TY - CONF A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Reetz, R. A1 - Trunkhardt, M. T1 - High-temperature laser profilometry N2 - Advanced methods for 3D green density characterization like computed tomography and 3D FE sinter modeling can be utilized for increasing the reliability of sintered components. The experimental in situ observation of sin-tering, however, is currently restricted to silhouette methods, i.e. heating microscopy. For complex shaped sam-ples, in situ shape screening during shrinkage would allow better validation of 3D sinter simulation models. Further, by revealing temporary sinter warpage, 3D high-temperature shape screening would allow to locate potential defects of complex sintered components. Against this background, BAM developed a testing device for in situ 3D high-temperature shape screening for ceramic and glass-ceramic tapes up to 1000°C [1-3]. Current work is focused on dropping this restriction in sample shape and temperature. The poster illustrates the current state of this work and possible applications of the method e.g. in detecting sinter warpage of metallized glass-ceramic LTCC tapes. T2 - 90. Glastechnische Tagung (Deutsche Glastechnische Gesellschaft e.V.) CY - Goslar, Germany DA - 06.06.2016 KW - Laser profilometry KW - 3D High-temperature shape screening KW - Sintering PY - 2016 AN - OPUS4-36510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Evidence of a Three-Layred Structure in Ultrathin PVME and PVME-PS Blend Films by Nanosized Relaxation Spectroscopy N2 - In the course of miniaturizing modern technology down to the molecular scale, much remain unknown about the materials behavior and the deviations from the bulk that might arises from confinement effects. Here, a combination of nano-sized relaxation spectroscopies (Broadband dielectric spectroscopy (BDS) and Specific heat spectroscopy (SHS); employing AC nanochip calorimetry) were utilized to investigate the glassy dynamics of ultra-thin films of Poly (vinyl methyl ether) (PVME) and of blends PVME / Polystyrene (PS) 50:50 wt-%,, which are miscible in bulk (thicknesses: ca. 8 nm – 160 nm, film thickness was controlled by ellipsometry, film topography by AFM). Both methods are sensitive to different probes; where SHS senses entropy fluctuations while BDS measures dipole fluctuations. For BDS measurements, a recently developed nano-structured electrode sample arrangement is employed, where ultra-thin films are spin-coated on an ultra-flat highly conductive silicon wafer, sandwiched between a wafer with nanostructured SiO2 nano-spacers with heights between 35 nm and 70 nm. For PVME films, two thickness independent processes were observed and interpreted to be the α-processes of a bulk-like layer and a process due to an absorbed layer to the substrate. This adsorbed layer further undergoes a confinement effect that results in the localization of the segmental dynamics, which results in an Arrhenius-like temperature dependence. A detailed analysis of the dielectric strengths of both processes reveals that the thickness of the adsorbed layer decreases with increasing temperature, while that of the bulk-like layer increases. For the blend system, by measuring the dynamic Tg in dependence of the film thickness, SHS showed that the Tg of the whole film was strongly influenced by a nanometer-thick surface layer at the polymer/air interface due to a self-assembling process. The dynamic Tg obtained from the SHS measurements decreased with decreasing film thickness. On the other hand, BDS measurements showed a completely different behavior. At high temperatures, the temperature dependence of the relaxation times of the films follows that of bulk-like PS/PVME; obeying the VFT-law. With decreasing temperature, the temperature dependence deviates from the VFT to an Arrhenius law; where the apparent activation energy decreases with decreasing film thickness. This is the first example where confinement induced changes were observed by BDS for ultra-thin films. All results were analyzed in detail in a comprehensive discussion. T2 - 14. Lähnwitzseminar on Calorimetry CY - Rostock-Warnemünde, Germany DA - 05.05.2016 KW - Ultra-Thin films PY - 2016 AN - OPUS4-36477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sentker, K. A1 - Yildirim, Arda A1 - Knopp, K. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Columnar axial orientation of discotic liquid crystals in nanoporous solids N2 - Successful implementation of an optical polarimetry measurement setup. Due to wall anchoring interactions HAT6 embedded in an untreated alumina membrane exhibits a radial orientation for pore sizes in between 30 nm and 80 nm. Embedded in large membranes, pore size of 180 nm, HAT6 forms the favored hexagonal columnar phase along the pore axis. T2 - 80. Jahrestagung der DPG und DPG-Frühjahrstagung CY - Regensburg, Germany DA - 06.03.2016 KW - Discotic Liquid Crystals KW - Nanoconfinement KW - Orientation PY - 2016 AN - OPUS4-36479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Rosu, Dana A1 - Ortel, Erik A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - Measurement of Porous TiO2 Layers with spectroscopic ellipsometry – a multi-method study N2 - By means of an effective medium (EMA) based approach, it is possible to use spectroscopic ellipsometry to determine the mixing ratios between air and material in porous dielectrics and calculate a quantitative value of the porosity for these materials. As this method is model-based, it is very difficult to provide a quantitative measure for the accuracy of porosity values determined by this method. Valuable additional information can often be obtained by combining ellipsometry with other complementary methods. In the present study, the ellipsometry results were validated by Electron Probe Microanalysis (EPMA) with the option of layer analysis (by the socalled “STRATAGem” approach), gravimetry, and electron microscopy. We analysed porous TiO2 thin layers synthesised by means of a template synthesis approach (evaporation induced self assembly). Ellipsometry measurements on porous samples are difficult to analyse due to the complexity of the models necessary. Often it is difficult to decide if the measured data contains enough information to successfully determine the target quantities (mixing ratio, dielectric function of the matrix material). One method to decrease the complexity of the fit and therefore use the measurement data most efficiently is a multi-sample analysis. In the present case, multi-sample analysis was used for determining the porosity factors of the individual layers while using one common set of dielectric function values for the matrix in all cases. While the results of the fit analysis in this case can be used to show the feasibility and also the limitations of the multi-method approach, the porosity values themselves show a promising agreement between the independent methods. It can therefore be concluded that determining porosity values with ellipsometry is in accordance to other methods to the level of accuracy provided by the complementary methodologies. T2 - International conference on spectroscopic ellipsometry (ICSE-7) CY - Berlin, Germany DA - 06.06.2016 KW - Spectroscopic Ellipsometry KW - Electron Microscopy KW - Multi-method Metrology KW - Porous Materials KW - Thin Films KW - Titanium Dioxide PY - 2016 AN - OPUS4-37202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Sebastian Hanns-Otto A1 - Hertwig, Andreas A1 - Repo, P. A1 - Savin, H. A1 - Rosu, Dana-Maria A1 - Beck, Uwe T1 - Wide-spectrum dielectric functions of ALD deposited oxides relevant for photovoltaics N2 - Silicon surface passivation with atomic layer deposited (ALD) thin films has gained more and more interest in the PV community in recent years. With ALD good film quality, accurate thickness control and conformity are reached. Furthermore, ALD is capable of coating difficult substrates such as nanostructured surfaces with the same accuracy as flat surfaces. A variety of materials such as Al2O3, TiO2 and HfO2 demonstrate good surface passivation quality both for front and rear surface of silicon solar cells. In addition of providing good surface passivation, thin films with high refractive index e.g. HfO2, TiO2 and AlN can act simultaneously as antireflection coatings when applied on the front surface of the device. Hence, ALD thin films can reduce both electrical and reflective losses in solar cells. Thorough investigation of the optical properties of these layers is crucial for several reasons related to their production and use. Optical measurements provide a fast, easy, non-destructive, and in situ capable approach to quality assurance for photovoltaic devices. As the function of the final device is optical, optimisation of the device performance relies strongly on the knowledge of the wide-range dielectric function of the thin layers. In this contribution, we determined the optical constants of ALD generated layers of AlN, Al2O3, TiO2, and HfO2 in a wide spectral range covering the near ultraviolet and the mid-infrared regions by means of spectroscopic ellipsometry. By combining data from a UV-Vis-NIR ellipsometer (Woollam M2000DI) and an FTIR ellipsometer (Sentech Sendira), we can determine the optical constants alongside with the layer thicknesses from one large set of spectroscopic measurements. We consider this a contribution to the metrological treatment of stratified and structured thin films in the optical range by polarisation-sensitive measurement methods. T2 - International conference on spectroscopic ellipsometry (ICSE 7) CY - Berlin, Germany DA - 06.06.2016 KW - ALD (atomic layer deposited) KW - Ellipsometry KW - Photovoltaic KW - Solar Cell KW - HfO2 KW - Aln KW - Al2O3 KW - TiO2 PY - 2016 AN - OPUS4-37222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grauel, Bettina A1 - Würth, Christian A1 - Wiesholler, L. M. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Nd as sensitizer in NaYF4:Yb,Er,Nd tri-doped upconversion nanocrystals N2 - In recent years, upconversion nanocrystals (UCNC) have shown great promise for biological and medical applications, mainly because of their excitation in the NIR region, which provides minimum fluorescence background and a rather deep penetration into biological samples, as opposed to excitation in the visible or UV region. Moreover, they show a multitude of characteristic narrow emission bands as basis for ratiometric measurements. Commonly, Yb is the sensitizer of choice, because of a comparatively high absorption cross section, simple energy scheme, and rather efficient energy transfer to the activator, mostly Er, Tm or Ho. A main disadvantage of the use of Yb as sensitizer for biological and medical applications is its absorption band at 976 nm and hence the use of an excitation wavelength at which water has a non-negligible absorption. This can lead to significant sample heating, especially at long illumination times or high excitation power densities, and thus, tissue damage or even cell death. A possible solution is the tri-doping of UCNC with Nd as sensitizer, which can be excited efficiently at around 800 nm, where water absorption is at minimum. The use of Nd as a sensitizer and Yb as a bridge between Nd and the activator Er in NaYF₄ nanocrystals is a relatively new way to overcome the problems of heating of samples in an aqueous environment. Disadvantages can arise from the tri-doping, which can favor non-radiative relaxation due to the more complicated excitation process compared to e.g., simple Yb,Er-doped UCNC, which might lower the upconversion quantum yields in these tri-doped systems. In order to quantify clear advantages, NaYF₄:Yb,Er,Nd nanoparticles were synthesized and spectroscopically studied using an 8 W 804 nm laser diode and a custom-designed Edinburgh instruments FSP980 spectrometer. Wavelength-dependent studies of the emission intensities and the decay kinetics of these tri-doped UCNC at different excitation power densities and excitation pulse widths revealed the clear advantages of preventing water absorption on measurable luminescence signals. We were able to show the influence of pulse width and excitation power density on the luminescence intensities and decay kinetics lifetimes at different emission wavelengths. Additionally, we can clearly discern power density-dependent and independent peaks in the emission spectra. In summary, we demonstrate that the tri-doping of NaYF₄:Yb,Er,Nd nanoparticles is a very promising approach to render UCNC more efficient and to make them better suitable for biological and medical applications requiring measurements in aqueous environment. T2 - UPCON 2016 Conference CY - Breslau, Poland DA - 23.05.2016 KW - UCNP KW - Nd-sensitizer KW - excitation power density PY - 2016 AN - OPUS4-37224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Harald A1 - Hoffmann, Katrin A1 - Schwibbert, Karin A1 - Sameith, Janin A1 - Toepel, Jörg A1 - Resch-Genger, Ute T1 - Polymeric sensors as imaging tools for local pH in biofilm for early detection of microbial induced corrosion N2 - Microbial induced corrosion (MIC) is a crucial problem in many technical plants as well as fuel tanks, leading to considerable damage and huge financial losses. Successful prevention of MIC requires the localization of first signs of corrosion as well as the identification of factors influencing the corrosion process.1 Hence, there is a growing need for sensitive and preferably inexpensive tools that enable the early detection of MIC. Of high importance are methods, which provide spatially and time-resolved information and allow the study of changes on metal surfaces as prerequisites for a more detailed analysis of ongoing corrosion processes at a MIC-affected site.2 In this respect, also the determination of corrosion rates can be of interest for the possible prevention of MIC. T2 - 11th International Symposium on Polymer Therapeutics CY - Valencia, Spain DA - 23.05.2016 KW - Bildgebung KW - Mikrobiell induzierte Korrosion KW - Nanosensor KW - Imaging KW - Microbial induced corrosion PY - 2016 AN - OPUS4-37139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Gohlke, Dirk A1 - Eisentraut, M. T1 - Reference block design for high resolution ultrasound immersion tank N2 - In respect of modern approaches in material sciences and highly increased requirements on materials on safety relevant components, quality management and non-destructive testing reclaims a steadily increased meaning. The destructive meaning of measuring the degree of purity is defined in DIN EN 10247 through metallurgical investigations, especially microsections. For and comparable, but non-destructive testing due ultrasonic testing, the material the SEP 1927 is a well-defined industry standard. A novel and alternative way of reference block construction was focused by this work. The proposed amendments, regarding the manufactoring and machining, are less time and cost consuming. Verified by measurements the presented reference block fits the same acoustical characteristics and the requirements of the guideline. T2 - World Conference on Non-Destructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Immersion tank testing KW - SEP 1927 KW - Degree of purity KW - High resolution ultrasonic testing PY - 2016 AN - OPUS4-36850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Peplinski, Burkhard A1 - Adamczyk, Burkart A1 - Meyer, Christian A1 - Krüger, Oliver A1 - Scharf, Holger A1 - Reinsch, Stefan A1 - Ostermann, Markus A1 - Nofz, Marianne A1 - Jäger, Christian A1 - Adam, Christian A1 - Emmerling, Franziska T1 - Nanocrystalline and stacking-disordered beta-cristobalite AlPO4 stabilized at room temperature: synthesis and X-ray powder diffraction data N2 - X-ray powder diffraction (XRD) patterns of the high-temperature (HT) cristobalite form of SiO2 and its isoelectronic AlPO4 analogue are essentially influenced by the dynamic disorder of these crystal structures. The nature of this disorder and of the phase transition between the α- and β-form has been the subject of intensive research during the last four decades [1]. By 1989 it became possible to stabilize the HT-form of cristobalite SiO2 at room temperature in laboratory and engineering ceramic industries by applying solid solution forming techniques [2]. However, for the HT-form of cristobalite AlPO4 nothing similar has been known until 2014 when it was discovered that nanocrystalline and stacking-disordered β-cristobalite AlPO4 is the major component of the fly ash of a large incineration facility operated by the waste water treatment authorities of Frankfurt/M. [3]. Previous comprehensive investigations of this fly ash failed to interpret its complex XRD pattern – presumably mainly due to the lack of a matching experimental digital pattern in the Powder Diffraction Database. The present paper reports on a synthesis route that facilitates the crystallization of nanocrystalline and stacking-disordered β-cristobalite AlPO4 that is free of crystalline impurity phases and long-term stable at ambient. Its room temperature XRD pattern is presented with parameters traced back to certified reference materials. [1] Yuan F. and Huang L., Phys. Rev, B, 2012, 85, 134114. [2] Perrotta J.A., Grubbs D.K., Martin E.S., Dando N.R., McKinstry H.A. and Huang C.-Y., J. Am. Ceram. Soc., 1989, 72, 441. [3] Peplinski B., Adam C., Adamczyk B., Müller R., Michaelis M., Krahl Th. and Emmerling F., Powder Diffraction Journal, 2015, 30, 2, Supp. 1, S31. T2 - 15. European Powder Diffraction Conference (EPDIC15) CY - Bari, Italy DA - 12. June 2016 KW - Stabilization of HT-structures at room temperature KW - β-cristobalite structure type KW - Databases PY - 2016 AN - OPUS4-36727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fischer, Franziska A1 - Heidrich, Adrian A1 - Greiser, Sebastian A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Polymorphism of mechanochemically synthesized Cocrystals: an in situ study N2 - In situ investigations using PXRD coupled with Raman spectroscopy permit the evaluation of the formation pathways of milling reactions. The liquid-assisted grinding cocrystallisation of theophylline with benzamide leading to polymorphic compounds was investigated. The dipole moment of the solvent used in the synthesis determines the structure of the polymorphic product. A detailed investigation allows determining the kinetically and thermodynamically favored product. In situ observations of the formation pathway during the grinding process of both polymorphs show that the thermodynamically favored cocrystal is formed in a two-step mechanism with the kinetic cocrystal as intermediate. The evaluation of the mechanochemical formation pathways reveals the importance of in situ investigations for an in depth understanding of mechanochemical synthesis mechanisms. Our study demonstrates that the choice of the solvent in the LAG synthesis is decisive for the controlled formation of a desired polymorphic final product. T2 - CGOM/ BACG 47th Annual British Association of Crystal Growth Conference CY - Leeds, UK DA - 28.06.2016 KW - Cocrystal KW - Mechanochemistry KW - Milling PY - 2016 AN - OPUS4-36764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -