TY - JOUR A1 - Ehlers, Henrik A1 - Pelkner, Matthias A1 - Thewes, R. T1 - Heterodyne Eddy Current Testing Using Magnetoresistive Sensors for Additive Manufacturing Purposes N2 - In recent years additive manufacturing technologies have become widely popular. For complex functional components or low volume production of workpieces, laser powder bed fusion can be used. High safety requirements, e.g. in the aerospace sector, demand extensive quality control. Therefore, offline non-destructive testing methods like computed tomography are used after manufacturing. Recently, for enhanced profitability and practicality online non-destructive testing methods, like optical tomography have been developed. This paper discusses the applicability of eddy current testing with magnetoresistive sensors for laser powder bed fusion parts. For this purpose, high spatial resolution giant magnetoresistance arrays are utilized for testing in combination with a single wire excitation coil. A heterodyne principle minimizes metrology efforts. This principle is compared to conventional signal processing in an eddy current testing setup using an aluminum test sample with artificial surface defects. To evaluate the influence of the powder used in the manufacturing process on eddy current testing and vice versa, a laser powder bed fusion mock-up made from stainless steel powder (316L) is used with artificial surface defects down to 100 µm. This laser powder bed fusion specimen was then examined using eddy current testing and the underlying principles. KW - Eddy current testing KW - Heterodyning KW - Laser powder bed fusion KW - Giant magnetoresistance KW - Additive manufacturing KW - 316L PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506140 DO - https://doi.org/10.1109/JSEN.2020.2973547 SN - 1530-437X VL - 20 IS - 11 SP - 5793 EP - 5800 PB - IEEE AN - OPUS4-50614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir T1 - Mechanical anisotropy of additively manufactured stainless steel 316l: an experimental and numerical study N2 - This work aims for a yield function description of additively manufactured (AM) parts of stainless steel 316L at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity model at meso-scale. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - BAM, Berlin DA - 10.12.2020 KW - Anisotropy KW - Crystal plasticity KW - Additive manufacturing PY - 2020 AN - OPUS4-51941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Wang, J. A1 - Kaiser, L. A1 - Rethmeier, Michael T1 - Automated Tool-Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries N2 - In additive manufacturing (AM) directed energy deposition (DED), parts are built by welding layers of powder or wire feedstock onto a substrate with applications for steel powders in the fields of forging tools, spare parts, and structural components for various industries. For large and bulky parts, the choice of toolpaths influences the build rate, the mechanical performance, and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool-path generation is essential for the usability of DED processes. This contribution presents automated tool-path generation approaches and discusses the results for arbitrary geometries. Socalled “zig-zag” and “contour-parallel” processing strategies are investigated and the tool-paths are automatically formatted into machine-readable g-code for experimental validation to build sample geometries. The results are discussed in regard to volume-fill, microstructure, and porosity in dependence of the path planning according to photographs and metallographic cross-sections. KW - Porosity KW - Path planning KW - Mechanical properties KW - Laser metal deposition KW - Additive manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510454 DO - https://doi.org/10.1002/srin.202000017 VL - 91 IS - 11 SP - 2000017 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-51045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Prozessüberwachung in der additiven Fertigung von Metallen an der BAM: Das Projekt ProMoAM N2 - Vorstellung des TF-Projektes ProMoAM mit allen in-situ Verfahren und Referenzverfahren T2 - Sitzung des VDI AK Mess- und Automatisierungstechnik CY - Kassel, Germany DA - 03.03.2020 KW - Additive manufacturing KW - In situ monitoring KW - Zerstörungsfreie Prüfung PY - 2020 AN - OPUS4-53537 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Elsner, B. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Geometric distortion-compensation via transient numerical simulation for directed energy deposition additive manufacturing N2 - Components distort during directed energy deposition (DED) additive manufacturing (AM) due to the repeated localised heating. Changing the geometry in such a way that distortion causes it to assume the desired shape – a technique called distortion-compensation – is a promising method to reach geometrically accurate parts. Transient numerical simulation can be used to generate the compensated geometries and severely reduce the amount of necessary experimental trials. This publication demonstrates the simulation-based generation of a distortioncompensated DED build for an industrial-scale component. A transient thermo-mechanical approach is extended for large parts and the accuracy is demonstrated against 3d-scans. The calculated distortions are inverted to derive the compensated geometry and the distortions after a single compensation iteration are reduced by over 65%. KW - DED KW - Welding simulation KW - Dimensional accuracy KW - Additive manufacturing KW - Laser metal deposition KW - LMD PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1743927 SP - 1 EP - 8 PB - Taylor & Francis AN - OPUS4-50877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Application of a C-ring Geometry to validate the Stress Relief Heat Treatment Simulation of Additive Manufactured Austenitic Stainless Steel Parts via Displacement N2 - Directed energy deposition is a metal additive manufacturing process that builds parts by joining material in a layer-by-layer fashion on a substrate. Those parts are exposed to rapid thermo-cycles which cause steep stress gradients and the layer-upon-layer manufacturing fosters an anisotropic microstructure, therefore stress relief heat treatment is necessary. The numerical simulation can be used to find suitable parameters for the heat treatment and to reduce the necessary efforts to perform an effective stress relieving. Suitable validation Experiments are necessary to verify the results of the numerical simulation. In this paper, a 3D coupled thermo-mechanical model is used to simulate the heat treatment of an additive manufactured component to investigate the application of a C-ring geometry for the distortion-based validation of the numerical simulation. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to quantify the distortion after each process step. KW - Additive manufacturing KW - Directed energy deposition KW - Laser KW - Heat treatment KW - Numerical simulation PY - 2020 DO - https://doi.org/10.3139/105.110417 VL - 75 IS - 4 SP - 248 EP - 259 PB - Carl Hanser Verlag AN - OPUS4-51318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Mechanical behaviour of AM metals: Creep of LPBF 316L and low-cycle-fatigue of LMD Ti-6Al-4V N2 - Additively manufactured metallic materials have already started to find application in safety-relevant components. However, this has only happened for certain materials and specific applications and loading conditions, since there is still an extensive lack of knowledge as well as of historical data regarding their mechanical behaviour. This contribution aims to address this lack of understanding and historical data concerning the creep behaviour of the austenitic stainless steel 316L manufactured by Laser-Powder-Bed-Fusion (L-PBF) and the low-cycle-fatigue behaviour of the titanium alloy Ti-6Al-4V manufactured by Laser-Metal-Deposition (LMD). Furthermore, it aims to assess their mechanical behaviour against their conventional counterparts. With that in mind, specimens from conventional and additive materials are tested and their mechanical behaviour analysed based on characteristic curves. To understand the damage behaviours the materials are characterized by destructive and non-destructive techniques before and after failure. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online Meeting DA - 10.12.2020 KW - Ti-6Al-4V KW - 316L KW - Additive manufacturing KW - Creep behaviour KW - Low-cycle-fatigue behaviour PY - 2020 AN - OPUS4-51879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surmeneva, M. A1 - Koptyug, A. A1 - Khrapov, D. A1 - Ivanov, Yuriy A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Prymak, O. A1 - Loza, K. A1 - Epple, M. A1 - Bruno, Giovanni A1 - Surmenev, R. T1 - In situ synthesis of a binary Ti–10at% Nb alloy by electron beam melting using a mixture of elemental niobium and titanium powders N2 - This study reports the results of the preliminary assessment to fabricate Ti-10at% Nb alloy by electron beam melting (EBM®) from a blend of elemental Nb and Ti powders. The microstructure of the EBM-manufactured Ti-10at% Nb alloys is sensitive to the following factors: different sintering properties of Nb and Ti powders, powder particle properties, material viscosities at varying melt pool temperatures, β-stabilizer element content and the EBM® process parameters. Three phases were observed in as-manufactured Ti-10at% Nb alloy: μm-size Nb phase, a Nb-rich β-solid solution surrounding Nb phase, lamellar structured α-phase and β-solid solution with different distribution and volume fraction. Thus, the combination of powder particle characteristics, very short time material spends in molten condition and sluggish kinetics of mixing and diffusional process in Ti-Nb alloy results in heterogeneous microstructures depending on the local Nb content in the powder blend and the EBM® process conditions. KW - Additive manufacturing KW - Electron beam melting KW - Ti-Nb alloy KW - In situ alloying PY - 2020 DO - https://doi.org/10.1016/j.jmatprotec.2020.116646 VL - 282 SP - 116646 PB - Elsevier B.V. AN - OPUS4-50457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Requena, G. A1 - Haubrich, J. A1 - Bruno, Giovanni T1 - Classification of defect types in SLM Ti-6Al-V4 by X-ray refraction topography N2 - Porosity in additively manufactured materials, such as laser powder bed fusion Ti-Al6-V4, can play an important role in their mechanical performance. Not only the total porosity but also the shape/morphology of the individual pores need to be considered. Therefore, it is necessary to determine the distributions of different defect types (especially fusing defects and keyhole pores) and their dependence on process parameters. We show that synchrotron X-ray refraction radiography allows analysis of large samples (up to several millimeters) without compromising the detectability of submicrometer defects. Correspondingly, a classification tool is introduced that is able to quantitatively distinguish defects such as keyhole pores and binding defects with a confidence level of 94 %, even when the shape cannot be discerned because of limited spatial resolution. KW - Additive manufacturing KW - Selective laser melting KW - X-ray refraction KW - Microscopy KW - Porosity KW - X-ray computed tomography KW - BAMline KW - Synchrotron Radiation PY - 2020 DO - https://doi.org/10.1520/MPC20190080 SN - 2379-1365 VL - 9 IS - 1 SP - 82 EP - 93 PB - ASTM International CY - West Conshohocken, PA AN - OPUS4-50470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 08.12.2020 KW - Computed tomography KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Residual stress KW - Thermography KW - LPBF KW - Laser Powder Bed Fusion PY - 2020 AN - OPUS4-51793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -