TY - THES A1 - Tschirschwitz, Rico T1 - Entwicklung von Bestimmungsverfahren für Explosionskenngrößen von Gasen und Dämpfen für nichtatmosphärische Bedingungen N2 - Explosionskenngrößen bilden die Grundlage für die Bewertung von Explosionsrisiken und für die Auslegung von Explosionsschutzmaßnahmen. Typische Kenngrößen für Gase und Dämpfe sind Explosionsgrenzen, Sauerstoffgrenzkonzentration (SGK), maximaler Explosionsdruck und maximaler zeitlicher Explosionsdruckanstieg sowie die Zündtemperatur. Explosionskenngrößen sind von der Bestimmungsmethode (z. B. Zündgefäß, Zündquelle, Kriterium für die Entzündung), den Umgebungsbedingungen (z. B. Druck, Temperatur) und dem Oxidator abhängig. Für sicherheitstechnische Betrachtungen im Explosionsschutz müssen die Kenngrößen zuverlässig und vergleichbar sein. Um die Abhängigkeit vom Bestimmungsverfahren zu minimieren, sind diese genormt. Derzeit sind die bestehenden Normen fast ausschließlich für atmosphärische Bedingungen ausgelegt. Viele Prozesse in der chemischen Industrie werden jedoch unter nichtatmosphärischen Bedingungen (erhöhte Drücke, erhöhte Temperaturen, von Luft abweichende Oxidatoren) durchgeführt. Dadurch ergibt sich das Erfordernis, Explosionskenngrößen auch unter nichtatmosphärischen Bedingungen zu bestimmen. Vielfach werden bereits Explosionskenngrößen unter nichtatmosphärischen Bedingungen gemessen. Aufgrund der unterschiedlichen Bestimmungsverfahren sind die Ergebnisse nur bedingt vergleichbar. Im Rahmen der vorliegenden Arbeit wurden apparative Einflussparameter unter nichtatmosphärischen Bedingungen untersucht, mit dem Ziel, normungsreife Bestimmungsverfahren für Explosionskenngrößen unter nichtatmosphärischen Bedingungen zu entwickeln. Für Verfahren zur Bestimmung der Grenzen des Explosionsbereiches (Explosionsgrenzen, SGK) wurden Untersuchungen hinsichtlich der Mindestgröße des Zündgefäßes, geeigneter Zündkriterien und geeigneter Zündquellen durchgeführt. Aus Sicherheitsgründen sollten gerade bei hohen Anfangsdrücken möglichst kleine geschlossene Zündgefäße verwendet werden. Daher wurde das druckabhängige Mindestvolumen bis zu einem Anfangsdruck von p0 = 50 bar bestimmt. Die Ergebnisse zeigen, dass bei atmosphärischen Bedingungen Gefäße mit einem Volumen V ≥ 11 dm³ verwendet werden müssen, um den Einfluss auf die ermittelten Werte zu minimieren. Bei einem Anstieg des Anfangsdrucks verringert sich das notwendige Gefäßvolumen. Beispielsweise kann bei p0 ≥ 50 bar ein Gefäß mit einem Volumen V = 1 dm³ verwendet werden. Als Kriterium für eine Entzündung werden häufig visuelle Zündkriterien oder Druckschwellenkriterien verwendet. In detaillierten Untersuchungen wurden visuelle Kriterien, Druckkriterien und Temperaturkriterien für sieben Brenngase bis zu einem Ausgangsdruck von p0 = 20 bar miteinander verglichen. Das zuverlässigste Kriterium für eine Entzündung unter nichtatmosphärischen Bedingungen ist eine Kombination aus einem Druckschwellenkriterium von pex/p0 ≥ 1,02 oder einem Temperaturschwellenkriterium von ΔT ≥ 100 K. In den bisher genormten Bestimmungsverfahren für atmosphärische Bedingungen sind verschiedene Zünder beschrieben. Auch unter nichtatmosphärischen Bedingungen muss der Eintrag der Zündenergie zuverlässig, definiert und reproduzierbar erfolgen. Es wurde der Einfluss von Druck, Gemischzusammensetzung und konstruktiven Parametern (z. B. Elektrodenabstand) auf den Zündvorgang der Zündquellen explodierender Draht, Funkenzünder und Gleitfunkenzünder untersucht. Für die Analyse des Zündvorganges wurde ein optisches Verfahren entwickelt. Weiterhin wurden die Zünder kalorimetrisch hinsichtlich ihres realen Energieeintrages verglichen. Unter nichtatmosphärischen Bedingungen eignet sich ein explodierender Draht mit einem Drahthalbwellenzündgerät (bis p = 100 bar) oder ein Gleitfunkenzünder (bis p = 10 bar). Neben Druck und Temperatur werden Explosionskenngrößen vor allem durch den verwendeten Oxidator beeinflusst. Bisher sind kaum Werte für die Explosionsbereiche von Brenngas/Inertgas/Sauerstoff-Gemischen bei hohen Anfangsdrücken vorhanden. Daher wurden die Explosionsbereiche für die ternären Gemische CH4/N2/O2 und C2H4/N2/O2 bis zu einem Anfangsdruck von p0 = 50 bar bestimmt. Gerade in sauerstoffreichen Gemischen können Reaktionen derart schnell ablaufen, dass die Bestimmung der Explosionskenngrößen maximaler Explosionsdruck und maximaler zeitlicher Explosionsdruckanstieg nicht möglich ist. Daher wurden Untersuchungen in binären Brenngas/Sauerstoff-Gemischen bei erhöhten Ausgangsdrücken mit verschiedenen Druckmesssystemen durchgeführt. In Gemischen mit langsameren Reaktionen sind für die Druck-Zeit-Messung piezoresistive Druckaufnehmer besser geeignet. Für die Messungen bei schnelleren Reaktionen, weiter im Explosionsbereich, eignen sich eher piezoelektrische Druckaufnehmer. Damit die Druck-Zeit-Signale dieser sehr schnellen Reaktionen ausgewertet werden können, kann eine Glättung erforderlich sein. Die Messsignale wurden mit unterschiedlichen Verfahren geglättet. Die besten Ergebnisse, hinsichtlich der Genauigkeit und der Größe des Auswertebereiches, wurden mit einem Programm zu Berechnung der Verbrennungsgeschwindigkeit mittels physikalischer Modelle erzielt. Mit der Glättungsmethode dieses Verfahrens ist es möglich auch sehr schnelle Druckanstiege in sauerstoffreichen Gemischen auszuwerten. Resultierend aus den Ergebnissen der Untersuchungen sind Empfehlungen für zwei Bestimmungsverfahren zur Messung der Explosionsgrenzen und SGK sowie des maximalen Explosionsdrucks und des maximalen zeitlichen Explosionsdruckanstieges unter nichtatmosphärischen Bedingungen erarbeitet worden. KW - Sicherheitstechnische Kenngrößen KW - Explosionsgrenzen KW - Zündkriterium KW - Nichtatmosphärische Bedingungen KW - Bestimmungsverfahren PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:gbv:ma9:1-6908 SP - 1 EP - 183 PB - Otto-von-Guericke-Universität CY - Magdeburg AN - OPUS4-39131 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Steppan, Enrico T1 - Zur Analyse der Eigenschaftsdegradation und des Bindungsverhaltens von Wasserstoff in höherfesten Feinkornbaustählen T2 - BAM-Dissertationsreihe N2 - Der Stahlbedarf in Deutschland wird maßgeblich neben dem Automobilsektor vom Maschinenbau und allgemeinen Bauwesen geprägt. In diesen Segmenten werden qualitativ hochwertige Stähle mit höchsten Ansprüchen an Festigkeit, Verformungsfähigkeit, schweißtechnische Verarbeitung und sicherheitsrelevante Aspekte gestellt. Wichtige Vertreter, welche diesen Ansprüchen gerecht werden, sind die heutigen modernen höherfesten FKB. Aus der Entwicklung dieser Stähle kristallisierten sich in den letzten Jahrzehnten verschiedene Legierungskonzepte und Herstellungsrouten heraus. Dem liegt neben essentiellen Eigenschaften, z.B. Streck- und Zugfestigkeit, noch weitere Anforderungen, bspw. Kaltumformbarkeit, Kerbschlagzähigkeit und Verschleißfestigkeit, zugrunde. Zunehmend werden im genormten Bereich mit Streckgrenzen bis 700 MPa neben den vergüteten Stählen (Q) auch thermomechanische Stähle (M) eingesetzt. Ein immerwährender paralleler Begleiter während der Stahlherstellung und -verarbeitung ist Wasserstoff. Wasserstoff wird in den nächsten Jahren als Schlüsselelement für eine nachhaltige Energiewirtschaft angesehen. Aus heutiger Sicht ist Wasserstoff ein Hoffnungsträger für eine klimafreundliche Energiewirtschaft und zukunftsfähige Industrie. Forschung und Industrie arbeiten intensiv an der Erschließung und Weiterentwicklung des enormen Potentials, um eine höhere Nutzbarkeit zu erreichen. Die Gründe liegen zum einen darin, dass Wasserstoff als Brennstoff unproblematisch (Umweltverträglichkeit und Verfügbarkeit) ist und zum anderen ein hervorragender Energieträger ist. Wasserstoff ist durch seine gebundene Form erst nach dem Lösen aus chemischen Verbindungen zugänglich. Dies geschieht für eine Nutzbarmachung in einer zukunftsfähigen Energiewirtschaft gezielt. Demgegenüber stehen Prozesse, wodurch Wasserstoff aus seiner chemischen Verbindung gelöst wird und aufgrund seiner Größe bzw. geringsten Atommasse von Werkstoffen aufgenommen wird. Damit verbunden interagiert der aufgenommene Wasserstoff mit dem Gefüge und kann zu einer negativen Beeinflussung der Eigenschaften des Werkstoffs führen. Wasserstoff kann Degradationsprozesse in Stählen verursachen, die sich insbesondere auf die mechanischen Eigenschaften auswirken. Diese Mechanismen können wasserstoffunterstützte Risse in höherfesten Stählen während der Herstellung oder im industriellen Einsatz verursachen. Elektrochemisch beladene Zugproben zeigen ein unterschiedliches Degradationsverhalten in ihren Eigenschaften. Die vorliegende Arbeit beschreibt die Wechselwirkungen zwischen Wasserstoff und Gitterdefekten in unterschiedlichen mikrolegierten Systemen und wärmebeeinflussten Zonen in den schweißbaren Feinkornbaustählen. Die Ergebnisse zeigen eine klare Abhängigkeit zwischen Mikrolegierung und Herstellungsprozess dieser Stahlsorten, respektive ihrer simulierten wärmebeeinflussten Bereiche. N2 - In addition to the automotive sector, demand for steel in Germany is dominated by mechanical engineering and general construction. These segments demand high-quality steels with the highest requirements in terms of strength, formability, welding processing and safety aspects. Important representatives that meet these requirements are today's more modern high-strength FKB. In the development of these steels, various alloying concepts and production routes have crystallized in recent decades. In addition to essential properties, e.g. yield and tensile strength, this is also based on other requirements, e.g. cold formability, notched impact strength and wear resistance. Increasingly, thermomechanical steels (M) are being used in addition to quenched and tempered steels (Q) in the standardized range with yield strengths up to 700 MPa. An ever-present parallel companion during steel production and processing is hydrogen. Hydrogen is seen as a key element for a sustainable energy economy in the coming years. From today's perspective, hydrogen is a beacon of hope for a climate-friendly energy economy and sustainable industry. Research and industry are working intensively on tapping and further developing the enormous potential in order to achieve greater usability. The reasons are, on the one hand, that hydrogen is unproblematic as a fuel (environmental compatibility and availability) and, on the other hand, that it is an excellent energy carrier. Due to its bonded form, hydrogen is only accessible after dissolution from chemical compounds. This is done in a targeted manner for utilization in a sustainable energy economy. In contrast, there are processes by which hydrogen is released from its chemical compound and absorbed by materials due to its size or lowest atomic mass. In connection with this, the absorbed hydrogen interacts with the microstructure and can lead to a negative influence on the properties of the material. Hydrogen can cause degradation processes in steels that affect mechanical properties in particular. These mechanisms can cause hydrogen-assisted cracking in higher strength steels during fabrication or in industrial use. Electrochemically loaded tensile specimens show different degradation behavior in their properties. The present work describes the interactions between hydrogen and lattice defects in different microalloyed systems and heat affected zones in the weldable fine grain structural steels. The results show a clear dependence between microalloying and manufacturing process of these steels, respectively their simulated heat affected zones. T3 - BAM Dissertationsreihe - 172 KW - Höherfeste Feinkornbaustähle KW - Wasserstoffdegradation KW - Wasserstoffdiffusion KW - Wasserstoffbindungsverhalten KW - Kaltriss und Schweißen KW - High strength fine grained structural steels KW - Hydrogen degradation KW - Hydrogen diffusion KW - Hydrogen trapping KW - Cold cracking and welding PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579412 SN - 1613-4249 VL - 172 SP - 1 EP - 266 PB - Eigenverlag CY - Berlin AN - OPUS4-57941 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Ávila Calderón, Luis Alexander T1 - Mechanisches Verhalten von additiv gefertigtem nichtrostendem Stahl X2CrNiMo17-12-2 (AISI 316L) und Vergleich zur konventionell gefertigten Variante T1 - Mechanical behavior of additively manufactured stainless steel X2CrNiMo17-12-2 (AISI 316L) and comparison with a conventionally manufactured variant N2 - Die additive Fertigung (AM) metallischer Werkstoffe ist eine Technologie, die zunehmend Gegenstand von Forschungsaktivitäten und industrieller Anwendung ist. Dennoch steht sie noch vor Herausforderungen, um eine breite Nutzung in sicherheitsrelevanten Anwendungen zu erreichen. Die Hauptgründe für die Verzögerung des technologischen Durchbruchs zugunsten von AM-Metallen gegenüber konventionell hergestellten Varianten sind das Fehlen eines tieferen Verständnisses der Prozess-Struktur-Eigenschafts-Beziehungen und die begrenzte Verfügbarkeit von Daten zu den Materialeigenschaften. In diesem Kontext stellt diese Arbeit einen Beitrag sowohl zum Verständnis der Prozess-Struktur-Eigenschafts-Beziehungen als auch zur Verbesserung der Datenlage von 316L dar, einem häufig als Konstruktionswerkstoff in verschiedenen Hochtemperaturbauteilen verwendeten Werkstoff. Die Arbeit legt den Fokus auf die mittels Laser-Pulverbettschmelzen hergestellte Werkstoffvariante, PBF-LB/M/316L. Eine konventionell hergestellte Variante, HR/316L, wurde auch untersucht. Bei PBF-LB/M/316L wurde zusätzlich der Effekt ausgewählter Wärmebehandlungen ausgewertet. Die Untersuchung umfasste die Charakterisierung der mechanischen Eigenschaften und der Verformungs- und Schädigungsmechanismen bei erhöhten Prüftemperaturen bei LCF und Kriechen, wo die Daten und Wissenslage am spärlichsten ist. Außerdem hat die untersuchte PBF-LB/M/316L-Wersktoffvariante einen geringen Porositätsgrad. Somit hat diese Arbeit die Mikrostruktur stärker in den Fokus genommen als die meisten bisher in der Literatur verfügbaren Studien. Die mechanische Prüfkampagne umfasste Zugversuche zwischen Raumtemperatur und 650 °C, LCF-Versuche zwischen Raumtemperatur und 600 °C sowie Kriechversuche bei 600 °C und 650 °C. In Ermangelung konkreter Richtlinien und Normen wurde die Charakterisierung zumeist anhand der bestehenden internationalen Prüfnormen und Probengeometrien durchgeführt. Aus jedem dieser Prüfverfahren wurden die entsprechenden Festigkeits- und Verformungskennwerte ermittelt. Darüber hinaus wurde mit Hilfe gezielter mikrostruktureller Untersuchungen ein Beitrag zum Verständnis des Zusammenhangs zwischen der Mikrostruktur und den mechanischen Eigenschaften in Bezug auf die Verformungs- und Schädigungsmechanismen geleistet. Die Dehngrenze von PBF-LB/M/316L ist etwa doppelt so hoch wie die von HR/316L und dieser Trend setzt sich mit ansteigender Prüftemperatur fort. Die Bruchdehnung ist bei allen Prüftemperaturen geringer. PBF-LB/M/316L weist über den größten Teil der Ermüdungslebensdauer vor allem bei Raumtemperatur höhere zyklische Spannungen als HR/316L auf. Ausschließlich bei den kleinsten Dehnungs-schwingbreiten sind die Ermüdungslebensdauer ausgeprägt kürzer. Das Wechselverformungsverhalten von PBF-LB/M/316L ist durch eine Anfangsverfestigung gefolgt von einer kontinuierlichen Entfestigung charakterisiert, welche bis zum Auftreten der zum Versagen führenden Entfestigung stattfindet. Die Kriechbruchzeiten und die Dauer jeder Kriechphase sind bei allen Kombinationen von Prüfparametern bei PBF-LB/M/316 kürzer als bei HR/316L. Die Spannungsabhängigkeit von PBF-LB/M/316L ist im Vergleich zu HR/316L geringer und die Duktilität beim Kriechen kleiner. Die minimale Kriechrate wird bei allen geprüften Parameterkombinationen bei deutlich geringeren Kriechdehnungen erreicht. Eine Wärmebehandlung bei 450 °C / 4 h bewirkt keine wesentliche Änderungen der Mikrostruktur und Zugversuchseigenschaften. Eine zusätzliche Wärmebehandlung bei 900 °C / 1 h verursacht eine Abnahme der Dehngrenze des PBF-LB/M/316L. Diese blieb aber immer noch um den Faktor 1,5x höher als bei HR/316L. Die Verformungsmerkmale wurden kaum davon beeinflusst. Bezüglich des Kriechverhaltens hat die Wärmebehandlung bei 900 °C / 1 h längere sekundäre und tertiäre Kriechstadien bewirkt und die Kriechdehnung hat sich signifikant erhöht. Die Bruchbilder unterscheiden sich generell nicht nur aber vor allem mit ansteigender Prüftemperatur, bei der bei PBF-LB/M/316L oft interkristalline Rissbildung beobachtet wurde. Die Zellstruktur trägt als der Hauptfaktor zu den unterschiedlichen mechanischen Eigenschaften im Vergleich zur HR/316L-Variante bei. Darüber hinaus spielen mutmaßlich die Kornmorphologie, die Stapelfehlerenergie und der Stickstoffgehalt eine Rolle. N2 - Metal additive manufacturing (AM) is a technology that is increasingly the subject of research activities and industrial applications. However, it still faces challenges to achieve widespread use in safety-relevant applications. The main reasons for the delay of this technological breakthrough in favor of AM metals over conventionally manufactured variants are the lack of a deeper understanding of process-structure-property relationships and the limited availability of data on material properties. In this context, this work contributes to both achieving a better understanding of process-structure-property relationships and the improvement of data for 316L, an alloy frequently used as a structural material in various high-temperature components. The work focuses on a material variant produced by laser pow-der bed fusion, PBF-LB/M/316L. A conventionally produced variant, HR/316L, was also investigated. For PBF-LB/M/316L, the effect of selected heat treatments was also evaluated. The investigation included the characterization of the mechanical properties and the related deformation and damage mechanisms at elevated test temperatures in LCF and creep, where data and knowledge are scarce. The PBF-LB/M/316L variant studied has a low degree of porosity. Thus, this work is more focused on the microstructure than most studies available in the literature. The mechanical test campaign included tensile tests between room temperature and 650 °C, LCF tests between room temperature and 600 °C, and creep tests at 600 °C and 650 °C. In the absence of concrete guidelines and standards for testing of AM metals, the characterization mostly took place using existing international test standards and specimen geometries. From each of the test methods, corresponding strength, and deformation characteristic values were determined. In addition, targeted microstructural investigations contributed to understanding the relationship between the microstructure and the mechanical properties in terms of deformation and damage mechanisms. The proof stress of PBF-LB/M/316L is about twice that of HR/316L. This trend remains with increasing test temperature. The elongation after fracture is lower at all test temperatures. Regarding LCF, PBF-LB/M/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. Exclusively at the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial strain hardening followed by a continuous softening, which occurs until the softening leading to failure takes place. The creep rupture times and the duration of each creep stage are shorter for PBF-LB/M/316 than for HR/316L for all combinations of test parameters. The stress dependence of PBF-LB/M/316L is lower, and the creep ductility is smaller compared to HR/316L. The minimum creep rate is reached at significantly lower creep extensions for all parameter combinations tested. A heat treatment at 450 °C / 4 h did not cause significant changes in the microstructure and tensile behavior. An additional heat treatment at 900 °C / 1 h caused a decrease in the proof stress of PBF-LB/M/316L. However, it still remained higher than the one of HR/316L by a factor of 1.5x. The deformation characteristics were hardly affected. Regarding the creep behavior, this latter heat treatment at 900 °C / 1 h caused longer secondary and tertiary creep stages, and the creep strain increased significantly. The fracture characteristics generally differed, which happened not only but especially with increasing test temperature, where intergranular cracking often took place in PBF-LB/M/316L. The cellular structure is considered the main factor contributing to the different mechanical properties compared to the HR/316L variant. In addition, grain morphology, stacking fault energy, and nitrogen content might play a role. KW - AGIL KW - Additive Fertigung KW - Laser-Pulverbettschmelzen KW - Mikrostrukturentwicklung KW - 316L KW - LCF KW - Kriechen KW - Additive Manufacturing KW - Microstructure KW - Mechanical Properties KW - Mechanische Eigenschaften PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597143 DO - https://doi.org/10.14279/depositonce-19828 SP - 1 EP - 190 CY - Berlin AN - OPUS4-59714 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Charmi, Amir T1 - A multiscale numerical framework for the simulation of anistropic material response of additively manufactured stainless steel 316L undergoing large plastic deformation N2 - Additive manufacturing (AM) offers significantly greater freedom of design compared to conventional manufacturing processes since the final parts are built layer by layer. This enables metal AM, also known as metal 3D printing, to be utilized for improving efficiency and functionality, for the production of parts with very complex geometries, and rapid prototyping. However, despite many technological advancements made in recent years, several challenges hinder the mass adoption of metal AM. One of these challenges is mechanical anisotropy which describes the dependency of material properties on the material orientation. Therefore, in this work, stainless steel 316L parts produced by laser-based powder bed fusion are used to isolate and understand the root cause of anisotropy in AM parts. Furthermore, an efficient and accurate multiscale numerical framework is presented for predicting the deformation behavior of actual AM parts on the macroscale undergoing large plastic deformations. Finally, a novel constitutive model for the plastic spin is formulated to capture the influence of the microstructure evolution on the material behavior on the macroscale. KW - Additive Fertigung KW - Austenitischer Stahl KW - Finite-Elemente-Methode KW - Mehrskalenmodell KW - Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20240207-173356-002 DO - https://doi.org/10.25643/dbt.59550 SP - 1 EP - 163 PB - Bauhaus-Universität Weimar CY - Weimar AN - OPUS4-59511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sprengel, Maximilian Franz-Arthur T1 - Study on the determination and the assessment of the residual stress in laser powder bed fused stainless steel structures T2 - BAM-Dissertationsreihe N2 - Additive manufacturing processes offer extensive advantages for the design freedom of structures through layer-by-layer production. This enables high weight savings as well as the integration of functions such as cooling channels. This technology thus offers great potential to contribute to a sustainable future. The pioneer among these manufacturing processes is the powder bed fusion of metals with laser beams (PBF-LB/M). This process is characterised by high laser scanning speeds and highly localised heat input, which have a strong effect on the microstructure and thus also on the mechanical properties. For example, the austenitic steel 316L exhibits a cellular structure at the subgrain level. This microstructure feature leads to higher yield strengths and comparable ductility to conventionally processed 316L. In addition to the traditional applications of 316L steel in the petrochemical and nuclear industries, this enables new applications such as medical stents or bipolar plates for fuel cells with proton exchange membranes. However, the layer-by-layer production with high scanning speeds and localised heat input induces cooling rates in the order of 106 K.s-1. The large temperature gradients and the shrinkage restraints of each weld bead and layer lead to the development of complex residual stress fields. These reduce the material performance and can even lead to premature failure. Thus, the fatigue properties are severely affected by rapid crack growth or prematurely developing cracks. Furthermore, specimens may warp during PBF-LB/M or immediately when the components are separated from the build plate. Therefore, residual stress is one of the main disadvantages of PBF-LB/M, making it difficult for this technology to be more widely accepted in the industry. Based on the current state of the literature, the procedure for determining residual stress employing diffraction methods, the influence of the component geometry, as well as the inter-layertime (ILT) on residual stress and, lastly, suitable heat treatment strategies for relaxing residual stress in PBF-LB/M/316L, were identified as insufficiently researched areas. Determining residual stress is a major challenge. X-ray and neutron diffraction are particularly suitable for filigree structures, which can preferably be produced using PBF-LB/M. Here, the microscopic strain of the lattice planes is used to calculate the macroscopic residual stress. These methods are nondestructive and allow the spatial resolution of the bi-axial and tri-axial residual stress. In the present work, in-situ neutron diffraction tensile tests were performed to analyse the micromechanical behaviour of PBF-LB/M/316L. The suitability of the lattice planes for calculating the macroscopic residual stress was investigated. The (311) lattice plane was found to be the best option for determining the macroscopic residual stress in PBF-LB/M/316L. Furthermore, it was shown that the Kröner model can be used to calculate the X-ray diffraction constants despite the texture. Currently, both aspects are common practices in the determination of residual stress. The results presented here support the validity of this approach and increase the confidence in the experimentally determined residual stress, which has a positive effect on the assessment of quality concerning the safety of a component manufactured by PBF-LB/M. The geometry of a structure manufactured by PBF-LB/M determines the component stiffness and influences the thermal gradients during manufacture and ultimately the residual stress. The effect of smaller or larger dimensions (larger than 10 mm) on the residual stress is rarely considered. To investigate this aspect, representative test specimens with different thicknesses and lengths were produced. Hence, the influence of the geometry i.e., component stiffness on the residual stress was evaluated. The residual stress was determined using X-ray and neutron diffraction. The analysis of the residual stress showed that an increase in thickness leads to overall higher residual stress. In addition, it was shown that increasing the sample dimension leads to smaller residual stress gradients. Above a threshold value of a few millimetres, no significant change in the residual stress was observed. The ILT is inherent in every PBF-LB/M construction job and influences the thermal gradients during production and thus the residual stress. A change in wall thickness in a geometrically complex structure or a variation in the number of specimens in the construction process leads directly to a change in the ILT. To simulate this, specimens with different ILT were produced. The residual stress was determined by X-ray and neutron diffraction. The use of a short ILT resulted in higher surface residual stress, but lower volume residual stress. Here, the surface residual stress and the residual stress in the volume showed contrary behaviour. This was attributed to the complex heat conduction during the process, as shown by the thermographic measurements. To avoid distortion of the specimens or real components upon separation from the build plate or during post-processing steps, stress relief annealing is usually performed after the PBF-LB/M process. Based on standards for heat treatment of welded austenitic steels, heat treatments were performed at low (450 °C for four hours) and high (800 °C and 900 °C for one hour) temperatures. The results show that the heat treatment at 450 °C relaxed the residual stress by only 5 %. This low relaxation is due to the stability of the cell structures. The high-temperature heat treatment showed that 900 °C is required to dissolve the cell structure and achieve a relaxation of about 85 %. This result is in good agreement with the standards for stress relief annealing of welded austenitic steels. N2 - Additive Fertigungsverfahren bieten durch die schichtweise Herstellung weitreichende Vorteile für die Gestaltungsfreiheit von Strukturen und ermöglichen somit hohe Gewichtseinsparungen. Auch die Integration von Funktionen, beispielsweise Kühlkanäle, können unmittelbar während der Herstellung eingebracht werden. Damit bietet diese Technologie ein hohes Potential zu einer nachhaltigen Zukunft beizutragen. Der Vorreiter unter diesen Fertigungsprozessen ist das Pulverbettbasierte Schmelzen von Metallen mittels Laserstrahlen (PBF-LB/M). Dieser Prozess zeichnet sich durch hohe Laserscangeschwindigkeiten und eine stark lokalisierte Wärmeeinbringung aus, welche sich auf die Mikrostruktur und damit auch auf die mechanischen Eigenschaften auswirken. So weist der austenitische Stahl 316L eine zelluläre Struktur auf Subkornniveau auf, welche zu höheren Streckgrenzen jedoch nicht verringerter Duktilität im Vergleich zu konventionell verarbeitetem 316L führt. Dies ermöglicht, neben den traditionellen Einsatzgebieten des Stahls 316L in der petrochemischen und nuklearen Industrie, neue Anwendungen wie medizinische Stents oder Bipolarplatten für Brennstoffzellen mit Protonenaustauschmembran. Die schichtweise Fertigung mit hohen Scangeschwindigkeiten und lokaler Wärmeeinbringung bedingt jedoch Abkühlraten in der Größenordnung von 106 K.s-1. Die hohen Temperaturgradienten im Zusammenspiel mit den Schrumpfbehinderungen jeder Schweißraupe und Lage sorgen für die Entstehung komplexer Eigenspannungsfelder. Diese verringern die Beanspruchbarkeit des Materials und können sogar zu einem vorläufigen Versagen führen. So sind die Ermüdungseigenschaften durch ein rapides Risswachstum bzw. ein vorzeitig entstehender Riss durch Eigenspannungen stark beeinträchtigt. Des Weiteren kommt es vor, dass sich die Proben während des PBF-LB/M oder unmittelbar bei der Trennung der Bauteile von der Bauplatte verziehen. Daher sind die Eigenspannungen eines der Hauptnachteile des PBF-LB/M, die eine breitere Akzeptanz dieses Verfahrens in der Industrie erschweren. Ausgehend vom aktuellen Literaturstand, wurde die Vorgehensweise bei der Bestimmung der Eigenspannungen mittels Beugungsmethoden, der Einfluss der Bauteilgeometrie bzw. Bauteilsteifigkeit sowie der Zwischenlagenzeit auf die Eigenspannungen und zuletzt geeignete Wärmebehandlungsstrategien zur Relaxation der Eigenspannungen in PBF-LB/M/316L als unzureichend erforschte Bereiche identifiziert. Die Bestimmung der Eigenspannung ist eine große Herausforderung. Insbesondere bei filigranen Strukturen, welche vorzugsweise mittels PBF-LB/M hergestellt werden können, eignen sich die Röntgen- und Neutronenbeugung. Hierbei wird die mikroskopische Dehnung der Gitterebenen zur Berechnung der makroskopischen Eigenspannung verwendet. Diese Methoden sind zerstörungsfrei und ermöglichen die räumliche Auflösung der bi-axialen und tri-axialen Eigenspannungen. In der vorliegenden Arbeit wurden in-situ Neutronenbeugungszugversuche durchgeführt, um das mikromechanische Verhalten des PBF-LB/M/316L zu analysieren. Die Eignung der Gitterebenen zur Berechnung der makroskopischen Eigenspannung wurde untersucht. Die (311) Gitterebene erwies sich als die beste Option für die Bestimmung der makroskopischen Eigenspannung in PBF-LB/M/316L. Darüber hinaus wurde gezeigt, dass das Kröner-Modell trotz Textur zur Berechnung der Röntgenbeugungskonstanten verwendet werden kann. Derzeit werden beide Aspekte in der Bestimmung der Eigenspannungen standardmäßig angewandt. Die hier präsentierten Ergebnisse untermauern die Gültigkeit dieses Vorgehens und erhöhen das Vertrauen in den experimentell bestimmten Eigenspannungen, welches sich positiv auf die Beurteilung der Qualität hinsichtlich der Sicherheit eines durch PBF-LB/M gefertigten Bauteils auswirkt. Die Geometrie einer durch PBF-LB/M hergestellten Struktur bestimmt maßgeblich die Bauteilsteifigkeit und beeinflusst die thermischen Gradienten während der Herstellung und letztendlich die Eigenspannungen. Die Auswirkung kleinerer oder größerer Abmessungen (größer 10 mm) auf die Eigenspannungen wird derzeit oft nicht berücksichtigt. Um diesen Aspekt zu untersuchen, wurden repräsentative Probekörper mit unterschiedlichen Dicken und Längen hergestellt. Damit konnte der Einfluss der Geometrie bzw. Bauteilsteifigkeit auf die Eigenspannungen gezielt bewertet werden. Die Eigenspannungen wurden mittels Röntgen- als auch Neutronenbeugung bestimmt. Die Analyse der Eigenspannungen ergab, dass eine Erhöhung der Dicke zu insgesamt höheren Eigenspannungen führt. Zusätzlich wurde gezeigt, dass eine Vergrößerung der Probenabmessung zu kleineren Eigenspannungsgradienten führt. Oberhalb eines Schwellenwerts von wenigen Millimetern ändern sich die Eigenspannungen nicht mehr signifikant. Die sogenannte Zwischenlagenzeit (ILT) ist jedem PBF-LB/M-Bauauftrag inhärent und beeinflusst die thermischen Gradienten während der Herstellung und damit maßgeblich die Eigenspannungen. Ein Wanddickensprung in einer geometrisch komplexen Struktur bzw. einer Variation der Probenanzahl im Bauprozess führt unmittelbar zu einer Änderung der ILT. Um dies nachzubilden, wurden Proben mit unterschiedlichen ILT hergestellt. Die Eigenspannungen wurden mittels Röntgen- und Neutronenbeugung bestimmt. Die Verwendung einer kurzen ILT hat zu höheren Oberflächeneigenspannungen geführt, jedoch zu geringeren Volumeneigenspannungen. Hierbei zeigten die Oberflächeneigenspannungen und die Eigenspannungen im Volumen ein konträres Verhalten. Dies wurde auf die komplexe Wärmeleitung während des Prozesses zurückgeführt, wie die thermografischen Messungen zeigten. Um den Verzug der hergestellten Probekörper oder realen Bauteile bei der Abtrennung der Bauplatte oder in Nachbearbeitungsschritten zu vermeiden, wird in der Regel ein Spannungsarmglühen nach dem PBF-LB/M Prozess durchgeführt. Basierend auf Standards für die Wärmebehandlung von geschweißten austenitischen Stählen, wurden Wärmebehandlungen bei niedrigen (450 °C für vier Stunden) und hohen (800 °C bzw. 900 °C für eine Stunde) Temperaturen durchgeführt. Die Ergebnisse zeigen, dass die Wärmebehandlung bei 450 °C die Eigenspannungen um lediglich 5 % relaxierte. Diese geringe Relaxation ist auf die Stabilität der Zellstrukturen zurückzuführen. Die Hochtemperatur-Wärmebehandlung zeigte, dass 900 °C erforderlich sind, um die Zellstruktur aufzulösen und eine Relaxation von etwa 85 % zu erreichen. Dieses Ergebnis steht in guter Übereinstimmung mit den Standards für das Spannungsarmglühen geschweißter austenitischer Stähle. T3 - BAM Dissertationsreihe - 173 KW - Residual Stress KW - Powder Bed Fusion of Metals with Laser Beams KW - Austenitic Stainless Steel KW - Diffraction KW - Heat Treatment KW - Eigenspannungen KW - Pulverbettbasiertes Laserstrahlschmelzen KW - Austenitischer Rostfreier Stahl KW - Beugung KW - Wärmbehandlung PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579802 SN - 1613-4249 VL - 173 SP - 1 EP - 256 PB - Eigenverlag CY - Berlin AN - OPUS4-57980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hesse, Almut T1 - Entwicklung immunchemischer Methoden zur Spurenanalytik der Sprengstoffe Nitropenta und Trinitrotoluol N2 - Pentaerythrityltetranitrat (PETN), ein in jüngster Vergangenheit häufig von Terroristen verwendeter Sprengstoff, ist äußerst schwer zu detektieren. Ein verbesserter Antikörper gegen PETN wurde durch Anwendung des Konzepts des bioisosteren Ersatzes entwickelt,indem ein Nitroester durch einen Carbonsäurediester ersetzt wurde. Biostere Moleküle haben eine ähnliche Struktur wie die Referenzsubstanz und zeigen eine vergleichbare biologische Wirkung. Dieser Ansatz führte zu polyklonalen Antikörpern mit extrem guter Selektivität und Sensitivität. Die Nachweisgrenze des Enzyme-Linked Immunosorbent Assays (ELISAs) beträgt 0,15 μg/L. Der Messbereich des Immunassays liegt zwischen 1 und 1000 μg/L. Die Antikörper sind sowohl hinreichend pH-stabil als auch robust gegen Lösungsmittelzusätze. Das Antiserum könnte auch für Schnelltests, Biosensoren, Mikro-Arrays und andere analytische Methoden verwendet werden. Für die Umweltanalytik von Trinitrotoluol (TNT) wurde eine Hochdruckflüssigkeitschromatographie (HPLC)-kompatible Affinitätssäule hergestellt. Druckbeständiges, poröses Glas hat sich als ein hervorragendes Trägermaterial herauskristallisiert. Um selektive anti-TNT-Antikörper für die Herstellung der Affinitätssäule aus den beiden verwendeten TNT-Seren zu isolieren, wurde eine Trennung an einer Dinitrophenyl-Affinitätssäule durchgeführt. Zur Optimierung der Immobilisierungsmethode wurden orangefarbene Dabsyl -Proteine synthetisiert und auf der Oberfläche gebunden. Die Färbung wurde als Indikator für die Immobilisierungsdichte verwendet. Wegen der hohen Affinitätskonstanten der polyklonalen anti-TNT-Antikörper der beiden Seren (5,1 bzw. 2,3∙109 L/mol) lässt sich TNT durch eine typische saure Elution der TNT-Affinitätssäule nur schwer eluieren. Aus diesem Grund wurde eine neuartige Elutionsmethode entwickelt, die irreversible, denaturierende, thermische Online -Elution. Diese eröffnet ein weites Anwendungsfeld, da so Affinitäten, die klass ischerweise aufgrund zu hoher Bindungskonstanten zwischen Ligand und Rezeptor nicht für die Affinitätschromatographie genutzt werden können, für die Analytik besser handhabbar werden. Die maximale Kapazität einer im Rahmen dieser Arbeit hergestellten Affinitätssäule (64,8 μL) betrug 650 ng TNT bzw. 10 μg/mL Säulenvolumen. Um die Immobilisierungsdichte der produzierten Affinitätssäulen zu bestimmen, wurde ein neues Verfahren entwickelt, da die üblichen spektroskopischen Proteinbestimmungsmethoden aufgrund der hohen unspezifischen Wechselwirkung mit dem Trägermaterial zur Proteinbestimmung nicht geeignet waren. Zur Quantifizierung von Proteinen oder Peptiden,die auf festen Trägern immobilisiert sind, wurde auf Grundlage einer HPLC-Trennung der aromatischen Aminosäuren Tyrosin (Tyr) und Phenylalanin (Phe) ohne vorherige Derivatisierung eine gegenüber der klassischen Aminosäureanalytik vereinfachte HPLC/UV-Methode entwickelt. Die Hydrolyse der Proteine und Peptide wurde durch Einsatz von Mikrowellentechnik beschleunigt, sodass nur 30 Minuten statt ca. 22 Stunden für das Standardprotokoll benötigt wurden, bei dem ein Hydrolyseröhrchen verwendet wird. Zur internen Kalibrierung wurden zwei Standardverbindungen, Homotyrosin (HTyr) und 4-Fluorphenylalanin (FPhe) verwendet. Die Nachweisgrenze (limit of detection, LOD) bei 215 nm ist sowohl für Tyr als auch für Phe 0,05 μM (~ 10 μg/L). Dieses neue Verfahren, das als Aromatische Aminosäureanalyse (Aromatic Amino Acid Analysis, AAAA) bezeichnet werden kann, wurde zur Proteinbestimmung von homogenen Proben mit Rinderserumalbumin (BSA) des Nationalen Instituts für Standards und Technologie der USA (NIST) validiert, wobei die Nachweisgrenze für Proteine mit 16 mg/L (~ 300 ng BSA) mit gängigen spektroskopischen Verfahren vergleichbar ist. Es liefert incl. der Hydrolysestufe eine verbesserte Genauigkeit mit einer relativen Standardabweichung von ca. 5%. T3 - BAM Dissertationsreihe - 158 KW - Affinitätschromatographie KW - Affinity chromatography KW - Polyklonale TNT-Antikörper KW - Immunassay KW - Aromatische Aminosäureanalyse KW - Polyclonal TNT-antibodies KW - Polyclonal PETN-antibodies KW - Immunoassay KW - Aromatic amino acid analysis KW - Polyklonale PETN-Antikörper PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-417566 SN - 1613-4249 VL - 158 SP - I EP - 234 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41756 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Oberleitner, Lidia T1 - Immunochemical determination of caffeine and carbamazepine in complex matrices using fluorescence polarization N2 - Pharmacologically active compounds are omnipresent in contemporary daily life, in our food and in our environment. The fast and easy quantification of those substances is becoming a subject of global importance. The fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read format and a suitable tool for this purpose that offers a high sample throughput. Yet, the applicability to complex matrices can be limited by possible interaction of matrix compounds with antibodies or tracer. Caffeine is one of the most frequently consumed pharmacologically active compounds and is present in a large variety of consumer products, including beverages and cosmetics. Adverse health effects of high caffeine concentrations especially for pregnant women are under discussion. Therefore, and due to legal regulations, caffeine should be monitored. Automated FPIA measurements enabled the precise and accurate quantification of caffeine in beverages and cosmetics within 2 min. Samples could be highly diluted before analysis due to high assay sensitivity in the low μg/L range. Therefore, no matrix effects were observed. The antiepileptic drug carbamazepine (CBZ) is discussed as a marker for the elimination efficiency of wastewater treatment plants and the dispersion of their respective effluents in surface water. The development of a FPIA for CBZ included the synthesis and evaluation of different tracers. Using the optimum tracer CBZ-triglycine-5-(aminoacetamido) fluorescein, CBZ concentrations in surface waters could be measured on different platforms: one sample within 4 min in tubes or 24 samples within 20 min on microtiter plates (MTPs). For this study, a commercially available antibody was used, which led to overestimations with recovery rates up to 140% due to high cross-reactivities towards CBZ metabolites and other pharmaceuticals. For more accurate CBZ determination, a new monoclonal antibody was produced. In this attempt, methods for improving the monitoring during the production process were successfully applied, including feces screening and cell culture supernatant screening with FPIA. The new monoclonal antibody is highly specific for CBZ and showed mostly negligible cross-reactivities towards environmentally relevant compounds. Measurements at non-equilibrium state improved the sensitivity and selectivity of the developed FPIA due to slow binding kinetics of the new antibody. Additionally, this measure enables for CBZ determination over a measurement range of almost three orders of magnitude. The comprehensively characterized antibody was successfully applied for the development of sensitive homogeneous and heterogeneous immunoassays. The new antibody made the development of an on-site measurement system for the determination of CBZ in wastewater possible. After comprehensive optimization, this automated FPIA platform allows the precise quantification of CBZ in wastewater samples only pre-treated by filtration within 16 min. Recovery rates of 61 to 104% were observed. Measurements in the low μg/L range are possible without the application of tedious sample preparation techniques. Different FPIA platforms including MTPs, cuvettes and tubes were successfully applied. For the choice of the right format, the application field should be considered, e.g. desired sample throughput, usage for optimization or characterization of antibodies or if a set-up for routine measurements is sought for. For high sample throughput and optimization, FPIA performance on MTPs is advantageous. The best results for the application to real samples were obtained using kinetic FP measurements in cuvettes. T3 - BAM Dissertationsreihe - 154 KW - Antibody KW - Coffee KW - ELISA KW - Fluorophore tracer KW - Wastewater PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392506 SN - 978-3-9818270-2-6 SN - 1613-4249 VL - 154 SP - 1 EP - 124 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schmidt, Wolfram T1 - Design concepts for the robustness improvement of self-compacting concrete - Effects of admixtures and mixture components on the rheology and early hydration at varying temperatures T2 - Bouwstenen N2 - In Europe a multi-national research project was initiated entitled “Rational Production and Improved Working Environment through Using Self-Compacting Concrete”, followed by another project entitled “Testing SCC”, which helped spreading the benefits of SCC to a wide range of appliers. This project was also the basis of a widely accepted European guideline on Self compacted concrete published by the European industry association bibm, CEMBUREAU, EFCA, EFNARC, ERMCO, which again builds the basis of the European standards for the testing of SCC (EN 12350, Parts 8 to 12) as well as for the actual modernisation of the European concrete standard EN 206-1. PY - 2014 SN - 978-90-386-3598-9 DO - https://doi.org/10.6100/IR771936 VL - 193 SP - 1 EP - 308 PB - Eindhoven University of Technology CY - Eindhoven, The Netherlands AN - OPUS4-30826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -