TY - CONF A1 - Wäsche, Rolf A1 - Hartelt, Manfred A1 - Ehrke, Roman ED - Silva Gomes, J. F. ED - Meguid, S. A. T1 - A study on tribological behaviour of a-C:H coatings under lubricated conditions up to 250°C T2 - Proceedings of the 6th International Conference on Mechanics and Materials in Design N2 - The influence of temperature and counterbody material on the tribological properties of a-C:H coatings deposited on Cronidur 30 steel has been investigated in a lubricated ball on disk contact situation with alpha-alumina and silicon nitride as counterbodies. The results show, that the wear volumes of the systems increase exponentially with increasing temperature, for alpha-alumina more than for silicon nitride. Two different wear mechanisms seem to have a major influence: First, the abrasive action due to materials hardness and second, the tribo-oxidation when silicon nitride is counter material. T2 - 6th International Conference on Mechanics and Materials Design CY - P. Delgada/Azores, Portugal DA - 26.07.2015 KW - Diamond like carbon KW - Ceramics KW - Wear KW - Friction KW - Temperature PY - 2015 SP - Paper 5395, 445 EP - 446 AN - OPUS4-37014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Harsha, A. P. A1 - Wäsche, Rolf T1 - Tribological studies on polyetherimide composites sliding against steel under reciprocating conditions T2 - PolyTrib 2016 N2 - The friction and wear properties of polyetherimide composites under dry oscillating sliding condition at room temperature (RT) as well as at elevated temperature (120 °C) was investigated. The polymer specimens were made to oscillate against steel cylinder as a counterpart. The friction and wear properties of PEI and composites were strongly influenced by the temperature. In case of carbon fiber composite abrasive action of carbon fibers has severely damaged the counterpart and resulted in accelerated wear of the composite at RT. Solid lubricants filled (PTFE, MoS2, graphite) along with glass fiber is beneficial in improving the friction and wear performance of the PEI composite at RT, whereas at elevated temperature wear performance was deteriorated. T2 - 2nd International Conference on Polymer Tribology CY - Ljubljana, Slovenia DA - 15.09.2016 KW - Polyetherimide KW - Composites KW - Friction KW - Wear KW - Temperature KW - Oscillating sliding KW - Solid lubricant KW - Fibers PY - 2016 AN - OPUS4-38135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Ehrke, Roman A1 - Woydt, Mathias T1 - Wear of alpha-Alumina in hot steam up to 300°C N2 - Selfmated alpha-alumina sliding couples habe been investigated under oscillating sliding at 100 N load in different humidity conditions in air as well as in hot steam up to temperatures of 300°C and ambient pressures up to 4 bar. T2 - 7th International Conference on Mechanics and Materials in Design CY - Albufeira, Portugal DA - 11.06.2017 KW - Alpha-alumina KW - Wear KW - Temperature KW - Abrasion PY - 2017 AN - OPUS4-41127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Ehrke, Roman A1 - Woydt, Mathias T1 - Wear of alpha-alumina in hot steam up to 300°C T2 - Progress in Mechanics and Materials in Design N2 - Selfmated alpha-alumina sliding couples have been investigated under oscillating sliding at 100 N load in different humidity conditions in air as in hot steam up to temperatures of 300°C and ambient pressures up to 4 bar. T2 - 7th International Conference on Mechanics and Materials in Design CY - Albufeira, Portugal DA - 11.06.2017 KW - Apha-alumina KW - Wear KW - Steam KW - Temperature KW - Abrasion PY - 2017 SN - 978-989-98832-6-0 SP - 265 EP - 266 PB - LusoImpress S.A. CY - Avintes, Portugal AN - OPUS4-41128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Brandt, Guido A1 - Ehrke, Roman A1 - Nolze, Gert A1 - Schmid, Thomas A1 - Sasaki, S. A1 - Woydt, Mathias T1 - Wear behaviour of alpha-alumina in hot steam at high contact pressure JF - Wear N2 - The work examines the wear behaviour of α-aluminium oxide by combining thermodynamic modelling with advanced wear testing as well as analytical methods to get a better understanding of this structural ceramic material wear behavior and its possible use in high temperature steam environment. KW - Aluminium oxide KW - Temperature KW - Hot steam KW - Diaspore KW - Ceramic KW - Wear PY - 2018 DO - https://doi.org/10.1016/j.wear.2018.02.012 SN - 0043-1648 SN - 1873-2577 VL - 404-405 SP - 22 EP - 30 PB - Elsevier B.V. AN - OPUS4-44449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Harsha, A. P. A1 - Wäsche, Rolf A1 - Joyce, T. J. T1 - Wear of biopolymers under reciprocating sliding conditions against different counterfaces JF - Polymer Engineering and Science N2 - In the present work it was shown the investigation of wear resistance of ultrahigh-molecular weight polyethylene (UHMWPE) and crosslinked polyethylene (XLPE) against different counterfaces. Friction and wear studies were evaluated under dry reciprocating sliding conditions at room temperature. KW - Biopolymers KW - Wear KW - Friction KW - UHMWPE PY - 2019 DO - https://doi.org/10.1002/pen.25239 VL - 59 IS - 11 SP - 2356 EP - 2366 PB - Society of Plastics Engineers AN - OPUS4-49779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Sato, K. A1 - Brandt, Guido A1 - Schmid, Thomas A1 - Sasaki, S. A1 - Woydt, Mathias T1 - Wear behaviour of MgO stabilized zirconia in hot steam environment up to 400°C JF - Wear N2 - Self-mated magnesia stabilized zirconia (Mg-PSZ) ceramic sliding couples have been investigated at 100 N load (P0max= 1324 MPa) in oscillating sliding conditions in different humidity conditions in air and in hot steam. Temperatures have been varied up to 400 °C and pressures up to 6 bars. The results show that the wear behavior of MgO-ZrO2 under high Hertzian contact pressures is strongly dependent on temperature and is similar for both dry oscillating and oscillating in hot steam. However, although the evolution in wear rates on temperature is similar and the wear rates of MgO-ZrO2 plunged above 300 °C in hot steam and air by nearly three orders of magnitude, SEM micrographs revealed in hot steam at 400 °C smooth wear tracks. In contrast, hot steam enhanced the tribochemistry of self-mated alumina couples and reduced wear rates. Hot steam decreased the coefficients of friction of MgO-ZrO2 with increasing temperature, but not the wear rates. KW - Hot steam KW - Zirconia KW - Friction KW - Wear KW - Tribofilm KW - Raman spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.wear.2019.01.047 VL - 426-427 SP - 428 EP - 432 PB - Elsevier B.V. AN - OPUS4-47873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rawat, S. S. A1 - Harsha, A. P. A1 - Khatri, O. P. A1 - Wäsche, Rolf T1 - Pristine, reduced, and alkylated graphene oxide as additives to paraffin grease for enhancement of tribological properties JF - Journal of Tribology N2 - Pristine, reduced, and alkylated graphene oxides are applied as lubricating additives in paraffin grease. It has revealed that their crystalline structure governs the tribological properties of grease for steel tribo-pair. The microstructural analyses of grease samples showed that a loose fiber network of soap in the presence of graphene-based additive allows their facile release for efficient lubrication. The surface analyses based on the microscopic and elemental mapping show the development of a graphene-derived protective film on the worn scars, which protected the tribo-surfaces and subsided the wear. The reduced graphene oxide (rGO) with the interlamellar distance of 0.35 nm in the (002) plane provided minimum resistance to shear and exhibited maximum reduction in coefficient of friction (COF) for the paraffin grease. The presence of oxygen functionalities in the basal of pristine and alkylated graphene oxide (GO) compromised the interlamellar shearing under tribo-stress; consequently, higher COF than that of rGO. KW - Coefficient of friction KW - Graphene oxide KW - Grease KW - Nanoadditive KW - Tribo-film KW - Wear KW - Boundary lubrication KW - Grease lubrication KW - Lubricant additives KW - Lubricants PY - 2021 DO - https://doi.org/10.1115/1.4047952 VL - 143 IS - 2 SP - 021903-1 EP - 021903-11 PB - ASME AN - OPUS4-51170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -