TY - CONF A1 - Falk, Florian A1 - Menneken, Martina A1 - Stephan-Scherb, Christiane T1 - Early oxidation and sulfidation of high temperature model alloys: An EDXRD in situ study N2 - The fundamental impact of sulfur and water on corrosion rates and potential failure of the exposed material is well known. However, the access to the related corrosion mechanism causing material degradation is often a problem to solve. This study investigates the effect of SO2 and water vapor in the initial stages of corrosion of an Fe9Cr0.5Mn model alloy at 650 °C in situ. The analysis was carried out under laboratory conditions using energy-dispersive X-ray diffraction (EDXRD). T2 - Dechema EFC Workshop CY - Frankfurt am Main, Germany DA - 26.09.2018 KW - Sulfidation KW - Model alloy KW - Oxidation PY - 2018 AN - OPUS4-46134 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - In-situ observation of the hydrogen behaviour in austenitic stainless steel by time-of-flight secondary ion mass spectrometry during mechanical loading N2 - The reduction of harmful emissions to the environment is one of the most urgent challenges of our time. To achieve this goal, it is inevitable to shift from using fossil fuels to renewable energy sources. Within this transition, hydrogen can play a key role serving as fuel in transportation and as means for energy storage. The storage and transport of hydrogen using austenitic stainless steels as the infrastructure, as well as the use of these grades in hydrogen containing aggressive environments, remains problematic. The degradation of the mechanical properties and the possibility of phase transformation by ingress and accumulation of hydrogen are the main drawbacks. Advanced studies of the behaviour of hydrogen in austenite is necessary to fully understand the occurring damage processes. This knowledge is crucial for the safe use of components in industry and transportation facilities of hydrogen. A powerful tool for depicting the distribution of hydrogen in steels, with high accuracy and resolution, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). We here present a comprehensive research on the hydrogen degradation processes in AISI 304L based on electrochemical charging and subsequent ToF-SIMS experiments. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed afterwards. All the gathered data was treated employing data fusion, thus creating a thorough portrait of hydrogen diffusion and its damaging effects in AISI 304L. Specimens were charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and traces existing in the material or adsorbed from the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw onclusions from the experiments. T2 - International Conference on Metals and Hydrogen; Steely Hydrogen 2018 CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Deuterium KW - ToF-SIMS KW - AISI 304L PY - 2018 AN - OPUS4-45079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Simone A1 - Altmann, Korinna A1 - Wohlleben, W. T1 - Influence of the pH Value to the Degradation of Ester-Based Thermoplastic Polyurethanes N2 - Microplastics are solid polymeric particles with a size of 1-1000 μm (ISO/TR21960:2020), which can be emitted from mismanaged waste into the environment, where microplastic is now ubiquitous. What happens to the microplastics after ending up in the environment, which risks entail and what effects it has are not sufficiently clarified up to now. The most certain issue is that the plastic particles in the environment are exposed to natural ageing, are fragmenting and degrading, such that the potential risk to ecosystems and humans is increasing due to the formation of smaller and smaller particles, potentially even including nanoplastics, if these are ingested before their further degradation. Therefore, and in view of a possible registration of polymers under REACH in the future, it is necessary to investigate the degradation of thermoplastic polyurethanes (TPU) regarding hydrolysis stability to evaluate possible risks and effects to the environment. In the present studies, one thermoplastic polyurethane – with and without hydrolysis stabilizer – is exposed to different pH buffers at 50°C for 14 days to investigate hydrolysis depending to different pH values (acid, alkali and neutral) based on OECD guideline TG111. The hydrolysis behavior of the TPUs is characterized by surface sensitive techniques and on bulk properties. First degradation effects can be detected by SEC. Hydrolysis, especially under acidic and basic conditions, leads to chain scissions to lower molecular masses. Furthermore, the degradation products which indicate the structure of the bulk material were detected by thermo-analytical methods like TGA-FTIR for the small degradation products and the thermo extraction/desorption-gaschromatography/mass spectrometry (TED-GC/MS) for bigger degradation products. Acidic and basic hydrolysis shows the same degradation behavior which is caused by a preferred scission of the ester and urethane functionalities. Surface-sensitive techniques such as XPS demonstrate less carboxylic acid formation at acidic than at alkaline pH value in the TPU without stabilator, where as the TPU with stabilator ages to the same extent in both pH ranges. Altogether, the hydrolysis of TPUs – independently of added stabilizer or not – in acid and alkali environment is accelerated compared to the neutral hydrolysis. T2 - SETAC CY - Dubin, Ireland DA - 30.04.2023 KW - Degradation KW - Thermoplastic Polyurethane KW - Microplastic KW - Polymer Hydrolysis KW - Polymer 3R KW - REACH PY - 2023 AN - OPUS4-58906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meurer, Maren A1 - Wiesner, Yosri A1 - Geburtig, Anja A1 - Waniek, Tassilo A1 - Altmann, Korinna T1 - Is olypropylene relevant for microplastic analytics? N2 - Nowadays, in every terrestrial and aquatic ecosystem, even in the remotest areas, small residues of plastics, the so called microplastic (MP) can be found. MPs are particles with a size of 1-1000 µm (ISO/TR 21960:2020), mainly containing synthetic polymers like polyethylene (PE), polypropylene (PP), polystyrene (PS) or polyethylene terephthalate (PET). Even styrene-butadiene rubber (SBR) as an indication for tire wear is included due to similar particle formation. To understand the MPs consequences to the environment, it is of high priority to capture its extent of contamination. It is surprising that in the analysis of polymer masses in environmental samples, PE, PS and SBR are often detected, but only small amounts of PP, although this is the second most commonly produced standard plastic and many MP particles originate from carelessly disposed packaging materials. This presentation provides hypotheses about the reasons of rare PP identification and mass quantification in environmental samples. Different investigations of pristine PP and representative environmental samples, including the pre-treatment by Accelerated Solvent Extraction (ASE) or with density separation followed by the thermal extraction / desorption gas chromatography-mass spectrometry (TED-GC/MS) are presented. The results are discussed according to the material properties and a possible degradation mechanism under different weathering conditions which indicate less stability under relevant storage conditions. T2 - Society of Environmental Toxicology and Chemistry CY - Dublin, Ireland DA - 30.04.2023 KW - Sample preparation KW - Polypropylene KW - Microplastic KW - Degradation PY - 2023 AN - OPUS4-57474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dittmann, Daniel A1 - Saal, Leon A1 - Zietzschmann, F. A1 - Mai, M. A1 - Altmann, Korinna A1 - Al-Sabbagh, Dominik A1 - Schumann, P. A1 - Ruhl, A. S. A1 - Jekel, M. A1 - Braun, U. T1 - Aktivkohle-Charakterisierung als weiterer Schlüssel für das Verständnis der Spurenstoffadsorption in der 4. Reinigungsstufe N2 - Aktivkohle ≠ Aktivkohle, Adäquate Materialcharakterisierung - Voraussetzung für Adsorptionsprognosen und Wasserspezifische Auswahl von Aktivkohleprodukten. Ausblick: Publikationen zu Aktivkohlecharakterisierung und Adsorptionsprognose in Vorbereitung T2 - Wasser 2021 - Jahrestagung der Wasserchemischen Gesellschaft CY - Online meeting DA - 10.05.2021 KW - Aktivkohle KW - Thermogravimetrie KW - Zersetzungsgasanalyse KW - Proximatanalyse PY - 2021 AN - OPUS4-52742 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Portela, R A1 - Fernández-Lozano, J. F. A1 - Barbero, F. A1 - Bussy, C. A1 - Potthoff, A. A1 - Costa, A. A1 - Komlavi Afanou, A. J. T1 - Material Selection Strategy N2 - This poster is a summary of the material used in the PlasticsFatE project. It indicates the strategies for testing of various polymer properties next to each other according to risk and hazard assessment. T2 - CUSP annual meeting and conference CY - Utrecht, Netherlands DA - 12.09.2023 KW - Microplastics KW - CUSP KW - Material selection PY - 2023 AN - OPUS4-58311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Eisentraut, Paul A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Müller, Axel A1 - Braun, Ulrike T1 - Analysis of microplastics in theory and in practice N2 - Due to the favorable properties of polymers, their production and thus their input into the environment has increased significantly in recent decades. Currently, FTIR or Raman spectroscopy are mainly applied for the analysis of microplastic particles (MP) in environmental samples. However, these methods have great difficulties in determining metrologically traceable MP values, especially with regard to the limiting values, as preferred in regulation. Therefore, we developed a systematic and fast thermoanalytical method called TED-GC-MS (thermal extraction desorption gas chromatography mass spectrometry), which determines mass contents. Now the current goal is the determination of its process parameters. This poster illustrates the theoretical requirements for MP analysis (left side) and contrast them with the current state of research (right side).Unexpected practical problems are presented and the relatively new method is discussed concerning the quality requirements of well-established methods such as LC-or GC-MS. T2 - Eurachem Workshop - Uncertainty from sampling and analysis for accredited laboratories CY - Berlin, Germany DA - 19.11.2019 KW - Microplastics KW - TED-GC-MS KW - Reference materials PY - 2019 AN - OPUS4-49665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duffner, Eric A1 - Mair, Georg A1 - John, Sebastian A1 - Eisermann, Rene T1 - Lebensdauerabschätzung von Composite-Druckgefäßen / COD-AGE N2 - Angewendete Messverfahren im Themenfeldprojekt "Lebensdauerabschätzung von Composite-Druckgefäßen" / COD-AGE T2 - Beirat TF Material CY - BAM Berlin, Germany DA - 26.04.2018 KW - Lebensdauerabschätzung KW - Composite-Druckgefäße KW - Degradation PY - 2018 AN - OPUS4-44898 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Comparison of MWIR and NIR thermography in a laser metal deposition (LMD) process N2 - Additive manufacturing (AM) offers a range of novel applications. However, the manufacturing process is complex and the production of defect-free parts with a high reliability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal AM processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of first measurements during the manufacturing process of a commercial laser metal deposition (LMD) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - ProMoAM PY - 2018 AN - OPUS4-45408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - Laser Metal Deposition (LMD) in ProMoAM N2 - During the last years Additive Manufacturing (AM) became increasingly important. That becomes clear, while looking at the advantages like a high degree of freedom concerning the geometry of the parts, low waste rates and a reduction of postprocessing, to name just three. Laser Metal Deposition (LMD) is one of those AM- methods. It can be used for different kinds of applications, e.g. repair weldings of used parts, coatings to increase the corrosion resistance or to build up new components. But for all applications, the production of defect free parts is crucial. Therefore, different kinds of non-destructive monitoring techniques were tested for the LMD-process to identify their potential to detect imperfections in-situ. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Acoustic Emission KW - LMD KW - Thermography KW - Optical Emission Spectroscopy PY - 2019 AN - OPUS4-49657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -