TY - CONF A1 - Léonard, Fabien A1 - Tammas-Williams, S. A1 - Todd, I. T1 - CT for additive manufacturing process characterisation: assessment of melt strategies on defect population N2 - Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing (AM) technique for near net-shape manufacturing of high-value titanium components. However, as with every emerging technique, the manufacturing processes can still be greatly improved and optimised. In particular, the links between AM settings and the resulting sample porosity is of great interest, as the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography (CT), and correlated to the SEBM process variables. A strong relationship was found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. T2 - Conference on Industrial Computed Tomography iCT2016 CY - Wels, Austria DA - 09.02.2016 KW - Titanium KW - Additive Manufacture KW - Selective Electron Beam Melting KW - Pores KW - Defects KW - X-ray Computed Tomography PY - 2016 AN - OPUS4-39186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NbC) as cutting tools and for wear protection N2 - Niobium is today largely available. NbC grades displayed lower dry sliding friction over WC grades. The softer Ni- and NiMo-bondes NbC1.0-grades have a higher abrasive wear resistance (ASTM G65), even with lower toughnesses, as the tougher WC-Co grades. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Cutting tools KW - Hardness PY - 2017 AN - OPUS4-40512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Steinborn, Gabriele A1 - Woydt, Mathias T1 - Colloidal processing of metal bonded niobium carbide (NbC-Ni) N2 - The manufacturing of NbC with Ni binder with addition of titanium carbide by using a colloidal process for blending the different powders without a milling step were investigated. The the sintering process and formation of the resulting microstructures, the phase relations and the hardness of the produced cermet materials are characterized. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Cermets KW - Hardness PY - 2017 AN - OPUS4-40513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wagner, Sabine A1 - Carrasco, S. A1 - Benito-Peña, E. A1 - Moreno-Bondi, M. C. A1 - Rurack, Knut T1 - Detection of antibiotics by combining fiber-optic array with microparticles coated with fluorescent molecularly imprinted polymers N2 - The widespread use of antibiotics in livestock farming leads to trace residues in food products and wastewater, potentially entailing antimicrobial resistance in food-borne pathogens. The determination of antibiotics in aqueous environments and foodstuff is thus of major concern. We have been developing optical sensors based on molecularly imprinted polymers (MIPs) due to the low production costs, stability, format adaptability and the possibility to imprint and thus their ability to recognize a wide variety of target analytes. As a fluorescently responding moiety in the polymer matrix a tailor-made fluorescent indicator cross-linker for direct transfer of the binding event into an optical signal was used. If such a cross-linker is integrated into a thin MIP-shell on microspheres such core/shell particles can be readily used in advanced multiplexing sensory fiber-optic microarrays. Here, we propose such a fiber-optic microarray based on fluorescent MIP microspheres for antibiotics. The binding behavior and the selectivity of a microarray using these silica core/MIP shell beads were examined and compared with a non-imprinted polymer (NIP) control, employing the target molecules and other structurally closely related antibiotics. T2 - APME2017 CY - Ghent, Belgium DA - 21.05.2017 KW - Molecularly imprinted polymers KW - Multiplexing sensory fiber-optic microarrays KW - Antibiotics PY - 2017 AN - OPUS4-40583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Knabe, Nicole A1 - Toepel, J. T1 - Organic surface coatings on medieval stained glass and microbiological investigation N2 - Mediaeval stained glass has been treated with Polymethylmetacrylate coatings by Kwiatkowski in Poland during the 1950th. Such treated panels were found in the Johannis Church of Toruń (without protective glazing), in the Cathedral of Włocławek (behind a protective glazing), and on glass kept in exhibition cases in the museum of Toruń. Surface coatings have been detected and analyzed. There was no extensive contamination by fungi or bacteria if the glass was either coated or not. T2 - Glass Science in Art and Conservation 2017 CY - Lisbon, Portugal DA - 06.06.2017 KW - Microbiological investigation KW - Medieval stained glass KW - SEM analysis PY - 2017 AN - OPUS4-40573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uhlmann, E. A1 - Kropidlowski, K. A1 - Woydt, Mathias A1 - Sammler, F. T1 - Cutting tools made from niobium carbide N2 - The Federal Institute for Materials Research and Testing (BAM) and the Institute for Machine Tools and Factory Management (IWF) of the Technical University Berlin analyzed the suitability of various NbC types in comparison to tungsten carbide (WC) for use as a tool in cutting processes. The focus was placed on the optimization of the functional profile of NbC-based cutting materials with reproducible industrial production. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Tungsten carbide (WC) KW - Cutting material PY - 2017 AN - OPUS4-40515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taparli, Ugur Alp A1 - Jacobsen, L. A1 - Griesche, Axel A1 - Michalik, K. A1 - Mory, D. A1 - Kannengießer, Thomas T1 - Time- and space-resolved in situ LIBS measurements of chemical compositions during TIG-welding N2 - An in situ monitoring of chemical compositions in the weld pool and the heat affected zone (HAZ) can enable the control of the welding process through the regulation of the welding parameters, and thus can prevent possible weld defects. The most critical parameter for hot cracking -from a metallurgical point of view- is the chemical composition of the weld pool. Chemical composition can be measured and quantified during the welding process with the LIBS technique having the appropriate calibration measurements. T2 - ICWAM 2017 CY - Metz, France DA - 17.05.2017 KW - Chemical compositions KW - TIG-welding KW - In situ measurement KW - LIBS PY - 2017 AN - OPUS4-40313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Bärbel A1 - Rabe, Torsten A1 - Salehi, Mahdi T1 - High-temperature stability of ceramic springs N2 - Metallic springs undergo oxidation and creep at elevated temperatures and their use is limited to temperature of about 650°C. Therefore, there is a need for stable materials which can easily withstand temperatures up to 1000°C for long periods in different atmospheres. Ceramic materials have been drawing attention due to their excellent properties. This work aimed at investigating the high-temperature stability of zirconia and alumina ceramic springs at elevated temperatures under different atmospheres (air, N2 and H2) in order to determine the limitation of use of these ceramic springs. T2 - DKG 2017 CY - Berlin, Germany DA - 20.03.2017 KW - Ceramic spring KW - High-temperature stability KW - Harsh environments KW - Spring constant PY - 2017 AN - OPUS4-40289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Gohlke, Dirk A1 - Meinig, Silvia A1 - Kaszemeikat, T. T1 - Hochauflösende Reinheitsgradbestimmung – Fertigung von Referenzfehlern N2 - Regelwerke zur zerstörungsfreien Bestimmung des Reinheitsgrades wie das SEP 1927 und die ASTM E588 erreichen ihre Vergleichbarkeit unter Anwendung von - vergleichsweise einfachen - Referenzfehlern. Hinsichtlich Realisierbarkeit wird somit der Kompromiss zwischen Herstellung des Referenzfehlers und der erreichbaren Nachweisgrenze gefunden. Zur Weiterentwicklung über die Grenzen der SEP1927 hinaus, wurde der Versuch unternommen Fehler kleiner 500 μm herzustellen - welche aufgrund der geringen geometrischen Ausdehnung fertigungsbedingt schwierig zu realisieren sind. Bei den vergleichenden Untersuchungen kristallisierten sich zwei Fertigungsverfahren, Funkenerosion (EDM: electrical discharge maching) und die Fertigung der Bohrungen unter Verwendung eines Hochleistungslasers, als vielversprechend heraus. Zunächst wurden die Fehler mit beiden Verfahren in unterschiedlichen Größen (100, 250 und 100 μm) und Tiefen (1, 1,5 und 2 mm) unter Anwendung von computertomographischen Verfahren der Röntgenprüfung, die Geometrie der eingebrachten Fehlstellen und anschließend durch hochauflösende Tauchtechnikmessungen das Reflektionsverhalten charakterisiert. T2 - DGZfP Jahrestagung CY - Koblenz, Germany DA - 22.05.2017 KW - Materialcharakterisierung KW - Reinheitsgradbestimmung KW - Ultraschalltauchtechnik PY - 2017 AN - OPUS4-40353 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czarnecki, Sebastian A1 - Hackelbusch, Sebastian A1 - Bertin, Annabelle T1 - Synthesis of hybrid inorganic/organic homopolymers via ATRP and RAFT: A practical comparison N2 - The synthesis of hybrid inorganic/organic copolymers, using reversible deactivation radical polymerization (RDRP) techniques, has been an intensively studied research topic over recent years. A plethora of hybrid inorganic/organic copolymers were synthesized, including hybrid inorganic/organic block copolymers as well as random copolymers,[1–4] that showed great potential in fabricating hybrid (nano)materials with tailored properties [5]. Two widely employed RDRP techniques to prepare such hybrid inorganic/organic copolymers are atom transfer radical polymerization (ATRP) [1,2] and reversible addition-fragmentation chain transfer (RAFT) polymerization [3,4]. In order, to afford hybrid inorganic/organic copolymers with narrow dispersity, high conversions and precise structures, it is required to choose proper reaction conditions. Due to the importance of both ATRP and RAFT in the preparation of such hybrid polymers, we aim to compare both RDRP techniques by preparing 2-acetoxyethyl methacrylate (AcEMA) and 3-(triethoxysilyl)propyl methacrylate (TESPMA) based homopolymers. For this purpose, AcEMA and TESPMA were polymerized in 1,4-dioxane at 60 °C mediated by CuBr/N,N,N',N'-pentamethyldiethylenetriamine (PMDETA) and 2-(2-carboxylethylsulfanylthiocarbonyl-sufanyl) propionic acid (TTC) as well as cumyl dithiobenzoate (CDB) to evaluate the suitability and reliability of ATRP and RAFT to prepare such hybrid (co)polymers. T2 - Berlin Chemie Symposium 2017 CY - TU Berlin, Berlin, Germany DA - 06.04.2017 KW - Hybrid inorganic/organic copolymers KW - ATRP KW - RAFT PY - 2017 UR - https://bcs.jcf-berlin.de/BCS2017/BoA2017.pdf AN - OPUS4-40280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -