TY - JOUR A1 - Zurcher, Theo A1 - Serrano-Munoz, Itziar A1 - Mishurova, Tatiana A1 - Abreu Faria, Guilherme A1 - Degener, Sebastian A1 - Fridrici, Vincent A1 - Charkaluk, Eric A1 - Bruno, Giovanni T1 - Sliding wear resistance and residual stresses of parts repaired by laser metal deposition JF - Journal of Material Science N2 - Large temperature gradients inherent to additive manufacturing (AM) processes induce large residual stress (RS) in the final part. Because RS can influence the tribological properties, this study focuses on the relationship between wear sliding properties and RS in IN718 coatings. Such coatings were deposited with a Laser metal deposition (LMD) machine using two different scanning strategies. The wear resistance and RS state were investigated after surface milling. RS were measured before and after wear tests on a reciprocating sliding test apparatus. Two different X-ray diffraction techniques were employed to measure the surface and subsurface state RS: Laboratory Energy Dispersive X-ray Diffraction (LEDXD) and Synchrotron X-ray Energy Dispersive Diffraction (SXEDD). Due to the milling process, the coatings show similar depth distributions of RS from 22 to 92 μm depth, but exhibit different magnitudes depending on the scanning strategy used. Reciprocating sliding wear tests induced high compressive residual stresses that erased the initial RS state, and a similar wear behavior was observed in the two samples. These samples possess similar texture and grain morphology. This demonstrates that the influence of RS on wear resistance is a second-order effect. Nevertheless, it was observed that RS can still impact the wear performance at the early testing stages of the repaired parts. KW - Additive manufacturing KW - Wear resistance KW - Residual stress PY - 2023 DO - https://doi.org/10.1007/s10853-023-09129-4 SN - 0022-2461 SP - 1 EP - 18 PB - Springer AN - OPUS4-59084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Hensel, J. T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels JF - Welding in the World N2 - Wire arc additive manufacturing (WAAM) enables the efficient production of weight-optimized modern engineering structures. Further increases in efficiency can be achieved by using high-strength structural steels. Commercial welding consumables for WAAM are already available on the market. Lack of knowledge and guidelines regarding welding residual stress and component safety during production and operation leads to severely limited use for industry applications. The sensitive microstructure of high-strength steels carries a high risk of cold cracking; therefore, residual stresses play a crucial role. For this reason, the influences of the material, the WAAM process, and the design on the formation of residual stresses and the risk of cold cracking are being investigated. The material used has a yield strength of over 800 MPa. This strength is adjusted via solid solution strengthening and a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on the residual stresses. The focus of the present investigation is on the additive welding parameters and component design on their influence on hardness and residual stresses, which are analyzed by means of X-ray diffraction (XRD). Reference specimens (hollow cuboids) are welded fully automated with a systematic variation of heat control and design. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. Increased heat input leads to lower tensile residual stresses which causes unfavorable microstructure and mechanical properties. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. KW - DED-arc KW - Additive manufacturing KW - High-strength steel filler metal KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572698 DO - https://doi.org/10.1007/s40194-023-01503-9 SN - 1878-6669 VL - 67 IS - 4 SP - 987 EP - 996 PB - Springer CY - Berlin AN - OPUS4-57269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Consideration of manufacturing-related stresses and cold crack avoidance in high-strength steels WAAM components N2 - High-strength steels offer great potential in weight-optimised modern steel structures. Additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM), enable near-net-shape manufacturing of complex structures and more efficient manufacturing, offering significant savings in costs, time, and resources. Suitable filler materials for WAAM are already commercially available. However, the lack of knowledge or technical guidelines regarding welding residual stresses during manufacturing and operation in connection with cold cracking risk limit their industrial application significantly. In a project of BAM and TU Chemnitz, the influences and complex interactions of material, manufacturing process, design and processing steps on residual stress evolution are investigated. By developing process recommendations and a special cold cracking test, economic manufacturing, and stress-appropriate design of high-strength steel WAAM components are main objectives. The present study focuses on determining the influence of heat control (interpass temperature, heat input, cooling time) and the design aspects of the components on the hardness and residual stresses, which are analysed by X-ray diffraction. Defined reference specimens, i.e., hollow cuboids, are automatically welded with a special WAAM solid wire. The influences of wall length, wall thickness and wall height on the residual stresses are analysed. Geometric properties can be selectively adjusted by wire feed and welding speed but cannot be varied arbitrarily. This was addressed by adapted build-up strategies. The results indicate a significant influence of the heat control and the wall height on the residual stresses. The interpass temperature, wall thickness and wall length are not significant. These analyses allow recommendations for standards and manufacturing guidelines, enabling a safe and economic manufacturing of high-strength steel components. T2 - European Steel Technology and Application Days CY - Düsseldorf, Germany DA - 14.06.2023 KW - DED-arc KW - Additive manufacturing KW - Heat control KW - High-strength filler metals KW - Residual stress PY - 2023 AN - OPUS4-57691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strobl, Dominic A1 - Robens-Radermacher, Annika A1 - Ghnatios, Ch. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Unger, Jörg F. T1 - Reduced Order Model with Domain Mapping for Temperature Field Simulation of Wire Arc Additive Manufacturing N2 - Additive manufacturing (AM) has revolutionized the manufacturing industry, offering a new paradigm to produce complex geometries and parts with customized properties. Among the different AM techniques, the wire arc additive manufacturing (WAAM) process has gained significant attention due to its high deposition rate and low equipment cost. However, the process is characterized by a complex thermal history, dynamic metallurgy, and mechanical behaviour that make it challenging to simulate it in real-time for online process control and optimization. In this context, a reduced order model (ROM) using the proper generalized decomposition (PGD) method is proposed as a powerful tool to overcome the limitations of conventional numerical methods and enable the real-time simulation of the temperature field of WAAM processes. Though, the simulation of a moving heat source leads to a hardly separable parametric problem, which is handled by applying a novel mapping approach. Using this procedure, it is possible to create a simple separated representation of the model, also allowing to simulate multiple layers. In this contribution, a PGD model is derived for the WAAM procedure simulating the temperature field. A good agreement with a standard finite element method is shown. The reduced model is further used in a stochastic model parameter estimation using Bayesian inference, speeding up calibrations and ultimately leading to a calibrated real-time simulation. T2 - SIM-AM 2023 CY - Munich, Germany DA - 26.07.2023 KW - Additive manufacturing KW - Reduced Order Model PY - 2023 AN - OPUS4-58253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Srinivasan, Krishnanand A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser Metal Deposition of Rene 80 – Microstructure and Solidification Behaviour Modelling T2 - Lasers in Manufacturing Conference 2023 N2 - New developments in nickel-based superalloys and production methods, such as the use of additive manufacturing (AM), can result in innovative designs for turbines. It is crucial to understand how the material behaves during the AM process to advance industrial use of these techniques. An analytical model based on reaction-diffusion formalism is developed to better explain the solidification behavior of the material during laser metal deposition (LMD). The well-known Scheil-Gulliver theory has some drawbacks, such as the assumption of equilibrium at the solid-liquid interface, which is addressed by this method. The solidified fractions under the Scheil model and the pure equilibrium model are calculated using CALPHAD simulations. Differential scanning calorimeter is used to measure the heat flow during the solid-liquid phase transformation, the result of which is further converted to solidified fractions. The analytical model is compared with all the other models for validation. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Additive manufacturing KW - Laser metal deposition KW - Solidification behaviour KW - Analytical model KW - Nickel-based superalloy PY - 2023 SP - 1 EP - 10 AN - OPUS4-58612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar T1 - 3D imaging and residual stress analysis for AM Materials N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, leading to potential efficiency and performance improvements. However, the rapid cooling rates associated with the process consequently leads to the generation of high magnitude residual stresses (RS). Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterization of these RS is essential for safety related engineering application and supporting the development of reliable numerical models. Diffraction-based methods for RS analysis using high energy synchrotron X-rays and neutrons enable non-destructive spatially resolved characterization of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research conducted by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys. Special focus will be given to the challenges posed by textured LPBF materials for the reliable choice of the diffraction elastic constants (DECs), which is crucial to the accurate calculation of the level of RS. T2 - Seminar at LTDS, Ecole Centrale de Lyon CY - Lyon, France DA - 15.06.2023 KW - Residual stress KW - Additive manufacturing KW - Diffraction methods PY - 2023 AN - OPUS4-57808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-II/CIX CY - Munich, Germany DA - 06.03.2023 KW - Additive manufacturing KW - High strength steel KW - Residual stress PY - 2023 AN - OPUS4-59307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Abreu Faria, G. A1 - Degener, Sebastian A1 - Polatidis, E. A1 - Čapek, J. A1 - Kromm, Arne A1 - Dovzhenko, G. A1 - Bruno, Giovanni T1 - Texture-based residual stress analysis of laser powder bed fused Inconel 718 parts JF - Journal of Applied Crystallography N2 - Although layer-based additive manufacturing methods such as laser powder bed fusion (PBF-LB) offer an immense geometrical freedom in design, they are typically subject to a build-up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar-type grain growth accompanied by crystallographic texture. Although diffraction-based methods are commonly used to determine the RS distribution in PBF-LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF-LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction-dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel-based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub-surface RS distribution. KW - Additive manufacturing KW - Electron backscattered diffraction KW - Principal stress KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578331 DO - https://doi.org/10.1107/S1600576723004855 SN - 1600-5767 VL - 56 IS - Pt 4 SP - 1076 EP - 1090 AN - OPUS4-57833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Haubrich, J. A1 - Requena, G. A1 - Madia, Mauro T1 - Influence of post-process heat treatments on the fatigue crack propagation behaviour of a PBF-LB/M AlSi10Mg alloy JF - International Journal of Fatigue N2 - The microstructure has a great influence on short fatigue crack growth in metallic materials. Laser-based Powder Bed Fusion AlSi10Mg alloys exhibit in the as-built condition a fine fibrous Si structure and a supersaturated solid solution of Si in the α-Al matrix, which is significantly modified by heat treatments starting already at temperatures under 260 °C. This study focuses on the influence of post-process heat treatments on the microstructural evolution and the resulting fatigue crack growth resistance. As compared to the as-built condition, two heat treatments at 265 °C/1 h and at 300 °C/2 h are found to be beneficial to the fatigue crack growth resistance of the investigated material. KW - Additive manufacturing KW - Fatigue crack growth KW - Cyclic R-curve KW - Heat treatment PY - 2023 DO - https://doi.org/10.1016/j.ijfatigue.2023.107808 SN - 0142-1123 VL - 175 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-57822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderon, Luis Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - BAM reference data: Temperature-dependent Young's and shear modulus data for additively and conventionally manufactured variants of Ni-based alloy Inconel IN718 N2 - The elastic properties (Young's modulus, shear modulus) of Ni-based alloy Inconel IN718 were investigated between room temperature and 800 °C in an additively manufactured variant (laser powder bed fusion, PBF‑LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty. The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - IN718 PY - 2023 DO - https://doi.org/10.5281/zenodo.7813824 PB - Zenodo CY - Geneva AN - OPUS4-57287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -