TY - CONF A1 - Babutzka, Martin T1 - New findings on the formation of corrosion product layers on zinc in the atmosphere N2 - The presentation shows systematic investigations to describe the corrosion and corrosion product formation processes of pure zinc under the climatic conditions currently prevailing in the Federal Republic of Germany. The investigations in their entirety aim at questioning current and establishing new ways of looking at the formation of corrosion products of pure zinc under atmospheric corrosion conditions. Thus, they make a significant contribution in understanding corrosion protection by zinc and zinc coatings. In particular, the focus is placed on the initial stage of the corrosion product formation. A systematic investigation of this time range, which is characterized by very reactive corrosion products, is only made possible by using gel-type electrolytes. The short periods of time at the beginning of weathering is now measurable and their influence on the formation of corrosion products and the kinetics of layer formation describable. By combining the new electrochemical approach with gravimetric, microscopic and analytical methods, new insights could be gained both on a methodic and scientific level. T2 - 26th International Galvanizing Conference and Exhibition CY - Rome, Italy DA - 20.06.2022 KW - Atmospheric Corrosion KW - Corrosion KW - Corrosion products KW - Gel-type electrolytes KW - Zinc PY - 2022 AN - OPUS4-55113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Stainless steels: Fundamentals and causes for corrosion defects N2 - The presentation gives an overview about the fundamentals on stainless steels. The mechanism of passive layer formation is explained and strategies for securing corrosion protection are given. The influence of a grinding process on corrosion resistance is discussed. T2 - Tech-Day Mettler Toledo CY - Online meeting DA - 23.11.2022 KW - Corrosion KW - Stainless steel KW - Grinding KW - KorroPad KW - Surface PY - 2022 AN - OPUS4-56370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witt, Julia T1 - In situ Atomic Force Microscopy (AFM) studies of corrosion processes on thin film coated AA2024-T3 aluminium alloy surfaces N2 - The performance of functional coatings relies strongly on the stability of the polymer-metal interface. The increasing utilization of multi-material structures in the automotive and aerospace industry necessitates a fundamental understanding of the processes leading to interface degradation for the development of novel strategies to increase corrosion and delamination resistance. The aim of this project is to investigate the corrosion processes at the buried interface of thin film coated aluminium alloy AA2024-T3 under corrosive and coupled corrosive-mechanical load. A spin coating procedure was developed to synthesize epoxy-like coatings and their nanofiller loaded composites with controlled thickness by layer-by-layer deposition of poly[(o-cresyl glycidyl ether)-co-formaldehyde] and poly-(ethylenimine) bi-layers. Our results indicate that the incorporation of graphene into the epoxy-based coatings leads to the improvement of mechanical and barrier properties. Furthermore, the functional groups play important roles in the interfacial bonding between polymer matrix and the nanofillers. Atomic force microscopy (AFM) results indicate very homogeneous and dense films with a thickness of ~25 nm per bi-layer and the successful integration of the nanofillers into the composite coatings. Ellipsometry measurements of film thickness verified a proportional film growth with the number of deposited layers. The degradation and delamination behavior of the coating systems was characterized by means of in situ AFM corrosion experiments. Complementary energy dispersive X-ray spectroscopy (EDX) analysis was used to correlate the corrosion and delamination behavior with the different intermetallic particle chemistries and distributions. The presentation will summarize our results on the effect of coating composition and build-up on the local corrosion processes on thin film covered AA2024-T3 aluminium alloys. T2 - Eurocorr 2021 CY - Online meeting DA - 20.09.2021 KW - In situ AFM KW - Corrosion KW - Thin epoxy-based films PY - 2021 AN - OPUS4-54053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wetzel, Annica A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Rhode, Michael T1 - Local corrosion properties of high/medium entropy alloys in aqueous environments N2 - High and medium entropy alloys gained increasing academic and industrial interest as novel materials for engineering applications. This project is aiming to clarify and compare the general and local corrosion properties of high entropy alloy CrMnFeCoNi and medium entropy alloy CrCoNi in different aqueous environments. The focus lies on the local corrosion processes that result either from microstructural imperfections (inclusions, defects at grain boundaries etc.) in the base material or processing related changes in the microstructure and/or local composition. The corrosion behavior of the alloys was monitored via potentiodynamic polarization experiments and the local corrosion characteristics were further investigated by means of scanning electrochemical microscopy (SECM). Their passivation behavior was analyzed in three different electrolyte systems (NaCl, H2SO4 and NaClO4; c = 0.1M). The characterization of the surface morphology and composition of the passive film was performed by means of atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy (SEM/EDX) and X-Ray photoelectron spectroscopy (XPS), respectively. Considering long term corrosion effects, electrochemical work was supported with immersion tests and the analysis of corrosion products by SEM/EDX and XPS depth-profiling. Our results indicate that the medium entropy alloy CrCoNi has a significantly higher corrosion resistance in comparison to the high entropy alloy CrMnFeCoNi. The presentation will summarize some of our results on the mechanistical aspects of the observed high corrosion resistance. T2 - EUROCORR 2020 CY - Online meeting DA - 07.09.2020 KW - High Entropy Alloys KW - Corrosion KW - Medium Entropy Alloys KW - Atomic Forc Microscopy KW - Scanning Kelvin Probe Force Microscopy KW - Potentiodynamic Polarization PY - 2020 AN - OPUS4-53787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sankaran, Shivasarathy A1 - Ebell, Gino T1 - Analyzing the performance of discrete galvanic anode systems using electrochemical investigations N2 - Corrosion of reinforcement is one of the major reasons in questioning the service life of building structures. The application of cathodic protection techniques plays a big role in controlling the corrosion process to ensure a longer service life of building structures. This systematic study compares the efficiency and durability of various discrete galvanic zinc anode systems available in the current market using different criteria for measuring efficiency such as potential measurements, electrolyte resistance measurements and several polarization methods to determine the polarizability of the anodes. The results to validate the performance of long-time exposure of discrete zinc anodes in concrete medium are discussed. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - Corrosion KW - Cathodic Protection KW - Zinc anodes KW - Electrochemical PY - 2021 AN - OPUS4-53507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin T1 - New findings on the formation of corrosion product layers on zinc in the atmosphere N2 - The presentation shows systematic investigations to describe the corrosion and corrosion product formation processes of pure zinc under the climatic conditions currently prevailing in the Federal Republic of Germany. The investigations in their entirety aim at questioning current and establishing new ways of looking at the formation of corrosion products of pure zinc under atmospheric corrosion conditions. Thus, they make a significant contribution in understanding corrosion protection by zinc and zinc coatings. In particular, the focus is placed on the initial stage of the corrosion product formation. A systematic investigation of this time range, which is characterized by very reactive corrosion products, is only made possible by using gel-type electrolytes. The short periods of time at the beginning of weathering is now measurable and their influence on the formation of corrosion products and the kinetics of layer formation describable. By combining the new electrochemical approach with gravimetric, microscopic and analytical methods, new insights could be gained both on a methodic and scientific level. T2 - 2nd Task Group Meeting TC124 WG4-TC 250 SC5 Task Group Corrosion CY - Online Meeting DA - 06.05.2021 KW - Zinc KW - Corrosion products KW - Gel-type electrolytes KW - Corrosion KW - Atmospheric corrosion PY - 2021 AN - OPUS4-52604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin T1 - New findings on the formation of corrosion product layers on zinc in the atmosphere N2 - The presentation shows systematic investigations to describe the corrosion and corrosion product formation processes of pure zinc under the climatic conditions currently prevailing in the Federal Republic of Germany. The investigations in their entirety aim at questioning current and establishing new ways of looking at the formation of corrosion products of pure zinc under atmospheric corrosion conditions. Thus, they make a significant contribution in understanding corrosion protection by zinc and zinc coatings. In particular, the focus is placed on the initial stage of the corrosion product formation. A systematic investigation of this time range, which is characterized by very reactive corrosion products, is only made possible by using gel-type electrolytes. The short periods of time at the beginning of weathering is now measurable and their influence on the formation of corrosion products and the kinetics of layer formation describable. By combining the new electrochemical approach with gravimetric, microscopic and analytical methods, new insights could be gained both on a methodic and scientific level. T2 - EUROCORR 2021 CY - Online meeting DA - 20.09.2021 KW - Atmospheric Corrosion KW - Corrosion KW - Corrosion products KW - Gel-type electrolytes KW - Zinc PY - 2021 AN - OPUS4-53332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Valet, Svenja A1 - Babutzka, Martin T1 - Determination of the corrosion product layer resistance on zinc samples by using gel electrolytes N2 - Crash barriers, railings, lamp posts, waste glass containers - these are just a few of the many examples of galvanized surfaces. They withstand wind and weather for decades, which is possible thanks to a protective layer made of corrosion products. When designing the atmospheric durability of galvanized components, a linear corrosion loss is assumed. In the past 30 years, however, the surrounding atmosphere has changed a lot. Due to the restriction of sulfur exhaust air, acid rain completely disappeared in Europe and Germany, which has a direct influence on the type and protective effect of the corrosion products. Under the influence of current atmospheric conditions, zinc layers are significantly more resistant and no longer show any linear corrosion loss. The established test methods cannot correctly map this change in neither short-term nor long-term tests and thus provide incorrect results. In order to solve this problem, a new measurement method was developed at BAM that can assess the protective effect of the formed surface layers in a minimally invasive manner without damaging the sample and in short test times. For this new method, gel electrolytes are used and the so-called corrosion product layer resistance RL, which is made up of various surface resistances, is measured electrochemically. As a single measurement, the surface layer resistance can provide information about the existing corrosion protection, while time-dependent measurements assess the stability of the layer. Thus, it is possible again to evaluate the corrosion protection layer. Furthermore, this method can also be used for field measurements on real components. T2 - EUROCORR 2022 CY - Berlin, Germany DA - 28.08.2022 KW - Corrosion KW - Corrosion Testing KW - Gel electrolytes KW - Zinc and galvanized samples KW - Corrosion product layer PY - 2022 AN - OPUS4-55688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Buchheim, Michaela T1 - Microstructure investigations of iron meteorites by EBSD and EDS analyses N2 - Meteorites are a unique and inspiring material for microstructural studies because if their very specific genesis. Iron meteorites have been formed under unimaginable cooling rates of a few ten Kelvins per million years so that the observable transformation of the formerly huge Fe-Ni single crystals of taenite occurred under nearly-equilibrium conditions. Octahedrites (meteorites having a Ni content between 6...15%) are characterized by ribbons of the low-temperature Fe-Ni phase kamacite separated by rims of residual taenite. This very specific feature is known as Widmanstaetten structure and has been investigated by synchrotron radiation in order to cover a higher volume fraction for a statistically relevant description of orientation relationships. However, plessite – a microstructure mainly consisting of the same phases – reflects the orientation relationship between kamacite and taenite as well. For their characterization, a scanning electron microscope is very suitable in order to investigate crystal orientations or identify phases. Despite the apparently ideal formation circumstances of iron meteorites, Ni concentration profiles prove non-equilibrium conditions. Combined EDS (energy dispersive spectroscopy) and EBSD (electron backscatter diffraction) measurements at a selected plessitic region of the Cape York iron shows that a correlation exists between Ni-concentration and the locally detected orientation relationship. T2 - 15th European Microscopy Congress CY - Manchester, UK DA - 16.09.2012 KW - Phase identification KW - Corrosion KW - Chloride KW - Dermbach PY - 2012 SP - 90 AN - OPUS4-37775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - Mosquera Feijoo, Maria T1 - Nucleation and growth of sulfur phases in grain boundaries N2 - Ferritic-martensitic high temperature alloys are used as building components for different power plant technologies. Depending on the type of fuel, the used power plant materials are exposed to different temperatures and reactive atmospheres containing e.g. CO2, O2, or SO2. Despite the sulfur chemistry is commonly present as an impurity in fossil or bio fuels; its role in high temperature corrosion is not entirely understood. During high temperature corrosion, high-alloyed steels often show sulfur precipitates with the ignoble alloy component(s) along grain boundaries within the base material. Sulfur precipitates are known to seriously influence the mechanical properties of the building component. In the case of VM12 and T92 steels, sulfur phases penetrate the base material along grain boundaries during the corrosion under oxyfuel atmosphere up to 20 µm within the first 960h (Fig. 1a). Figure 1a shows the oxide scale and (Cr, Mn, Fe)xSy grain boundary precipitates in the base material for a T92 steel aged for 960h under oxyfuel atmosphere. Figure 1b shows a thin oxide scale with nodules and also sulfur precipitates of (Fe, Cr)xSy along grain boundaries of the base material for a Fe13Cr model alloy aged for 24h under SO2 atmospheres. After 24h, sulfur precipitates already reached a depth of ca. 15 µm. The present work shows the corrosion behavior of Fe-Cr model alloys with Cr-contents similar to technical steels up to 13 wt%, aged under oxyfuel (27H2O/60CO2/1SO2/10N2/2O2) and SO2 atmospheres in the temperature range of 550 °C < T < 700 °C and for different time scales between 24 h < t < 960 h. During aging, the reactive gases were added when the experimental temperature was reached. To focus on the reaction of the intended elements Fe, Cr, S, and O, model alloys of high purity are used. Transport depths of sulfur and the nucleation of the precipitates are discussed for both, model alloys and technical steels. T2 - Materials Science & Engineering CY - Darmstadt, Germany DA - 27.09.2016 KW - Corrosion KW - Sulfide KW - Sulfidation PY - 2016 AN - OPUS4-37786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -