermet.2016.09.008 SN - 0966-9795 SN - 1879-0216 VL - 80 SP - 16 EP - 21 PB - Elsevier Ltd. AN - OPUS4-37874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero T1 - Force-distance curves on lubricant films: An approach to the characterization of the shape of the AFM tip JF - Micron N2 - Force-distance curves have been acquired with an atomic force microscope on perfluorpolyether films. It is shown that curves acquired on films of different thickness, at different rates and with different dwell times can be overlapped by rescaling the time or distance axis.When the time or distance axis is rescaled,the force depends only on the surface tension of perfluorpolyether and on geometrical properties of thetip (aperture and perimeter of the tip at a given distance from the apex). Hence, curves acquired with thesame tip overlap. By comparing curves acquired at different rates the dynamics of tip-wetting can be investigated. Fur-thermore, rescaled force-distance curves have been matched with the perimeter of cross sections ofthe tip, i.e. with the perimeter of the three-phase contact line. Such measurements pave the way for anon-destructive investigation of the tip shape. KW - Lubricant films KW - Surface tension KW - Atomic force microscopy KW - Force-distance curves KW - AFM tip shape PY - 2017 DO - https://doi.org/10.1016/j.micron.2016.11.006 SN - 0968-4328 VL - 93 SP - 20 EP - 28 AN - OPUS4-38391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Lyamkin, V. A1 - Bruno, Giovanni A1 - Pittner, Andreas A1 - Wimpory, Robert A1 - Boin, M. A1 - Kreutzbruck, Marc T1 - Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings JF - Journal of Magnetism and Magnetic Materials N2 - The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction(ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. KW - GMR KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - TIG-welding PY - 2017 DO - https://doi.org/10.1016/j.jmmm.2016.11.102 SN - 0304-8853 SN - 1873-4766 VL - 426 SP - 580 EP - 587 PB - Elsevier CY - Amsterdam AN - OPUS4-38678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Kirner, Sabrina V. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Laser-induced periodic surface structures — a scientific evergreen JF - IEEE Journal of Selected Topics in Quantum Electronics N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon and can be generated on almost any material upon irradiation with linearly polarized radiation. With the availability of ultrashort laser pulses, LIPSS have gained an increasing attraction during the past decade, since these structures can be generated in a simple single-step process, which allows a surface nanostructuring for tailoring optical, mechanical, and chemical surface properties. In this study, the current state in the field of LIPSS is reviewed. Their formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments. These experiments allow us to address the question whether the LIPSS are seeded via ultrafast energy deposition mechanisms acting during the absorption of optical radiation or via self-organization after the irradiation process. Relevant control parameters of LIPSS are identified, and technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser ablation KW - Nanostructures KW - Surface functionalization KW - Surface texture KW - Laser-induced periodic surface structures (LIPSS) PY - 2017 DO - https://doi.org/10.1109/JSTQE.2016.2614183 SN - 1077-260X SN - 1558-4542 VL - 23 IS - 3 SP - 9000615 PB - IEEE AN - OPUS4-38633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Kang, N. A1 - Wang, D.-Y. A1 - Wurm, Andreas A1 - Schick, C. A1 - Schönhals, Andreas T1 - Crystallization behavior of nanocomposites based on poly(L-lactide) and MgAl layered double hydroxides - Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller JF - Polymer N2 - Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller). Polymer nanocomposite based on poly(L-lactide) and MgAl layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA ist crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated. It was found, that RAFfiller increases linearly with the concentration of the nanofiller for this system. Furthermore, RAFcrystal is only slightly influenced by the presence of the nanofiller. KW - Polymer based nanocomposites PY - 2017 DO - https://doi.org/10.1016/j.polymer.2016.11.065 SN - 0032-3861 SN - 1873-2291 VL - 108 SP - 257 EP - 264 PB - Elesevier AN - OPUS4-39052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Engineering approach to assess residual stresses in welded components JF - Welding in the World N2 - Present trends to lightweight design lead to an expanding relevance of high-strength fine-grained structural steels especially in mobile crane constructions. With growing material strength, the challenge for welding fabrication increases, since high loading capacities and safety requirements have to be accomplished. The utilisation of the high strength potential often requires complex constructions associated with high restraint conditions while welding. Increased residual stresses may occur due to superimposing reaction and restraint stresses, which have to be quantified and evaluated to ensure the safety and integrity of high-strength steel constructions. Particularly, the scope of residual stresses has to be taken into account for different effects in the HAZ, notches, weld and base metal. Commonly, conservative assumptions of residual stresses lead to distinct underestimations of the load bearing capacity particularly for welded high-strength steel constructions. This study concludes results of recent works of the researchers regarding the complex interaction among heat control, material and restraint intensity on the residual stress state in welded components. These analyses are extended by further experiments. Based on the obtained major effects, an approach for a welding residual stress assessment regarding component design according to prevailing standards for crane construction, an important application for high-strength steels, is presented. KW - Process parameters KW - Residual stresses KW - MAG welding KW - Restraint KW - High-strength steels PY - 2017 DO - https://doi.org/10.1007/s40194-016-0394-9 SN - 0043-2288 SN - 1878-6669 VL - 91 IS - 1 SP - 91 EP - 106 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-39044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Philipp A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Ziegert, C. T1 - Development of partial safety factors for earth block masonry JF - Materials and Structures N2 - The main aim of the research was the development of a first valid database for material parameters of earth block masonry (EBM) with particular regard to statistical characteristics. A solid database is needed for the determination of the materials partial safety factor. Therefore, compressive strength tests were carried out with two types of earth blocks and two types of prefabricated earth mortar. The evaluation has shown that the mean variation of the compressive strength was remarkably less than expected, which indicates high quality standards of the components earth block and mortar with regard to industrial production. Using the reliability method, a partial safety factor for EBM subjected to compression was determined on the basis of these test results. The findings have shown that a common calculation method for EBM based on partial safety factors following the valid masonry construction standard is feasible. KW - Partial safety factor KW - Earth block masonry (EBM) KW - Reliability KW - Compressive strength PY - 2017 DO - https://doi.org/10.1617/s11527-016-0902-9 SN - 1871-6873 SN - 1359-5997 VL - 50 IS - 1 SP - 1 EP - 14 PB - Springer AN - OPUS4-38937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -