TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - A numerical study on the suppression of a detrimental weld pool profile in wire feed laser beam welding by magnetohydrodynamic technique N2 - The weld quality and the possible defect formation are directly determined by the weld pool shape and the thermo-fluid dynamics therein. In this paper, an untypical weld pool profile, i.e., elongated at its top and bottom but narrowed at the middle, is found experimentally and numerically in the wire feed laser beam welding. The detrimental influence of the weld pool narrowing on the element transport is analyzed and discussed. A magnetohydrodynamic technique is utilized to suppress the narrowing, aiming at a more homogenous element distribution. It is found that a low-temperature region is formed in the middle of the weld pool due to the interaction of the two dominant circulations from the top and bottom regions. The weld pool is significantly narrowed due to the untypical growth of the mushy zone in the low-temperature region, which results in a direct blocking effect on the downward flow and the premature solidification in the middle region. The Lorentz force produced by a transverse oscillating magnetic field shows the potential to change the flow pattern into a single-circulation type and the low-temperature-gradient region is mitigated. Therefore, the downward transfer channel is widened, and its premature solidification is prevented. The numerical results are well validated by experimental measurements of metal/glass observation and X-ray fluorescence element mapping. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Thermo-fluid flow KW - Element transport KW - Laser beam welding KW - Magnetohydrodynamics KW - Multi - physical modeling PY - 2023 SN - 2410-0544 VL - 13 SP - 143 EP - 160 PB - Verlag der Technischen Universität Graz AN - OPUS4-58806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Chunliang A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Experimental and numerical study on grain refinement in electromagnetic assisted laser beam welding of 5754 al alloy N2 - Through experimental observation and auxiliary numerical simulation, this investigation studies the different types of grain refinement of 5754 aluminum alloy laser beam welding by applying a transverse oscillating magnetic field. Scanning electron microscope results have proved that the application of a magnetic field can reduce the average crystal branch width and increase its number. The interaction between the induced eddy current generated by the Seebeck effect and the applied external magnetic field produces a Lorentz force, which is important for the increase of the number of crystal branches. Based on the theory of dendrite fragmentation and the magnetic field-induced branches increment, the grain size reduction caused by the magnetic field is studied. Furthermore, the effects of the magnetic field are analyzed by combining a phase field method model and simulations of nucleation and grain growth. The grain distribution and average grain size after welding verifies the reliability of the model. In addition, the introduction of a magnetic field can increase the number of periodic three-dimensional solidification patterns. In the intersection of two periods of solidification patterns, the metal can be re-melted and then re-solidified, which prevents the grains that have been solidified and formed previously from further growth and generates some small cellular grains in the new fusion line. The magnetic field increases the building frequency of these solidification structures and thus promotes this kind of grain refinement. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, USA DA - 16.10.2023 KW - Laser beam welding KW - Magnetic field KW - Crystal branch development KW - Grain refinement KW - Periodic solidification pattern PY - 2023 SP - 1 EP - 10 AN - OPUS4-58809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Putra, Stephen Nugraha A1 - Meng, Xiangmeng A1 - Yang, Fan A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Einfluss der Temperaturabhängigen Modellierung der Laserstrahlabsorption auf die Schmelzbadgeometrie beim Hochleistungslaserstrahlschweißen N2 - Der Absorptionsgrad metallischer Werkstoffe spielt bei Fügeprozessen mit einer Strahlungsquelle wie dem Hochleistungslaserstrahltiefschweißen eine bedeutende Rolle. Dieser beeinflusst die Menge der absorbierten Laserenergie, welche zum Aufschmelzen sowie zur lokalen Verdampfung des zu verbindenden Materials führt. Eine der wichtigsten Eigenschaften der Laserstrahlabsorption ist die Temperaturabhängigkeit. Dennoch wird sie in vielen Simulationsarbeiten häufig ignoriert und stattdessen ein angepasster Parameter zur Kalibrierung der Ergebnisse implementiert. Diese Vorgehensweise wirkt sich negativ auf die Zuverlässigkeit sowie die Genauigkeit des numerischen Modells sowie auf die Vorhersagbarkeit der Simulationsergebnisse aus. In der vorliegenden Arbeit wird die Temperaturabhängigkeit der Laserabsorption in ein selbstkonsistentes zweiphasiges Modell unter Berücksichtigung der gekoppelten 3D-Fluidströmung und Wärmeübertragung einbezogen. Die berechnete Laserstrahlabsorption wird durch die temperaturabhängigen Materialeigenschaften, die Lasercharakteristik und den Einfallswinkel des Laserstrahls bestimmt. Die freie Oberfläche jeder Phase wird mithilfe der volume-of-fluid Methode, kurz VOF, berechnet und die Laser-Material-Wechselwirkung wird durch ein neulich implementiertes Ray-Tracing-Verfahren modelliert, die auf einem lokalisierten Level-Set-Algorithmus basiert. Anschließend wird die transiente Wärmeeinbringung und die Geometrie der Schweißnaht analysiert und mit dem temperaturunabhängigen Absorptionsmodell verglichen. Es wurde festgestellt, dass die Temperaturabhängigkeit der Laserabsorption entscheidend für die genaue Bestimmung der Wärmeeinbringung und der Schmelzbadgeometrie ist. Das entwickelte Modell wurde anhand der experimentellen Untersuchungen validiert und die Bedeutung der Temperaturabhängigkeit bei der Laserstrahlabsorption wurde für die Simulation des Laserstrahltiefschweißens aufgeklärt. T2 - 44. Assistentenseminar CY - Päwesin, Germany DA - 20.09.2023 KW - Laser beam welding KW - Temperature dependent absorption KW - Weld pool dynamics KW - Numerical modeling PY - 2023 AN - OPUS4-58810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Putra, Stephen Nugraha A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Der Einfluss verschiedener räumlicher Diskretisierungsansätze des Ray-Tracing-Verfahrens bei der Simulation des Laserstrahltiefschweißen N2 - Die Wärmeverteilung des Lasers beim Laserstrahltiefschweißen ist für die Formgebung der Dampfkapillare und für die Schweißbaddynamik entscheidend. In dieser Arbeit werden die Laserwärmeverteilung und deren Einflüsse auf die Schweißbadtiefe sowie -breite numerisch anhand des Ray-Tracing-Verfahrens analysiert. Hierbei wird der La-serstrahl in mehreren Strahlenbündeln bzw. Subrays unterteilt. Diesbezüglich soll der Pfad der Subrays präzis berechnet werden, um die Dynamik der Dampfkapillare und des Schweißbades eines realen Schweißprozesses richtig abzubilden. Zu diesem Zweck beschäftigt sich die vorliegende Arbeit mit der Genauigkeitsverbesserung der Kontaktposition und der Reflexionsrichtung der Subrays auf der freien Oberfläche anhand der Level-Set-Methode. Um die Güte dieses Simulationsansatzes zu gewährleisten, wurde eine Gegenüberstellung mit den zwei klassi-schen Ray-Tracing-Verfahren mittels drei verschiedenen Benchmark-Testreihen durchgeführt. Anschließend wur-den die Versuchsergebnisse zur Validierung der implementierten numerischen Ansätze verwendet. Im Rahmen dieser Arbeit kann es gezeigt werden, dass unterschiedliche Wärmeverteilung aufgrund der verschiedenen Ray-Tracing-Verfahren deutlich zu erkennen ist, welche wiederum die Schweißbaddynamik sowie die lokalisierte Dampfkapillardynamik stark beeinflussen. Ferner wurde es bestätigt, dass die implementierte Level-Set-Methode zu einer genaueren Ermittlung der Kontaktposition und der Reflexionsrichtung der Subrays und somit zu einer Ver-besserung der simulierten Schmelzkontur führt. T2 - 43. Assistentenseminar CY - Schwarzenberg, Germany DA - 27.09.2022 KW - Laser beam welding KW - Ray tracing method KW - Weld pool dynamics KW - Numerical modeling PY - 2022 AN - OPUS4-58840 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical analysis of the effect of the metal vapor plume on the keyhole and the molten pool behavior during deep penetration laser beam welding N2 - The effect of the oscillating metal vapor plume on the keyhole and molten pool behavior during the laser beam welding of AlMg3 aluminum alloys is investigated by the experimental and numerical method. The real-time height of the metal vapor plume is measured by high-speed camera observation. The obtained experimental results are used to evaluate the additional heating source and laser beam attenuation caused by the scattering and absorption based on the Beer-Lambert theory. Furthermore, the dynamic behavior of the metal vapor plume is incorporated into a 3D transient heat transfer and fluid flow model, coupled with the ray tracing method, for the laser beam welding of the AlMg3 alloy. It is found that the additional heating resulting from the scattered and absorbed laser beam energy by the metal vapor plume significantly expands the shape of the molten pool on the top region. Moreover, the oscillating metal vapor plume caused the fluctuation of the molten pool shape. The probability of keyhole collapse at the bottom increases significantly to 72% due to the oscillating laser power induced by the laser beam attenuation. The internal interplay between the metal vapor plume, molten pool shape, and the keyhole collapse are obtained. The developed model has been validated by the experiments, which shows a good agreement. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, Illinois, USA DA - 16.10.2023 KW - Deep penetration laser beam welding KW - Numerical simulation KW - Oscillating vapor plume KW - Keyhole collapse PY - 2023 SP - 1 EP - 10 AN - OPUS4-58841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Investigating defects caused by narrow pool shapes in deep penetration welding N2 - Laser beam welding is a widely used joining technique in many industrial applications. This is mainly due to its many unique advantages, especially compared to conventional arc welding processes. These advantages include, among others, highly concentrated energy deposition, low total heat input and a capacity to penetrate deep into the material while causing only small welding distortions. However, at the same time, the small dimension of the laser spot, high solidification rates, and small dimensions of the weld pool itself can provoke issues regarding the assembly tolerances of the workpiece, the hot-cracking phenomena, as well as keyhole-induced bubbles escaping from the melt. Weld pool shapes in laser beam welding are elongated at the external, free surfaces under the action of the main driving forces in the melt – such as recoil pressure and surface tension forces – while being shorter in the internal areas of the weld pool. This leads to a regular solidification sequence from the internal zones toward the free surfaces, e.g. from the bottom to the top in partial penetration welding. However, in recent studies reported in the literature and seen in the experimental and numerical investigations of BAM Bundesanstalt für Materialforschung und -prüfung in Berlin, it was found that an internal narrowing phenomenon can occur that is often accompanied by a distinct bulging of the weld bead in deeper zones. As the internal behaviour of the melt during the process is hardly optically accessible, several numerical models and experimental techniques were established to visualise the mechanisms of the formation of the bulging and the narrowing phenomenon and to reveal the consequences on the solidification sequence, pore formation, and filler metal dilution. KW - Weld pool shape KW - Laser beam welding KW - Solidification PY - 2022 SN - 1759-0752 IS - 57 SP - 28 EP - 29 PB - Europa Science CY - Cambridge, UK AN - OPUS4-56995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Srinivasan, Krishnanand A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser Metal Deposition of Rene 80 – Microstructure and Solidification Behaviour Modelling N2 - New developments in nickel-based superalloys and production methods, such as the use of additive manufacturing (AM), can result in innovative designs for turbines. It is crucial to understand how the material behaves during the AM process to advance industrial use of these techniques. An analytical model based on reaction-diffusion formalism is developed to better explain the solidification behavior of the material during laser metal deposition (LMD). The well-known Scheil-Gulliver theory has some drawbacks, such as the assumption of equilibrium at the solid-liquid interface, which is addressed by this method. The solidified fractions under the Scheil model and the pure equilibrium model are calculated using CALPHAD simulations. Differential scanning calorimeter is used to measure the heat flow during the solid-liquid phase transformation, the result of which is further converted to solidified fractions. The analytical model is compared with all the other models for validation. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Additive manufacturing KW - Laser metal deposition KW - Solidification behaviour KW - Analytical model KW - Nickel-based superalloy PY - 2023 SP - 1 EP - 10 AN - OPUS4-58612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Churiaque, C. A1 - Sanchez-Amaya, J.M. T1 - High-power hybrid laser arc welding of thick materials with electromagnetic weld pool support N2 - In addition to the many advantages of deep penetration, increased welding speed and a low sensitivity to manufacturing tolerances such as gap and edge offset, the hybrid laser arc welding (HLAW) process is used increasingly in industrial applications such as shipbuilding or pipeline manufacturing. Nonetheless, thick-walled sheets with a wall thickness of 20 mm or more are still multi-pass welded using the arc welding process, due to increased process instability by increasing laser power. Welding at reduced speed, especially in a flat position, leads to an irregular formation of the root part such as dropping. The hydrostatic pressure exceeds the surface tension, which decreases with increasing seam width. In order to prevent gravity drop-outs, the use of a melt pool support is necessary. Usual weld pool supports such as ceramic or powder supports require time-consuming mechanical detachment. The electromagnetic weld pool support system, which is described in this study, operates without contact and based on generating Lorentz forces in the weld pool. An externally applied oscillating magnetic field induces eddy currents and generates an upward directed Lorentz force, which counteracts the hydrostatic pressure. This allows single-pass welds up to 30 mm by hybrid laser arc welding process with a 20-kW fibre laser. Moreover, it is favoured by the diminished welding speed the cooling rate which leads to an improvement of the mechanical-technological properties of the seams – the lower formation of martensite in the microstructure enables better Charpy impact toughness. The electromagnetic weld pool support extends the limitation of the laser hybrid welding process in the thick sheet area. By adapting the electromagnetic weld pool support to the laser and laser hybrid welding process, the application potential of these technologies for industrial implementation can be drastically increased. T2 - 23rd Technical Conference on Welding and Joining Technologies CY - Irun, Spain DA - 07.03.2023 KW - Laser hybrid welding KW - Thick-walled steel KW - Electromagnetic backing KW - High-power laser PY - 2023 AN - OPUS4-58613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Analysis of microstructure and mechanical properties of single-pass laser hybrid welded thick-walled steels up to 30 mm with contactless electromagnetic backing N2 - The study deals with the influence of the heat input on the thermal cycles, the microstructure and the mechanical properties for laser-hybrid welded steels of S355J2 with thicknesses up to 30 mm using a 20-kW high-power laser with contactless electromagnetic backing. The focus is on the change of the mechanical properties over the seam thickness. Therefore, the impact toughness and tensile strength were tested in different depths. Based on the experiments, a heat input of 1.3 kJ/mm - 1.6 kJ/mm, 2 kJ/mm - 2.4 kJ/mm and 3.7 kJ/mm were recommended when single-pass welding of 20 mm, 25 mm and 30 mm with a 20-kW laser in regard to the minimum requirements of the mechanical properties, respectively. Lower heat inputs led to undesired microstructure consisting of martensite, hardening and deteriorated impact toughness, where higher heat inputs led to grain-coarsening and even loss of impact strength due to the formation of retained-austenite on the grain boundaries. T2 - EMPOrIA 2023 - International Joint Conference CY - Aachen, Germany DA - 16.05.2023 KW - Laser hybrid welding KW - Electromagnetic backing KW - Thermal cycles KW - Charpy impact toughness KW - Thick-plate welding PY - 2023 AN - OPUS4-58614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ömer A1 - Kampffmeyer, D. A1 - Wolters, M. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of shielding gas on filler wire mixing at laser hybrid welding of thick high strength steels N2 - The laser hybrid welding process offers many advantages during welding oft hick-walled steels, such as the increased penetration depth and, thus, reduced number of layers, reduced heat input and decreased distortion compared to arc-based welding processes. Especially, when welding high-strength steels (HSS), the reduced heat input plays an essential role. However, a major challenge when laser hybrid welding of thick-walled steels is the limited filler wire mixing over the entire seam thickness, which can lead to changed mechanical properties over the depth. To overcome this issue, the add of oxygen into the shielding gas and its influence on the filler wire mixing and finally to the mechanical properties were investigated within this work. Therefore, 20 mm thick S690QL steels were laser hybrid welded in a single-pass. A contactless electromagnetic backing was used to avoid sagging. The admixture of oxygen was performed by a gas mixer, where the oxygen content was varied between 0 % and 7.2 %. The experiments were also accompanied by laser beam welding tests in steel/glass configuration, where the melt pool geometry as well as the melt flow characteristics were captured by a high-speed camera. It can be concluded, that adding of 2 % to 4 % oxygen into the shielding gas had a positive effect on the filler wire mixing, were up to a depth of 18 mm elements of the filler wire could be observed. T2 - 19th Nordic Laser Material Processing Conference CY - Turku, Finland DA - 22.08.2023 KW - Laser hybrid welding KW - Electromagnetic backing KW - Shielding gas KW - Charpy impact toughness KW - Thick-plate welding KW - Filler wire mixing PY - 2023 AN - OPUS4-58615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -