TY - JOUR A1 - Steppan, Enrico A1 - Mantzke, Philipp A1 - Steffens, Benjamin A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Thermal desorption analysis for hydrogen trapping in microalloyed high-strength steels N2 - Hydrogen can have an extreme degradation effects in steels, particularly concerning the mechanical properties. These effects can lead to hydrogen-assisted cracking in microalloyed high-strength steels during fabrication and/or operation in industrial applications. In order to study these effects, electrochemically charged tensile specimens were tested to elucidate the degradation of their properties. The carrier gas hot extraction (CGHE) method, which functionally combines a mass spectrometer with a thermal desorption analysis (TDA) process, was used for the detection of ultra-low diffusible hydrogen concentrations in the material specimens. The mass spectrometer provided rapid and automatic determination of hydrogen concentration, whereas the TDA presented the activation energy within the respective test specimen at the specific temperature. Additionally, specimen temperature was carefully monitored to reduce the evaluation error for local effusion peaks. A quenching and deformation dilatometer was used for the analysis of typical heat-affected zones during the welding process for a high reproducibility of the homogenous microstructures that were studied. The present work shows the interaction between hydrogen and lattice defects in different microalloyed materials and heat-affected zones of weldable fine-grained steels. These steels were prepared in a quenched and tempered condition and in a thermo-mechanically rolled condition. These preparations were made according to German standard DIN EN 10025-6 and to DIN EN 10149-2, respectively. The trapping characteristics of two steel grades, S690QL and S700MC, were studied with respect to the activation energy dependent on carbon content and microalloying elements such as Ti, Nb, Mo, Cr, and V. The two steel grades exhibited several types of traps: carbide formations, dislocations, and/or grain boundaries were common, which can influence activation energy and hydrogen solubility. The type and dimension of inclusions or particles also affected the hydrogen trapping behavior. A decrease of carbon and specific alloying elements in thermo-mechanically hot rolled steels led to a change in the activation energy binding the trapped hydrogen. This thermo-mechanically hot rolled steel revealed an increased interaction between hydrogen and precipitations. The higher carbon content in the quenched and tempered steel led to a higher interaction between hydrogen and iron carbide, specifically in the martensitic phase. Furthermore, the trapping behavior in heat-affected zones showed a significant increase in activation energy, especially in the coarse-grained microstructure. These previously mentioned various effects were studied to better understand the degradation of mechanical properties in these two steels. KW - Microalloyed steels KW - Hydrogen embrittlement KW - Heating KW - Chemical analysis KW - Microstructure KW - Heat-affected zone PY - 2017 U6 - https://doi.org/10.1007/s40194-017-0451-z SN - 0043-2288 SN - 1878-6669 VL - 61 IS - 4 SP - 637 EP - 648 PB - Springer CY - Berlin Heidelberg AN - OPUS4-40190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Börner, Andreas A1 - Gustus, R. A1 - Kannengießer, Thomas A1 - Wesling, V. A1 - Maus-Friedrichs, W. T1 - Surface finishing of hard-to-machine cladding alloys for highly stressed components N2 - The supply and processing of materials for highly stressed components are usually cost-intensive. Efforts to achieve cost and resource efficiency lead to more complex structures and contours. Additive manufacturing steps for component repair and production offer significant economic advantages. Machining needs to be coordinated with additive manufacturing steps in a complementary way to produce functional surfaces suitable for the demands. Regarding inhomogeneity and anisotropy of the microstructure and properties as well as production-related stresses, a great deal of knowledge is still required for efficient use by small- and medium-size enterprises, especially for the interactions of subsequent machining of these difficult-to-machine materials. Therefore, investigations on these influences and interactions were carried out using a highly innovative cost-intensive NiCrMo alloy (IN725). These alloys are applied for claddings as well as for additive component manufacturing and repair welding using gas metal arc welding processes. For the welded specimens, the adequate solidification morphology, microstructure and property profile were investigated. The machinability in terms of finishing milling of the welded surfaces and comparative analyses for ultrasonic-assisted milling processes was examined focussing on surface integrity. It was shown that appropriate cutting parameters and superimposed oscillating of the milling tool in the direction of the tool rotation significantly reduce the mechanical loads for tool and workpiece surface. This contributes to ensure a high surface integrity, especially when cutting has to be carried out without cooling lubricants. KW - WAAM KW - IN725 KW - Machining KW - Ultrasonic-assisted milling KW - Residual stresses KW - Cutting forces KW - Surface integrity KW - Microstructure PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524872 VL - 114 IS - 5-6 SP - 1427 EP - 1442 PB - Springer AN - OPUS4-52487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, L. A1 - Kannengießer, Thomas T1 - lnfluence of microalloy design on heat-affected zone toughness of S690QL steels N2 - Three high-strength Nb-,.Ti- and Ti+ V-bearing S690QL steels were welded to investigate and compare the effects of microalloy addition on heat-affected zone (HAZ) toughness. Charpy V notch impact tests from three microalloyed welds under different cooling rates have been performed. Fractographic examination shows that several factors, including large-sized grain, upper bainite or hard second phase, interact to determine brittle fracture and impaired toughness in Nb-bearing weld with high heat input. In contrast to this reduced toughness, Ti-bearing welds exhibits satisfied toughness regardless of at fast or slow cooling. This is attributed to its limited austenite grain and refines favorable intragranular acicular ferrite structure. Moreover, in the case of such refined structure as matrix, TiN particles are found to be irrelevant to the facture process. The crystallographic results also confirm that high-angle boundaries between fine ferrites plates provide effective barriers for crack propagation and contribute to improved toughness. KW - High-strength steels KW - Microalloyed steels KW - Toughness KW - Cooling rate KW - Microstructure PY - 2018 U6 - https://doi.org/10.1007/s40194-018-0558-x VL - 62 IS - 2 SP - 339 EP - 350 PB - Springer CY - Heidelberg, Germany AN - OPUS4-44792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Steppan, E. A1 - Kannengießer, Thomas A1 - Steger, J. T1 - Hydrogen trapping in T24 Cr-Mo-V steel weld joints - microstructure effect vs. experimental influence on activation energy for diffusion N2 - Hydrogen-assisted cracking is a critical combination of local microstructure, mechanical load and hydrogen concentration. Welded microstructures of low-alloyed creep-resistant Cr-Mo-V steels show different hydrogen trapping kinetics. This influences the adsorbed hydrogen concentration as well as the diffusion by moderate or strong trapping. A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. Finally, realistic temperature assessment is mandatory for calculation of activation energy via TDA. KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Thermal desorption analysis KW - Welding KW - Microstructure KW - Diffusion PY - 2018 U6 - https://doi.org/10.1007/s40194-017-0546-6 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 2 SP - 277 EP - 287 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Steger, Jörg A1 - Böllinghaus, Thomas A1 - Kannengießer, Thomas ED - Lippold, J. ED - Böllinghaus, Thomas ED - Richardson, I. M. T1 - Hydrogen degradation effects on mechanical properties in T24 weld microstructures N2 - Spectacular failure cases of fossil power stations in the recent years exhibited severe cracking in T24 welds. The results show that hydrogen-assisted cracking up to 200 °C cannot be excluded. Hence, it is important to gain a basic understanding on how hydrogen might affect the basic material properties in the respective weld microstructures. The present study focuses on hydrogen degradation of the respective weld microstructures, i.e., the weld metal and the coarse grained heat affected zone, where actually cracking appeared in practice. Tensile tests were carried out for coarse grain heataffected zone (CGHAZ) and the weld metal in uncharged and electrochemically hydrogen-charged condition. It turned out that both microstructures show distinct tendency for gradual degradation of mechanical properties in the presence of increasing hydrogen concentration. Already for a hydrogen concentration about and above 2 ml/100 g Fe, a significant ductility reduction has been observed. SEM investigations revealed that the fracture topography changes from ductile topography in uncharged condition to intergranular topography for the CGHAZ and to ductile-brittle mix for the weld metal (WM) in hydrogen charged condition. Ti-rich inclusions were identified as central regions of quasi-cleavage fracture areas in the WM. An approximation procedure is applied to quantify the degradation intensity. KW - Low alloy steels KW - Hydrogen embrittlement KW - Heat affected zone KW - Microstructure KW - Creep resisting materials PY - 2016 UR - http://link.springer.com/article/10.1007/s40194-015-0285-5 U6 - https://doi.org/10.1007/s40194-015-0285-5 SN - 0043-2288 VL - 60 IS - 2 SP - 201 EP - 216 PB - Springer-Verlag GmbH CY - Heidelberg AN - OPUS4-35390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Lei A1 - Kannengießer, Thomas T1 - Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel N2 - The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results. KW - Hardness measurement KW - Microstructure KW - Microalloyed steel KW - Welding KW - Grain growth PY - 2014 U6 - https://doi.org/10.1016/j.msea.2014.06.106 SN - 0921-5093 VL - 613 SP - 326 EP - 335 PB - Elsevier B.V. AN - OPUS4-36520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -