TY - CONF A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Impact of structure and relaxation on fatigue and micromechanical properties of oxide glasses: the role of volatiles and bonding state N2 - As subcritical crack growth (SCCG) can reduce tensile strength of glasses by many orders of magnitude, the potential for improvement of fatigue behaviour is most intriguing in developing ultra-strong glasses. An essential bottleneck is the basic understanding of the numerous interplaying pressure-, temperature- and water-affected relaxation phenomena at the crack tip and related toughening strategies. Therefore, the present project aims to advance the basic understanding of structural relaxation effects and local properties caused by increased water concentration and tensile stresses at the crack tip as they are a key for structural toughening designs to develop SCCG-free glasses and glass surfaces. Our first studies give clear evidence that glass structure and dynamics is strongly modified upon hydration of glasses. These changes are highly related to the nature of network formers but are affected as well by the counter ions (network modifier). Results of the 1st project part suggest that structural relaxation below glass transition temperature, i.e. overlapping of short-range (beta) and long-range (alpha) interactions can contribute to SCCG in water-free environments and that structurally dissolved water in the glasses can have decisive impact on this effect. In the 2nd project stage specific glasses compositions will be investigated to gain an improved understanding on the relation of sub-Tg relaxation and inert SCCG as well as to shed light to the related effects of dissolved water and its speciation. These glasses cover a broader range of different glass topologies and binding partners, whereby the coupling of alpha and beta relaxations is varied systematically by alkali-, alkaline earth ions and water species concentrations. Preparation of hydrous glasses (up to 8 wt% water) will be performed by high pressure syntheses. Structure will be resolved by NMR, Raman and IR spectroscopy while structural relaxation is accessed in the temperature and frequency domain using dynamic mechanical spectroscopy and ultrasonic damping. We will focus on measurements of inert SCCG (region III) conducting experiments in vacuum and dry gas atmospheres using indentation techniques and stressing of glass specimens in DCB geometry. Experimental data on SCCG will be provided to SPP groups, which deals with fatigue in metallic glasses and vice versa we will test theoretical predictions of ab-initio simulations of partner within SPP 1594 in order to quantify the effect of water on the crack tip. In summa topological factors controlling the subcritical crack growth with respect to water will be identified from which structural toughening designs for highly fatigue resistant-glasses can be derived. N2 - Subkritisches Risswachstum (SCCG) kann die Zugfestigkeit von Glas um viele Größenordnungen erniedrigen. Deshalb birgt die Verbesserung des Ermüdungsverhaltens ein hohes Potential für das topologische Design hochfester Gläser. Ein diesbezüglicher Engpass ist das Verständnis der zahlreichen interagierenden druck-, temperatur- und wasserbeeinflussten Relaxationsphänomene an der Rissspitze und hieraus abgeleitete Verstärkungsstrategien. Ziel des Projekts ist es daher, das grundlegende Verständnis der Effekte, die infolge erhöhter Wasserkonzentrationen und Zugspannungen an der Rissspitze entstehen, zu vertiefen, da sie als ein Schlüssel für künftige strukturelle Designprinzipien zur Entwicklung schadenstoleranter Gläser und Glasoberflächen gelten. Unsere ersten Studien zeigen, dass die Struktur und Dynamik von Gläsern nach einer Hydration stark verändert sind. Diese Modifikationen sind mit der Art der Netzwerkbildner stark verknüpft, aber auch von ihren Gegenionen (Netzwerkwandler) abhängig. Die Ergebnisse des ersten Projektabschnitts legen nahe, dass strukturelle Relaxation unterhalb der Glasübergangstemperatur, d. h. ein Überlappen von kurz-reichweitigen (beta) und lang-reichweitigen (alpha) Wechselwirkungen, zum subkritisches Risswachstum in wasserfreien Umgebungen beitragen kann und, dass strukturell gelöstes Wasser in Gläsern sich entscheidend auf diese Effekt auswirken kann. Im zweiten Projektabschnitt werden daher spezielle Glaszusammensetzungen untersucht, die zu einem besseren Verständnis der Verbindung zwischen sub-Tg Relaxation und SCCG führen aber auch den Einfluss von gelöstem Wasser und dessen Speziation näher beleuchten. Diese Gläser weisen eine großen Breite an verschiedenen Topologien und Bindungspartnern auf, wobei die Kopplung von alpha und beta Relaxation durch Veränderungen in den Gehalten von Alkali-, Erdalkalionen und der Wasserspezies systematisch variiert wird. Die Präparation hydratisierter Gläser (bis zu 8 Ma.%) erfolgt mittels Hochdrucksynthesen. Die Glasstruktur wird durch NMR, Raman und IR Spektroskopie aufgeklärt während die Strukturrelaxation anhand dynamische mechanische Spektroskopie und Ultraschalldämpfung im Temperatur- und Frequenzraum erfasst wird. Im Fokus werden Messungen des inerten subkritischen Risswachstums (Region III) stehen, die Indenter-Experimente im Vakuum und trockenen Gasatmosphären sowie Verspannen von Glasproben in DCB Geometrie beinhalten. Experimentelle SCCG Daten werden Gruppen im Schwerpunktprogramm zur Verfügung stellen, die sich mit Ermüdung in metallischen Gläsern beschäftigen und im Gegenzug werden wir theoretische Vorhersagen aus ab initio Simulationen der Partner im SPP 1594 testen, um den Einfluss von Wasser auf die mechanischen Eigenschaften an der Rissspitze und deren Einfluss auf SCCG zu quantifizieren. In summa werden topologische Faktoren bezüglich Wasser, die SCCG kontrollieren, identifiziert, um daraus Designprinzipien für hoch ermüdungsresistente Gläser abzuleiten. T2 - Kolloquium des DFG-PP 1594 CY - Jena, Germany DA - 17.9.2015 KW - Glass KW - Fatigue PY - 2015 AN - OPUS4-38334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Bauer, Ute A1 - Rößler, C. T1 - Impact of structure and relaxation on fatigue and micro-mechanical properties of oxide glasses: the role of volatiles and bonding state N2 - As subcritical crack growth (SCCG) can reduce tensile strength of glasses by many orders of magni-tude, the potential for improvement of fatigue behaviour is most intriguing in developing ultra-strong glasses. An essential bottleneck is the basic understanding of the numerous interplaying pressure-, temperature- and water-affected relaxation phenomena at the crack tip and related toughening strat-egies. Therefore, the present project aims to advance the basic understanding of structural relaxa-tion effects and local properties caused by increased water concentration and tensile stresses at the crack tip as they are a key for structural toughening designs to develop SCCG-free glasses and glass surfaces. Our first studies give clear evidence that glass structure and dynamics is strongly modified upon hy-dration of glasses. These changes are highly related to the nature of network formers but are affect-ed as well by the counter ions (network modifier). Results of the 1st project part suggest that struc-tural relaxation below glass transition temperature, i.e. overlapping of short-range (beta) and long-range (alpha) interactions can contribute to SCCG in water-free environments and that structurally dissolved water in the glasses can have decisive impact on this effect. In the 2nd project stage specific glasses compositions will be investigated to gain an improved un-derstanding on the relation of sub-Tg relaxation and inert SCCG as well as to shed light to the relat-ed effects of dissolved water and its speciation. These glasses cover a broader range of different glass topologies and binding partners, whereby the coupling of alpha and beta relaxations is varied systematically by alkali-, alkaline earth ions and water species concentrations. Preparation of hy-drous glasses (up to 8 wt% water) will be performed by high pressure syntheses. Structure will be resolved by NMR, Raman and IR spectroscopy while structural relaxation is accessed in the temper-ature and frequency domain using dynamic mechanical spectroscopy and ultrasonic damping. We will focus on measurements of inert SCCG (region III) conducting experiments in vacuum and dry gas atmospheres using indentation techniques and stressing of glass specimens in DCB geometry. Experimental data on SCCG will be provided to SPP groups, which deals with fatigue in metallic glasses and vice versa we will test theoretical predictions of ab-initio simulations of partner within SPP 1594 in order to quantify the effect of water on the crack tip. In summa topological factors con-trolling the subcritical crack growth with respect to water will be identified from which structural toughening designs for highly fatigue resistant-glasses can be derived. T2 - Kolloquium des DFG-PP 1593 Ultrastrong Glasses CY - Jena, Germany DA - 17.9.2015 KW - Glass KW - Fatigue PY - 2015 AN - OPUS4-38335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Groh, D. A1 - Döhler, F. A1 - Brauer, D. S. T1 - Sintering and crystallization of new bioactive glasses N2 - Bioglass® 45S5 is mainly used clinically as powders, granules or pastes instead of sintered compacts. This is due to the inherent problem of crystallization during the sintering, which results in poor mechanical properties and reduced bioactivity. Recently, new bioactive glasses with improved crystallization stability have been developed as promising candidates for manufacturing of sintered powder compacts for bone regeneration, which combine improved sintering behavior with bioactivity. Compared with the well-known Bioglass® 45S5 (SiO2-P2O5-CaO-Na2O) the calcium/alkali oxide ratio was increased, sodium oxide was partially replaced by potassium oxide and up to 3 mol% calcium fluoride were added, in order to stabilize the glass against crystallization. The aim of this study was to investigate the sintering and crystallization behavior of these new bioactive glasses. Sintering and crystallization were characterized by heating microscopy, XRD, FTIR, SEM, and DTA. The results show that a sintered density of 88-99 % is achieved in contrast to only 57-67% for Bioglass® 45S5. In addition, FTIR and XRD analyses show that Bioglass® 45S5 crystallized during sintering while for the new glasses no crystalline phases are detected. The thermal properties of all glasses were studied by DTA measurements, and the influence of grain size was characterized. These studies showed that full densification can be attained for particle size < 32 µm, whereas coarser particles progressively increase residual porosity. Observed foaming phenomena, are strongly retarded by crystallization of beta-HAp. T2 - ICG 2016 CY - Shanghai, China DA - 07.04.2016 KW - Bioactive KW - Glass KW - Crystallization KW - Sintering PY - 2015 AN - OPUS4-38304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Groh, D. A1 - Döhler, F. A1 - Brauer, D. S. T1 - New bioactive glasses with improved sintering behavior N2 - Nowadays, the use of bioactive glasses is established for bone regeneration; however glasses are used mostly as powders, granules or in a paste. Sintered scaffolds are not used clinically, because of the in inherent problem of crystallization during the sintering process, resulting in poor mechanical properties and reduced bioactivity. The aim of this study was therefore to design new bioactive glasses, which combine improved processing and sintering with bioactivity. Compared with the well-known Bioglass® 45S5 (SiO2-P2O5-CaO-Na2O) the calcium/alkalioxide ratio was increased, sodiumoxide was partially replaced by potassiumoxide and up to 8 mol% calciumflorid were added, in order to stabilize the glass against crystallization. The sintering behavior of the new glasses was characterized by heating microscopy and compared to Bioglass® 45S5. The results showed that the new glasses achieved a sintered density of 88-99 % in contrast to only 57-67% for Bioglass® 45S5. In addition FTIR and XRD analyses showed that Bioglass® 45S5 crystallized during sintering while for the new glasses no crystalline phases were detected. The thermal properties of all glasses were studied by DTA and DSC measures, and the influence of grain size and heating rate were characterized. These studies showed a shift of start and end temperature of sintering process as well as the final density. The structure of sintered specimens during and after sintering was examined using light and electron microscopy (REM). T2 - Crystallization 2015 CY - Nagaoka, Japan DA - 11.10.2015 KW - Bioactive KW - Glass KW - Crystallization KW - Sintering PY - 2015 AN - OPUS4-38308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -