TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts JF - Metallurgical and materials transactions A N2 - The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed. KW - Additive manufacturing KW - SLM KW - Residual stress KW - Synchrotron X-ray diffraction KW - IN718 PY - 2018 DO - https://doi.org/10.1007/s11661-018-4653-9 SN - 1073-5623 VL - 49A IS - 7 SP - 3038 EP - 3046 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Dixneit, Jonny A1 - Hannemann, Andreas A1 - Kannengießer, Thomas ED - Neu, Richard W. ED - Totten, George E. T1 - From the field to the lab: Real scale assessment of stresses in welded components JF - Materials Performance & Characterization N2 - Residual stresses are crucial when assessing the performance of welded components. The present work deals with the possibilities of transferring the real-life boundary conditions of welding, which influence the residual stress, into the laboratory. The possibilities of a test system specifically developed for this purpose with a maximum capacity of 2 MN are shown. Due to the structural design, global process, geometry and material-dependent stresses are induced, which can be simulated and quantified within the system. Additionally, X-ray diffraction can be applied to determine the resulting local residual stress distribution precisely with high spatial resolution. Two examples are presented how the conditions to be found during production are simulated in the laboratory. It is shown how welding residual stresses in high-strength steels are affected by the heat control. It was possible to clarify why elevated working temperatures significantly increase the bending stresses in the welded joint and therefore the tensile residual stresses in the heat affected zone (HAZ). The effect of a heat treatment applied under mechanical stress resulting from welding is demonstrated by the example of a creep resistant steel. Reheat cracking is significantly increased in this case compared to small scale laboratory based tests. KW - Residual stress KW - Welding KW - Large-scale test KW - Creep resistant steel KW - High strength steel PY - 2018 DO - https://doi.org/10.1520/MPC20170111 SN - 2379-1365 VL - 7 IS - 4 SP - 574 EP - 593 PB - ASTM International CY - West Conchohocken AN - OPUS4-46662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Hannemann, Andreas A1 - Kannengießer, Thomas ED - Seefeldt, Marc T1 - In-situ determination of critical welding stresses during assembly of thick-walled components made of high-strength steel T2 - Residual stresses 2018, ECRS-10 N2 - The performance and safety of welded high-strength low-alloyed steel (HSLA) components are substantially affected by the stresses occurring during and after welding fabrication, especially if welding shrinkage and distortion are severely restrained. The surrounding structure of the whole component affects loads in the far-field superimposing with welding stresses in the near-field of the weld. In this study a unique testing facility was used to restrain shrinkage and bending while analyse multiaxial far-field loads (max. 2 MN) during assembly of thick-walled component. A novel approach for the assessment of the in-situ-measured far-field data in combination with the actual weld geometry was elaborated. For the first time, analyses of the global bending moments of restrained welds based on the neutral axis of the actual weld load bearing section were achieved. Hence, far-field measurements offered the possibility to determine critical near-field stresses of the weld crosssections for the entire joining process. This work presents the approach for far-to-near field in-situ determination of stresses in detail for the 2-MN-testing system based on an extensive experimental work on HSLA steel welds, which demonstrates sources and consequences of these high local welding stresses. Thus, it was clarified, why the first weld beads are crucial regarding welding stresses and cold cracking, which is well known, but has never been measured so far. Accompanying analyses using X-ray diffraction (XRD) after welding show effects on local residual stress distributions. These analyses indicated viable prospects for stress reduction during assembly of thick-walled HSLA steel components. T2 - European Conference on Residual Stresses 2018 - ECRS-10 CY - Leuven, Belgium DA - 11.09.2018 KW - Residual stress KW - Welding KW - Large-scale test KW - X-ray diffraction KW - HSLA steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466053 SN - 978-1-9452-9188-3 SN - 978-1-9452-9189-0 DO - https://doi.org/10.21741/9781945291890-30 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 191 EP - 196 PB - Materials Research Forum LLC CY - Millersville, PA, USA AN - OPUS4-46605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Hannemann, Andreas A1 - Kannengießer, Thomas T1 - In-situ determination of critical welding stresses during assembly of thick-walled components made of high-strength steel N2 - The performance and safety of welded high-strength low-alloyed steel (HSLA) components are substantially affected by the stresses occurring during and after welding fabrication, especially if welding shrinkage and distortion are severely restrained. The surrounding structure of the whole component affects loads in the far-field superimposing with welding stresses in the near-field of the weld. In this study a unique testing facility was used to restrain shrinkage and bending while analyse multiaxial far-field loads (max. 2 MN) during assembly of thick-walled component. A novel approach for the assessment of the in-situ-measured far-field data in combination with the actual weld geometry was elaborated. For the first time, analyses of the global bending moments of restrained welds based on the neutral axis of the actual weld load bearing section were achieved. Hence, far-field measurements offered the possibility to determine critical near-field stresses of the weld crosssections for the entire joining process. This work presents the approach for far-to-near field in-situ determination of stresses in detail for the 2-MN-testing system based on an extensive experimental work on HSLA steel welds, which demonstrates sources and consequences of these high local welding stresses. Thus, it was clarified, why the first weld beads are crucial regarding welding stresses and cold cracking, which is well known, but has never been measured so far. Accompanying analyses using X-ray diffraction (XRD) after welding show effects on local residual stress distributions. These analyses indicated viable prospects for stress reduction during assembly of thick-walled HSLA steel components. T2 - European Conference on Residual Stresses 2018 - ECRS-10 CY - Leuven, Belgium DA - 11.09.2018 KW - Residual stress KW - Welding KW - Large-scale test KW - X-ray diffraction KW - HSLA steel PY - 2018 AN - OPUS4-46607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Schröpfer, Dirk A1 - Lausch, T. A1 - Dixneit, Jonny A1 - Hannemann, Andreas A1 - Kannengießer, Thomas T1 - From the Field to the Lab: Assessment of Residual Stresses in real-life Welded Components N2 - Residual stresses are crucial when assessing the performance of welded components. The present work deals with the possibilities of transferring the real-life boundary conditions of welding, which influence the residual stress, into the laboratory. The possibilities of a test system specifically developed for this purpose with a maximum load capacity of 2 MN are shown. Due to the structural design, global process, geometry and material-dependent stresses are induced, which can be simulated and quantified within the system. Additionally, X-ray diffraction can be applied to determine the resulting local residual stress distribution precisely with high spatial resolution. Examples are presented how the conditions to be found during production are simulated in the laboratory. It is shown how welding residual stresses in high-strength steels are affected by the heat control. It was possible to clarify why elevated working temperatures significantly increase the tensile residual stresses in the heat affected zone (HAZ). The effect of a heat treatment applied under mechanical stress resulting from welding is demonstrated by the example of a creep resistant steel. Reheat cracking is significantly increased in this case compared to small scale laboratory based tests. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Welding KW - Residual stress KW - Large scale test PY - 2018 AN - OPUS4-45978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Schröpfer, Dirk A1 - Steger, J. A1 - Lausch, T. A1 - Kannengießer, Thomas T1 - Residual stress Formation in component related stress relief cracking Tests of a welded creep resistant steel N2 - Submerged arc welded (SAW) components of creep-resistant low-alloyed Cr-Mo-V steels are used for thick-walled heavy petrochemical reactors (wall-thickness up to 475 mm) as well as employed in construction of modern high-efficient fossil fired power plants. These large components are accompanied by significant restraints during welding fabrication, especially at positions of different thicknesses like welding of nozzles. As a result, residual stresses occur, playing a dominant role concerning so-called stress relief cracking (SRC) typically during post weld heat treatment (PWHT). Besides specific metallurgical factors (like secondary hardening due to reprecipitation), high tensile residual stresses are a considerable influence factor on SRC. For the assessment of SRC susceptibility of certain materials mostly mechanical tests are applied which are isolated from the welding process. Conclusions regarding the influence of mechanical factors are rare so far. The present research follows an approach to reproduce loads, which occur during welding of real thick-walled components scaled to laboratory conditions by using Tests designed on different measures. A large-scale slit specimen giving a high restraint in 3 dimensions by high stiffness was compared to a medium-scale multi-pass welding U-Profile specimen showing a high degree of restraint in longitudinal direction and a small-scale TIG-remelted specimen. The small-scale specimens were additionally subjected to mechanical bending to induce loads that are found during fabrication on the real-scale in heavy components. Results show for all three cases comparable high tensile residual stresses up to yield strength with high gradients in the weld metal and the heat affected zone. Those high tensile stresses can be significant for cracking during further PWHT. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Welding KW - Residual stress KW - Creep resistant steel KW - Post weld heat treatment KW - Stress relief cracking KW - 13CrMoV9-10 PY - 2018 AN - OPUS4-45983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, N. A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - Residual stress in selective laser melted Inconel 718: Influence of the removal from base plate and deposition hatch length JF - Materials, Performance & Characterization N2 - The residual stress distribution in IN718 elongated prisms produced by Selective Laser Melting was studied by means of neutron (bulk) and laboratory X-ray (surface) diffraction. Two deposition hatch lengths were considered. A horizontal plane near the top surface (perpendicular to the building direction) and a vertical plane near the lateral surface (parallel to the building direction) were investigated. Samples both in as-built (AB) condition and removed (RE) from the base plate were characterized. While surface stress fields seem constant for AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e. with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the baseplate. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Selective laser melting KW - Laboratory X-ray diffraction KW - Coordinate measurement machine KW - IN718 PY - 2018 DO - https://doi.org/10.1520/MPC20170119 SN - 2379-1365 VL - 7 IS - 4 SP - 717 EP - 735 PB - ASTM International CY - USA, West Conshohocken AN - OPUS4-46673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Saliwan Neumann, Romeo A1 - Farahbod, Lena A1 - Haberland, Christoph A1 - Portella, Pedro Dolabella T1 - Influence of support configurations on the characteristics of selective laser-melted Inconel 718 JF - JOM-The Journal of The Minerals, Metals & Materials Society (TMS) N2 - Samples fabricated using two different support configurations by following identical scan strategies during selective laser melting of superalloy Inconel 718 were characterized in this study. Characterization methods included optical microscopy, electron back-scattered diffraction and x-ray diffraction residual stress measurement. For the scan strategy considered, microstructure and residual stress development in the samples were influenced by the support structures. However, crystallographic texture intensity and the texture components formed within the core part of the samples were almost independent of the support. The formation of finer grains closer to the support as well as within the columnar grain boundaries resulted in randomization and texture intensity reduction by nearly half for the sample built on a lattice support. Heat transfer rates dictated by the support configurations in addition to the scan strategy influenced the microstructure and residual stress development in selective laser-melted Inconel 718 samples. KW - Additive manufacturing KW - Selective laser melting KW - Support configurations KW - Microstructure and texture KW - Residual stress PY - 2018 DO - https://doi.org/10.1007/s11837-017-2703-1 SN - 1047-4838 SN - 1543-1851 VL - 70 IS - 3 SP - 343 EP - 348 PB - Springer CY - USA AN - OPUS4-44175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -