TY - CONF A1 - Waske, Anja A1 - Fähler, Sebastian A1 - Fähler, Sebastian T1 - Thermomagnetic generators with magnetocaloric materials for harvesting low grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we give an overview on our research, covering both materials and systems. We demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Though magnetocaloric materials had been the first choice also for thermomagnetic generators, they require some different properties, which we illustrate with Ashby plots for materials selection. Experimentally we compare La-Fe-Co-Si and Gd plates in the same thermomagnetic generator. Furthermore, we discuss corrosion and deterioration under cyclic use is a severe problem occurring during operation. To amend this, composite plates using polymer as a matrix have been suggested previously. T2 - Dresden Days of Magnetocalorics CY - Dresden, Germany DA - 13.11.2023 KW - Thermomagnetic material KW - Waste heat recovery KW - Generator PY - 2023 AN - OPUS4-58865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irina A1 - Rautenberg, Max A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of phosphonate-based proton conducting metal organic frameworks and hydrogen-bonded metal phosphonates N2 - Proton exchange membrane fuel cells (PEMFCs) are one of the most promising alternative green energy technologies that deliver high energy density without CO2 emissions. The proton conductivity of proton exchange membranes (PEM) contributes to the overall efficiency of a PEMFC. Materials being used as PEMs must exhibit high proton conductivity at the working conditions of the targeted PEMFC. To date, Nafion and Nafion-like polymers with acidic functionality are widely used as membrane materials due to their high proton conductivity in the range of 10-1 to 10-2 Scm-1 at higher relative humidity. However, these materials suffer from high costs, hazardous production process, and poor performance at high temperatures, limiting their versatility. In this context, crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology, owing to their tunable framework structure. However, it is still challenging bulk synthesis for real-world applications of these materials. Herein, we present mechanochemical gram-scale synthesis of series of mixed ligand metal organic frameworks (MOFs) and metal hydrogen‐bonded organic frameworks (MHOFs) using phenylene diphosphonic acid and 1-hydroxyethylidene-1,1-diphosphonic acid with different bipyridyl type of ligands, respectively. In all cases, the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, the frameworks exhibited high proton conductivity. The study demonstrates the potential of green mechanosynthesis for preparations of framework-based proton conducting materials in bulk scale for green energy generation. T2 - 4th International Conference on Phosphonate Chemistry, Science and Technology, ICOPHOS-4 CY - Crete, Greece DA - 02.10.2023 KW - Proton exchange membrane fuel cells KW - Metal organic frameworks KW - Proton conducting materials PY - 2023 AN - OPUS4-58837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Effect of heat treatment on residual stress in additively manufactured AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBFLB) allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution in as-built state (AB) and after post-process heat treatments (HT). RS in single edge notch bending (SENB) subjected to different HT are investigated (HT1: 1h at 265°C and HT2: 2h at 300°C). T2 - ESRF User Meeting 2023 CY - Grenoble, France DA - 07.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress PY - 2023 AN - OPUS4-56982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fink, Friedrich A1 - Falkenhagen, Jana A1 - Emmerling, Franziska T1 - Mechanochemical valorisation of kraft-lignin N2 - As one of nature's largest carbon sources with an annual production of around 20 billion tonnes, lignin is the third most abundant biopolymer on the planet. It becomes available as technical lignin, which is produced as a by-product in the pulp and paper industry and in smaller quantities in second generation biofuel refineries. Current estimates suggest that less than 10% of all technical lignin is reused. The high polydispersity, complex heterogeneous structure and uncertain reactivity are the major limiting factors for further processing. The most common applications for various technical lignins without extensive modifications are for example: Surface active substances, additives in bitumen, cement and animal feed. One way to make lignin usable is to break the structure into oligomer units and thus reduce the polydispersity and average molar mass. In addition, it is advantageous to introduce new functionalities such as hydroxyl or carbonyl groups when splitting the high-molecular-weight (HMW) fractions, or to convert existing functionalities. In this study, a mechanochemical method is presented that can degrade and modify technical kraft lignin by means of sodium percarbonate (SPC). T2 - 10th Intern. Symp. on the Separation and Characterisation of Natural and Synthetic Macromolecules (SCM-10) CY - Amsterdam, Netherlands DA - 01.02.2023 KW - Technical Lignin KW - Mechanochemical oxidation PY - 2023 AN - OPUS4-57001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz A1 - Scoppola, E. A1 - Kochovski, Z. A1 - Retzmann, Anika A1 - Emmerling, Franziska T1 - Crystallization study of transition metal phosphates: Characterization of a non-classical crystallization pathway N2 - Industrial and agricultural waste streams (waste waters, sludges, tailings etc.), which contain high concentrations of NH4+, PO43- and transition metals, are environmentally harmful due to their toxic pollutants. At the same time, phosphorus and selective transition metals such as Cobalt could be potentially depleted as a critical raw material due to the high demand and rapidly declining natural ore deposits. Therefore, due to simultaneous scarcity and abundance, the phosphorus and 3d metal recovery from agricultural, industrial, mining, or urban wastewaters have been an important factor in sustaining our global consumption and preservation of the natural environment. Typically, separate pathways have been considered to extract hazardous substances such as transition metals or phosphate, independently from each other. Here, we investigate the crystallization of transition metal phosphate (TMP) compounds (NH4MPO4∙6H2O, M3(PO4)2∙8H2O with M = Ni2+, Co2+, NixCo1-x2+ M-struvite and M-phosphate octahydrate) out of aqueous solutions, which allow for P, ammonia and metal co-precipitation. The precipitation of these compounds from industrial and agricultural waste waters has high potential as a P- and 3d metal recovery route. For this purpose, a detailed understanding of the crystallization process beginning from combination of solved ions and ending in a final crystalline product is required. Through adjusting the reaction conditions, the stability, crystallite size and morphology of the as-obtained TMPs could be controlled. Detailed investigations of the precipitation process in time using ex- and in-situ techniques provided new insights into their non-classical crystallization mechanism/crystal engineering of these materials. These TMPs involve transitional colloidal nanophases during the crystallization process. Over time, their complex amorphous framework changes significantly resulting simultaneously in an agglomeration and densification of the compound. After extended reaction times these colloidal nanophases condensed to a final crystal. However, the reaction kinetics of the formation of a final crystalline product and the lifetime of these intermediate phases vary significantly depending on the metal cation involved in the precipitation process. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P)-ratios, whereas Co tends to form Co-struvite and/or Co-phosphate octahydrate depending on the (M/P)-ratio. The mixed NixCo1-x system shows a significantly different crystallization behavior and reaction kinetics of the precipitation compared to the pure endmembers. The observed various degree of stability could be linked to the octahedral metal coordination environment in these compounds. The achieved level of control over the precipitates, is highly desirable for 3d- and P-recovery methods. Under this paradigm, the crystals can be potentially upcycled as precursor materials for (electro)catalytical applications. T2 - HZB Usermeeting 2023 CY - Berlin, Germany DA - 22.06.2023 KW - Struvite KW - Transition metal KW - Phosphates KW - Crystallization KW - Amorphous phases PY - 2023 AN - OPUS4-57775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Kannengießer, Thomas T1 - Component test for the assessment of hydrogen assisted cracking susceptibility of thick-walled submerged arc welded offshore steels N2 - Offshore wind turbines (OWT) are a key factor of the sustainable energy generation of tomorrow. The continuously increasing installation depths and weight of the OWTs require suitable foundation concepts like monopiles or tripods. Typically, mild steels like the S420ML are used with plate thicknesses up to several hundreds of mm causing high restraints in the weld joints. Due to the large plate thickness, submerged arc welding (SAW) with multiple wires is the state-of-the-art welding procedure. As a result of the very high stiffness of the construction, a certain susceptibility for time-delayed hydrogen-assisted cracking (HAC) may occur. The evaluation of crack susceptibility is very complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry was developed to transfer the real stiffness conditions to laboratory (i.e., workshop) scale. The investigated mock-up, weighing 350 kg, comprised heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated via the use of welding fluxes in dry (HD < 5 ml/100g Fe) and moisture condition (HD > 15 ml/100g Fe). The residual stresses were determined by a robot X-ray diffractometer. Areas of critical tensile residual stress (at the level of the yield strength) were found in the weld metal and heat affected zone. To identify possible delayed cracking, the welds were tested by phased array ultrasonic testing (PAUT) after 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and welding parameters. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Component test KW - NDT KW - Waiting time PY - 2023 AN - OPUS4-58672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stohl, Leonie A1 - von Werder, Julia T1 - Bioreceptivity of structured concrete panels N2 - Understanding the fundamentals of bioreceptivity enables the developement of functionalized materials. Concrete as the most used building material worldwide is of special interest as microbially greened panels may represent an alternative to classic façade greening with plants. � This project includes extensive outdoor experiments, in which eight differently structured concrete panels are weathered under different conditions, aiming to grow a stable biofilm of photosynthetic eukaryotic organisms. Documentation and data analysis of this experiment will be demonstrated using an example of one of the surfaces. T2 - Word Green Infrastructure Congress 2023 CY - Berlin, Germany DA - 27.06.2023 KW - Bioreceptivity KW - Concrete KW - Material design PY - 2023 AN - OPUS4-57919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Hammerschmidt, T. A1 - Gedsun, A. A1 - Forti, M. A1 - Olbricht, Jürgen A1 - Stotzka, R. A1 - Skrotzki, Birgit A1 - Shakeel, Y. A1 - Hunke, S. A1 - Tsybenko, H. A1 - Aversa, R. A1 - Chmielowski, M. A1 - Hickel, T. T1 - IUC02 Framework for Curation and Distribution of Reference Datasets using Creep Data of Ni-Base Superalloys as an Example N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Syngle Crystal alloy KW - Creep KW - Metadata schema PY - 2023 AN - OPUS4-57923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zekhnini, Khalid A1 - Ebell, Gino A1 - Burkert, Andreas T1 - Corrosion at metallic offshore constructions – Bundesanstalt für Materialforschung und -prüfung (BAM) N2 - In the maritime context of offshore operation, corrosion, in combination with the materials used, poses a particular challenge to ensure safe operation over long indefinite periods and to minimise susceptibility to failure. Until today, only a few corrosion protection systems have proven themselves for the interaction of efficiency, installation, and maintenance in the offshore sector. In addition, available corrosion test methods sometimes have major deficits about conclusions of the durability. Therefore, there is more research and development needed. The flagship project H2Mare of the Federal Ministry of Education and Research aims to enable the production of green hydrogen and PtX products at high seas. Research is being driven forward by the partners in four individual projects, where BAM is involved in two. In PtX-Wind, major kinds of corrosion attacks at offshore constructions are characterized and investigated, and suitable corrosion protection measures determined. In TransferWind, attention focusses on transferring scientific results into standardization. This poster at the H2Mare Conference 2023 presents an overview of the investigation methods and contribution of the department “Corrosion and Corrosion Protection”. T2 - H2Mare Conference 2023 CY - Frankfurt/Main, Germany DA - 12.06.2023 KW - Atmospheric Corrosion KW - Sea Water KW - Corrosion Testing KW - Offshore KW - Laboratory Container KW - Corrosion protecting system PY - 2023 AN - OPUS4-57838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bauer, L. A1 - Wieder, Frank A1 - Truong, V. A1 - Förste, F. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Praetz, S. A1 - Schlesiger, C. A1 - Kanngießer, B. A1 - Zaslansky, P. A1 - Mantouvalou, I. T1 - Complementary X-ray techniques reveal hidden details in dental materials N2 - In dentistry it is of great interest to achieve good sealing interzones between tooth tissue and restoration materials to avoid, e. g. secondary caries. μXRF and CμXRF are suitable to investigate the elemental composition at these interzones in respect to diffusion of elements. Synchrotron X-ray refraction radiography (SXRR) and μCT measurements deliver highly resolved structural information and make structural changes such as micro cracks within the filling and the tooth tissue visible. The presented measurements are part of the DFG funded project IXdent (Integrative X-ray techniques for chemical and structural characterizations of dental interzones.) The depth-resolved CμXRF measurements are affected by absorption effects, making a quantitative investigation of the interzone in depth difficult. Full 3D quantification of heterogenous samples requires a complete model including dark matrix and density for each voxel. The combination of different techniques paves the way for a quantitative analysis of dental interzones. T2 - 15th BESSY@HZB User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - X-ray refraction KW - X-ray fluorescence KW - Computed tomography KW - Dental material PY - 2023 AN - OPUS4-57849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -