TY - CONF A1 - Heßmann, Jennifer A1 - Hilgenberg, Kai T1 - New approach for multi material design: combination of laser beam and electromagnetic melt pool displacement by induced lorentz forces N2 - Multi-material structures are a promising solution to reduce vehicle weight and save fuel or electric energy in automotive design. However, thermal joining of steel and aluminum alloys is a challenge to overcome due to different material properties and the formation of brittle intermetallic phases. In this study, a new joining approach for producing overlap line-shaped joints is presented. The lower joining partner (EN AW 5754) is melted by a laser beam and this melt is displaced into a line-shaped cavity of the upper joining partner (1.0330) by induced Lorentz forces. The melt solidifies in the cavity to a material and form-fitting joint. This approach needs no auxiliary joining elements or filler materials. Previous investigation to produce spot-shaped joints by using this approach showed that quality and reproducibility were limited by known melt pool dynamics of aluminum alloys (keyhole collapses). For line-shaped joints, the melt displacement can take place behind the keyhole. This allows the displacement process to be spatial uncoupled from the influence of the keyhole collapses. The study shows that this improved the process stability and the quality of the joint. The created line-shaped joints were microstructurally characterized by transversal sections. Intermetallic phases were identified by electron backscatter diffraction (EBSD) and EDX-Analysis. The detected intermetallic phases consist of a 5 µm - 6 µm compact phase seam of Al5.6Fe2 and a needle shaped phase of Al13Fe4. Tensile shear tests were carried out to quantify the load capacity. It was possible to create a joint with a load capacity of about 2 kN. T2 - ICALEO Orlando 2022 CY - Orlando, Florida, USA DA - 17.10.2022 KW - Electromagnetic forces KW - Joining dissimilar materials KW - Laser beam welding KW - Steel and aluminium PY - 2022 AN - OPUS4-56149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - The influence of the free surface reconstruction on the spatial laser energy distribution in high power laser beam welding modeling N2 - An accurate and efficient description of the spatial distribution of laser energy is a crucial factor for the modeling of laser material processing, e.g., laser welding, laser cutting, or laser-based additive manufacturing. In this study, a 3D heat transfer and fluid flow model coupled with the volume-of-fluid algorithm for free surface tracking is developed for the simulation of molten pool dynamics in high-power laser beam welding. The underlying laser-material interactions, i.e., the multiple reflections and Fresnel absorption, are considered by a ray-tracing method. Two strategies of free surface reconstruction used in the ray-tracing method are investigated: a typical piecewise linear interface calculation (PLIC)-based method and a novel localized Level-Set method. The PLIC-based method is discrete, resulting in non-continuous free surface reconstruction. In the localized Level-Set method, a continuous free surface is reconstructed, and thus the exact reflection points can be determined. The calculated spatial laser energy distribution and the corresponding molten pool dynamics from the two methods are analyzed and compared. The obtained numerical results are evaluated with experimental measurements to assure the validity of the proposed model. It is found that distinct patterns of the beam multiple reflections are obtained with the different free surface reconstructions, which shows significant influence not only on the molten pool behaviors but also on the localized keyhole dynamics. T2 - The 41st annual International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 17.10.2022 KW - Laser beam welding KW - Laser energy distribution KW - Weld pool dynamics KW - Ray-tracing PY - 2022 AN - OPUS4-56312 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of the weld pool geometry on solidification cracking in partial penetration high power laser beam welding N2 - Solidification cracking is still a serious problem in laser beam welding, especially in the welding of thick-walled plates. The influence of weld pool geometry on solidification cracking in partial penetration welding of thick plates is investigated within scope of this study. Therefore, a specific experimental setup of steel and quartz glass in butt configuration and on the side with high-speed camera were used to record the weld pool shape. In addition, the influence of laser inclination angle on the weld pool geometry and on solidification crack formation was investigated. The results show a bulge in the weld pool root, which is separated from an upper region by a necking region. This leads to a case where there are three different longitudinal region lengths with different solidification zones. This temporal sequence of solidification strongly promotes the formation of solidification cracks in the weld root. T2 - LANE 2022: 12th CIRP Conference on Photonic Technologies CY - Fürth, Germany DA - 04.09.2022 KW - Laser beam welding KW - Weld pool shape KW - Solidification craking PY - 2022 AN - OPUS4-56395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Evaluation of narrowed weld pool shapes and their effect on resulting potential defects during deep penetration laser beam welding N2 - This study presents mechanisms of the evolution of a narrowed region in the weld pool center during deep penetration laser beam welding. In numerous numerical studies presented in this study, it was also found that the local reduction of the weld pool size can cause detrimental effects on the melt flow behavior and the resulting properties of the welds. A particularly large influence of this effect was identified in three aspects. First, the local variation of the solidification sequence of the weld pool causes an increase in the hotcracking susceptibility due to a locally delayed solidification. Second, it was proven that a change in the local length and width of the weld pool is associated with an adverse impact on the potential flow routes of the molten material that induces stronger local variations of its solidification. Thus, the element mixing, e.g., during the welding with filler materials, is blocked. This leads to a nonhomogeneous chemical composition of the final weld and can cause undesired effects on the final material properties. Finally, another observed effect is related to the reduced ability of process pores to reach the top surface. As this type of porosity is usually produced around the keyhole tip, the change of the fluid flow regime above this area plays a significant role in determining the final path of the pores until the premature solidification in the middle of the weld pool captures them. This study summarizes mainly numerical results that were supported by selected experimental validation results. T2 - International Congress of Applications of Lasers & Electro-Optics 2022 CY - Orlando, FL, USA DA - 17.10.2022 KW - Weld pool shape KW - Laser beam welding KW - Solidification KW - Porosity KW - Element distribution KW - Numerical process simulation PY - 2022 AN - OPUS4-56335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Rethmeier, Michael T1 - Influence of an external applied AC magnetic field on the melt pool dynamics at high-power laser beam welding N2 - The study deals with the determination of the influence of an externally applied oscillating magnetic field on the melt pool dynamics in high power laser beam and hybrid laser arc welding processes. An AC magnet was positioned under the workpiece which is generating an upward directed electromagnetic force to counteract the formation of the droplets. To visualise the melt flow characteristics, several experiments were carried out using a special technique with mild steel from S355J2 with a wall thickness of up to 20 mm and a quartz glass in butt configuration. The profile of the keyhole and the melt flow were recorded with a high-speed camera from the glass side. Additionally, the influence of the magnetic field orientation to the welding direction on the filler material dilution on laser hybrid welding was studied with variating oscillation frequency. The element distribution over the whole seam thickness was measured with X-ray fluorescence (XRF). The oscillation frequency demonstrated a greater influence on the melt pool dynamics and the mixing of the elements of the filler wire. The high-speed recordings showed, under the influence of the magnetic field, that the melt is affected under strong vortex at the weld root, which also avoids the formation of droplets T2 - The 18th Nordic Laser Materials Processing Conference CY - Lulea, Sweden DA - 18.01.2022 KW - Laser beam welding KW - Melt pool dinamics PY - 2022 AN - OPUS4-54331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root T2 - The 18th Nordic Laser Materials Processing Conference CY - Lulea, Sweden DA - 18.01.2022 KW - Laser beam welding KW - Melt pool dinamics PY - 2022 AN - OPUS4-54333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heßmann, Jennifer A1 - Hilgenberg, Kai A1 - Bachmann, Marcel T1 - Joining dissimilar materials a new approach based on laser beam welding and melt displacement by electromagnetic forces N2 - In order to reduce weight of vehicles, the interest in multi-material-design has been growing within the last few years. For vehicles the combination of steel and aluminium alloys offers the most promising compromise between weight, strength and formability. Thermal joining of these dissimilar materials is still a challenge to overcome. A possible approach is a new joining technology, whereby a combination of laser beam welding and contactless induced electromagnetic forces are used to displace the generated melt of one joining partner into a notch of the other. This paper presents the working principle and shows numerical analyses to improve the understanding of this joining process. The simulations help to calculate the thermal development of the joining partners, which is important for the formation of intermetallic phases. Furthermore, the calculation of the time required for a complete displacement is possible. The numerical results are validated by experimental results. T2 - LiM 2021 CY - Online meeting DA - 21.06.2021 KW - Joining dissimilar materials KW - Laser beam welding KW - Electromagnetic forces KW - Steel and aluminium PY - 2021 AN - OPUS4-52977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Observation of the weld pool shape in partial penetration welding and its influence on solidification crack formation for high-power laser beam welding N2 - Solidification cracking is still a particular problem in laser beam welding, especially in the welding of thick-walled plates. In this study, the influence of weld pool geometry on solidification cracking in partial penetration welding of thick plates is a subject of discussion. For this purpose, a special experimental setup of steel and quartz glass in butt configuration and lateral with high speed camera was used to capture the weld pool shape. Additionally, laser beam welding experiments were carried out to compare the crack positions and the cross section with the high-speed camera observations. The results showed a bulge in the weld pool root separated from the upper region by a nick area. This leads to the fact that three different longitudinal lengths with different solidification areas are taking place. This temporal sequence of solidification strongly promotes the solidification cracks in the weld root. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Solidification cracking KW - Laser beam welding KW - Partial penetration PY - 2021 AN - OPUS4-53586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Rethmeier, Michael T1 - The effect of an AC magnetic field on flow dynamics and filler wire mixing in high power laser hybrid welding N2 - The use of the oscillating magnetic field as a backing support for the welding of thick components is already known. The influence of the magnetic field and the induced Lorentz forces in the melt on the melt pool geometry and the fluid flows is not yet fully investigated. The study deals with the determination of the influence of an externally applied oscillating magnetic field on the melt pool dynamics in high power laser hybrid welding process. An AC magnet was positioned under the specimen to create an electromagnetic force directed upwards to oppose dropping. To visualise the flow characteristics of the melt, several experiments were carried out using a technique specifically designed for this purpose with mild steel made of S355J2 with a wall thickness of 20 mm and a quartz glass in a butt configuration. A high-speed camera was used to monitor the geometry of the melt pool through the glass. The influence of the magnetic field orientation to the welding direction and the oscillation frequency on the molten pool was investigated for the case of the metal-glass configuration and for laser hybrid welding. The high-speed recordings were analysed with the Optical Flow Algorithm to characterise the flow within the melt pool. The element distribution over the whole seam thickness was evaluated by X-ray fluorescence (XRF). The high-speed analysis showed that in the melt pool two vortices are formed, one in the upper part and the other in the lower part. In the region where the two vortices come together, a narrow region (necking region) forms in the melt pool. The evaluation of the high-speed recordings shows that the depth of the region where the two vortices meet is strongly influenced by the oscillation frequency. Additionally, the oscillation frequency demonstrated a greater influence on the melt pool dynamics and the mixing of the elements of the filler wire. T2 - X International Conference «Beam Technologies & Laser Application» CY - Pushkin (St. Petersburg), Russia DA - 20.09.2021 KW - Hybrid laser arc welding KW - Laser beam welding KW - Material transport PY - 2021 AN - OPUS4-53573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Rethmeier, Michael T1 - Improvement of the mechanical properties and corrosion resistance of laser welds on thick duplex plates by laser cladded buttering N2 - Because of its excellent corrosion resistance, high tensile strength and high ductility, duplex stainless steel 2205 offers many areas of application. Though laser beam welding accompanied by high cooling rates, duplex steels tend to perform higher ferrite contents in weld metal as the base metal, which leads to a reduction of ductility and corrosion resistance of the weld joint. To overcome this problem, a solution, based on buttering the plate edges by laser metal deposition (LMD) with material containing higher Ni concentrations prior to laser welding was suggested. In this context different process parameters for LMD and different mixtures of duplex and nickel powder, were investigated. In a second step the possibility of welding those edges defect free while achieving balanced austenite-ferrite ratio was verified with metallographic analysis, Electron Backscatter Diffraction (EBSD) and impact testing according to Charpy. The improved corrosion resistance was observed with ASTM G48 standard test method. T2 - X International Conference «Beam Technologies in Welding and Materials Processing» CY - Odessa, Ukraine DA - 7.09.2021 KW - Laser beam welding KW - Laser metal deposition KW - Duplex steels PY - 2021 AN - OPUS4-53568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -