TY - CONF A1 - Spaltmann, Dirk A1 - Ayerdi Gomez, A. A1 - Slachciak, Nadine A1 - Zubia Aranburu, J. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn T1 - Improvement of the tribological performance of titanium alloy using FS-laser-induced periodic surface structures in combination with ZDDP and ionic liquid lubricant additives N2 - The performance of titanium alloy (Ti6Al4V) surfaces was investigated in lubricated reciprocating sliding tribological tests (RSTT). Special emphasis was laid on the effect of surface nanostructures in area of contact on the respective friction and wear behaviour. These so-called laser-induced periodic surface structures (LIPSS, ripples) were produced on the titanium alloy surface upon scan processing in air by an ultrashort pulsed femtosecond (fs) laser. As lubricant served two types of base oils, a pure polyalcylene-glycol, and an SAE 0W30 oil containing only antioxidants and temperature stabilizers. Tribological tests were carried out on polished as well as LIPSS covered areas using both types of base oil. A test metrics was established, combining the additive 2-ethylhexyl-zincdithiophosphate (ZDDP) or the ionic liquid [P6,6,6,14] [DEHP] (98% purity) with the respective base oils. The test metrics also considered the orientation of motion with respect to the orientation of the structures formed on the surface. Results are presented which show that the interplay between LIPSS and the local chemistry formed by the respective additives is beneficial for the tribological behaviour of the titanium alloy. Certain combinations of base oil, additive and LIPSS reduced friction and wear significantly in the tribological contact. T2 - 64. Tribologie-Fachtagung CY - Göttingen, Germany DA - 25.09.2023 KW - TiAl64V KW - 100Cr6 KW - Friction KW - Wear KW - LIPSS KW - Lubrication KW - PAG KW - Ionic liquid PY - 2023 AN - OPUS4-58641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ayerdi Gomez, A. A1 - Slachciak, Nadine A1 - Zubia Aranburu, J. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - Improvement of the tribological performance of titanium alloy using FS-laser-induced periodic surface structures in combination with ZDDP and ionic liquid lubricant additives N2 - The performance of titanium alloy (Ti6Al4V) surfaces was investigated in lubricated reciprocating sliding tribological tests (RSTT). Special emphasis was laid on the effect of surface nanostructures in area of contact on the respective friction and wear behaviour. These so-called laser-induced periodic surface structures (LIPSS, ripples) were produced on the titanium alloy surface upon scan processing in air by an ultrashort pulsed femtosecond (fs) laser. As lubricant served two types of base oils, a pure polyalcylene-glycol, and an SAE 0W30 oil containing only antioxidants and temperature stabilizers. Tribological tests were carried out on polished as well as LIPSS covered areas using both types of base oil. A test metrics was established, combining the additive 2-ethylhexyl-zincdithiophosphate (ZDDP) or the ionic liquid [P6,6,6,14] [DEHP] (98% purity) with the respective base oils. The test metrics also considered the orientation of motion with respect to the orientation of the structures formed on the surface. Results are presented which show that the interplay between LIPSS and the local chemistry formed by the respective additives is beneficial for the tribological behaviour of the titanium alloy. Certain combinations of base oil, additive and LIPSS reduced friction and wear significantly in the tribological contact. T2 - 64. Tribologie-Fachtagung CY - Göttingen, Germany DA - 25.09.2023 KW - TiAl64V KW - 100Cr6 KW - Friction KW - Wear KW - LIPSS KW - Lubrication KW - PAG KW - Ionic liquid PY - 2023 SP - 1 EP - 5 AN - OPUS4-58642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk A1 - Ayerdi, J. A1 - Slachciak, Nadine A1 - Llavori, I. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn T1 - Tribological performance of FS-laser-induced periodic surface structures on titanium alloy against different counter-body materials using a ZDDP lubricant additive N2 - In this study the so-called laser-induced periodic surface structures (LIPSS, ripples) were produced on titanium alloy (Ti6Al4V) surfaces upon scan processing in air by a Ti:sapphire femtosecond (fs) laser. The tribological performance of the resulting surfaces was qualified in linear reciprocating sliding tribological tests (RSTT) against balls made of different materials (100Cr6 steel/Al2O3/Si3N4) using different oil-based lubricants. The admixture of the additive 2-ethylhexylzinc-dithiophosphate (ZDDP) to a base oil containing only anti-oxidants and temperature stabilizers disclosed the synergy of the additive with the laser-oxidized nanostructures. This interplay between the laser-textured sample topography and the local chemistry in the tribological contact area reduces friction and wear. T2 - 7th World Tribology Congress - WTC 2022 CY - Lyon, France DA - 11.07.2022 KW - Lubricant additives KW - Laser-induced periodic surface structures (LIPSS) KW - Wear KW - Friction PY - 2022 AN - OPUS4-55318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Spaltmann, Dirk A1 - Gee, M. T1 - Editorial: Tribology and Atomic Force Microscopy - Towards Single Asperity Contact N2 - The concept behind this Research Topic (RT) was to collect works, in which Atomic Force Microscopy (AFM) techniques are employed to study tribological phenomena and to push the resolution of measurements towards single asperity contact. Thanks to the direct determination of sample height with sub-nanometer resolution and the possibility of measuring local friction, AFM can be employed after a tribotest to detect topography and friction changes at the nanometer scale. Recently, efforts are being expended to use AFM cantilevers as tribometers, i.e., as probes altering the volume of suitable samples, thereby measuring tip and/or sample wear and friction at the nano/microscale. Thus, single asperity contact, friction, and wear can be investigated. Since friction and wear at the macroscale are the result of asperities interactions, such experiments are of great importance for better understanding of tribological processes. KW - Nanotribology KW - Friction KW - Wear KW - Single asperity KW - AFM PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-571037 SN - 2297-3079 VL - 8 SP - 1 EP - 2 PB - Frontiers Media CY - Lausanne AN - OPUS4-57103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ayerdi, J. J. A1 - Aginagalde, A. A1 - Llavori, I. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Zabala, A. T1 - Ball-on-flat linear reciprocating tests: Critical assessment of wear volume determination methods and suggested improvements for ASTM N2 - In the present work it was shown the importance of the correct selection, implementation, and reporting of wear volume computation method and quanitifies the potential errors. KW - Wear KW - Sliding KW - Surface KW - Analysis KW - ASTM KW - D7755-11 PY - 2021 U6 - https://doi.org/10.1016/j.wear.2021.203620 VL - 470-471 SP - 3620 AN - OPUS4-52080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - Editorial: Special issue "Laser-induced periodic surface nano- and microstructures for tribological applications" N2 - Laser material processing is an emerging technology that generates surface functionalities on the basis of optical, mechanical, or chemical properties. In the form of laser surface texturing (LST), it has attracted a remarkable amount of research to tailor surface properties towards various tribological applications. The main advantages of this single-step, laser-based technology are the contactless machining, featuring a high flexibility, efficiency, and speed, along with the excellent quality of the processed products. LST can be applied precisely localized to sub-micrometric areas, but, via laser beam scanning, it is also feasible for structuring large surface areas at the square meter size. This Special Issue focuses on the latest developments concerning the tribological performance of laser-generated periodic surface nano- and microstructures and their applications. This includes the laser-based processing of different surface patterns, such as “self-organized” laser-induced periodic surface structures (LIPSS, ripples), grooves, micro-spikes, hierarchical hybrid nano-/micro-structures, microfeatures generated by direct laser interference patterning (DLIP), or even dimples or other topographic geometries shaped by direct laser modification or ablation. The applications of these periodically nano- and micro-patterned surfaces may improve the lubricated or non-lubricated tribological performance of surfaces in conformal and even non-conformal contact through a reduction of wear, a variation of the coefficient of friction, altered load carrying capacity, etc., resulting in energy saving, improved reliability, increased lifetimes as well as durability, leading in turn to extended maintenance intervals/reduced down-time. This can be beneficial in terms of bearings, gears, engines, seals, cutting tools, or other tribological components. Fundamental aspects addressed may involve the investigation of the relevant physical and chemical effects accompanying the laser-generated nano- and microscale topographies, such as alterations of the material structures, the hardness, superficial oxidation, the role of additives contained in lubricants, surface wettability, micro-hydrodynamic effects, etc. For this Special Issue we aim to attract both academic and industrial researchers and would like to provide a bridge between research in the fields of tribology and laser material processing in order to foster the current knowledge and present new ideas for future applications and new technologies. KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Applications KW - Wear KW - Friction PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-505948 SN - 2075-4442 VL - 8 IS - 3 SP - 34, 1 EP - 34, 3 PB - MDPI CY - Basel AN - OPUS4-50594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joseba Ayerdi, J. A1 - Slachciak, Nadine A1 - Llavori, I. A1 - Zabala, A. A1 - Aginagalde, A. A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - On the role of a ZDDP in the tribological performance of femtosecond laser-induced periodic surface structures on titanium alloy against different counterbody materials N2 - Laser-induced periodic surface structures (LIPSS, ripples) with ~500–700 nm period were produced on titanium alloy (Ti6Al4V) surfaces upon scan processing in air by a Ti:sapphire femtosecond laser. The tribological performance of the surfaces were qualified in linear reciprocating sliding tribological tests against balls made of different materials using different oilbased lubricants. Extending our previous work, we studied the admixture of the additive 2-ethylhexyl-zinc-dithiophosphate to a base oil containing only anti-oxidants and temperature stabilizers. The presence of this additive along with the variation of the chemical composition of the counterbodies allows us to explore the synergy of the additive with the laseroxidized nanostructures. KW - Additives KW - Surface structures KW - Wear KW - Friction PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-488458 SN - 2075-4442 VL - 7 SP - 79, 1 EP - 13 PB - MDPI AN - OPUS4-48845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spaltmann, Dirk A1 - Woydt, Mathias T1 - An alternative approach to simulating an entire particle erosion experiment N2 - In the present work an approach is presented which combines various aspects of the former models with probability considerations. It is used to simulate the impact of more than one billion Alumina particles onto a steel substrate. This approach permits the simulation of an entire erosion experiment on an average PC within about six hours. KW - Particle erosion KW - Wear KW - DEM KW - FEM KW - Monte-Carlo simulation KW - Alumina PY - 2018 U6 - https://doi.org/10.3390/lubricants6010029 VL - 6 IS - 29 SP - 1 EP - 11 PB - MDPI AN - OPUS4-44542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Koter, Robert A1 - Pentzien, Simone A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Titanium nitride films KW - Friction KW - Wear PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216322486 U6 - https://doi.org/10.1016/j.apsusc.2016.10.132 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 572 EP - 579 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kovalev, A. A1 - Spaltmann, Dirk A1 - Woydt, Mathias A1 - Meng, Y. T1 - Characterization of low wear on top aperities N2 - The aim of this research is to characterize a surface that has experienced low wear on asperities. The procedure used is similar to an Abbott-Firestone approach and based on functional bearing of projected area, surface area and material volume. Surface features extracted from surface height maps provide more comprehensive information about topography changes due to wear. Thus, they were used to detect low wear volumes on the top of asperities. T2 - The 6th World Tribology Congress CY - Beijing, China DA - 17.09.2017 KW - Simulation KW - Wear KW - Asperities KW - Abbott KW - Firestone PY - 2017 SP - 1 EP - 4 AN - OPUS4-42465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -