TY - JOUR A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Werner, Tiago A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post-laser powder bed fusion stress-relieve treatments of stainless steel 316L JF - Metallurgical and materials transactions A N2 - This study reports on the stress relaxation potential of stress-relieving heat treatments for laser powder bed fused 316L. The residual stress is monitored non-destructively using neutron diffraction before and after the heat treatment. Moreover, the evolution of the microstructure is analysed using scanning electron microscopy. The results show, that a strong relaxation of the residual stress is obtained when applying a heat treatment temperature at 900°C. However, the loss of the cellular substructure needs to be considered when applying this heat treatment strategy. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Projekt AGIL - Alterung additiv gefertigter metallischer Materialien und Komponenten PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536045 DO - https://doi.org/10.1007/s11661-021-06472-6 SN - 1543-1940 VL - 52 IS - 12 SP - 5342 EP - 5356 PB - Springer CY - Boston AN - OPUS4-53604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Dubois, F. A1 - Mousa, M. S. A1 - von Schlippenbach, C. A1 - Többens, D. M. A1 - Yesilcicek, Yasemin A1 - Zaiser, E. A1 - Hesse, René A1 - Haas, S. A1 - Glatzel, U. T1 - On the Formation of Eutectics in Variations of the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy JF - Metallurgical and Materials Transactions A N2 - Superalloy inspired Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy is known for its gamma-gamma' microstructure and the third Heusler phase. Variations of this alloy, gained by replacing 0.5 or 1 at. pct Al by the equivalent amount of Mo, W, Zr, Hf or B, can show more phases in addition to this three-phase morphology. When the homogenization temperature is chosen too high, a eutectic phase formation can take place at the grain boundaries, depending on the trace elements: Mo and W do not form eutectics while Hf, Zr and B do. In order to avoid the eutectic formation and the potential implied grain boundary weakening, the homogenization temperature must be chosen carefully by differential scanning calorimetry measurements. A too low homogenization temperature, however, could impede the misorientation alignment of the dendrites in the grain. The influence of grain boundary phases and incomplete dendrite re-orientation are compared and discussed. KW - High entropy alloy KW - Eutectic KW - Homogenization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543504 DO - https://doi.org/10.1007/s11661-020-06091-7 VL - 52 IS - 1 SP - 143 EP - 150 PB - Springer AN - OPUS4-54350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Bäßler, Ralph T1 - Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C JF - Coatings N2 - Al2O3 has been widely used as a coating in industrial applications due to its excellent chemical and thermal resistance. Considering high temperatures and aggressive mediums exist in geothermal systems, Al2O3 can be a potential coating candidate to protect steels in geothermal applications. In this study, γ-Al2O3 was used as a coating on martensitic steels by applying AlOOH sol followed by a heat treatment at 600 °C. To evaluate the coating application process, one-, two-, and three-layer coatings were tested in the artificial North German Basin (NGB), containing 166 g/L Cl−, at 150 °C and 1 MPa for 168 h. To reveal the stability of the Al2O3 coating in NGB solution, three-layer coatings were used in exposure tests for 24, 168, 672, and 1296 h, followed by surface and cross-section characterization. SEM images show that the Al2O3 coating was stable up to 1296 h of exposure, where the outer layer mostly transformed into boehmite AlOOH with needle-like crystals dominating the surface. Closer analysis of cross-sections showed that the interface between each layer was affected in long-term exposure tests, which caused local delamination after 168 h of exposure. In separate experiments, electrochemical impedance spectroscopy (EIS) was performed at 150 °C to evaluate the changes of coatings within the first 24 h. Results showed that the most significant decrease in the impedance is within 6 h, which can be associated with the electrolyte penetration through the coating, followed by the formation of AlOOH. Here, results of both short-term EIS measurements (up to 24 h) and long-term exposure tests (up to 1296 h) are discussed. KW - Al2O3 KW - Geothermal KW - Martensitic steels KW - Behmite KW - Corrosion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525551 DO - https://doi.org/10.3390/coatings11050526 SN - 2079-6412 VL - 11 IS - 5 SP - 526 PB - MDPI CY - Basel AN - OPUS4-52555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. A1 - Hourahine, B. A1 - Trager-Cowan, C. T1 - Kikuchi pattern simulations of backscattered and transmitted electrons JF - Journal of Microscopy N2 - We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKDcan be affected by changes in the order of 10−3–10-2 if excess-deficiency features are not considered in the theoreticalmodel underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer frombiases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model. KW - Electron diffraction KW - EBSD KW - Kikuchi diffraction KW - Pattern matching PY - 2021 DO - https://doi.org/10.1111/jmi.13051 VL - 284 IS - 2 SP - 157 EP - 184 PB - Wiley Online Library AN - OPUS4-53109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falk, Florian A1 - Sobol, Oded A1 - Stephan-Scherb, Christiane T1 - The impact of the microstructure of Fe-16Cr-0.2C on high-temperature oxidation – sulphidation in SO2 JF - Corrosion Science N2 - This study elucidates the impact of the microstructure of Fe-16Cr-0.2C on oxide layer formation at 650 ◦C in Ar-0.5 % SO2. A cold-rolled and two heat-treated states of the alloy were exposed for up to 1000 h. The samples were characterised in detail from microstructural and chemical perspectives using scanning electron microscopy (SEM), X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The microstructural modification of the alloy by heat-treatment was advantageous. It was found that Cr-carbides support chromia formation and reduce sulphidation when their area fraction is low and diameter is small. KW - Steel KW - Iron KW - SIMS KW - SEM KW - High temperature corrosion KW - Oxidation KW - Sulphidation PY - 2021 DO - https://doi.org/10.1016/j.corsci.2021.109618 VL - 190 SP - 109618 PB - Elsevier Ltd. AN - OPUS4-53001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treninkov, И. A A1 - Petrushin, N. V. A1 - Epishin, А. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. T1 - ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ СТРУКТУРНО-ФАЗОВЫХ ПАРАМЕТРОВ НИКЕЛЕВОГО ЖАРОПРОЧНОГО СПЛАВА T1 - Experimental determination of temperature dependence of structural-phase parameters of nickel-based superalloy JF - ФИЗИЧЕСКИЕ ОСНОВЫ МАТЕРИАЛОВЕДЕНИЯ JF - Materialovedenie N2 - Методом рентгеноструктурного анализа в интервале температур 18—1150 °С определены температурные зависимости периодов кристаллических решеток γ- и γ'-фаз, их размерно-го несоответствия (мисфит) и объемной доли γ'-фазы экспериментального монокристал-лического жаропрочного никелевого сплава. Определены диапазоны температур, в которых происходят интенсивные изменения структурно-фазовых характеристик исследованного сплава. KW - рентгеноструктурный анализ KW - высокие температуры KW - жаропрочные нике- левые сплавы KW - монокристалл KW - γ- и γ'-фазы, период кристаллической решетки PY - 2021 DO - https://doi.org/10.31044/1684-579x-2021-0-7-3-12 IS - 7 SP - 3 EP - 12 AN - OPUS4-53110 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tokarski, T. A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Rychlowski, L. A1 - Bala, P. A1 - Cios, G. T1 - Transmission Kikuchi diffraction: The impact of the signal-to-noise ratio JF - Ultramicroscopy N2 - Signal optimization for transmission Kikuchi diffraction (TKD) measurements in the scanning electron microscope is investigated by a comparison of different sample holder designs. An optimized design is presented, which uses a metal shield to efficiently trap the electron beam after transmission through the sample. For comparison, a second holder configuration allows a significant number of the transmitted electrons to scatter back from the surface of the sample holder onto the diffraction camera screen. It is shown that the secondary interaction with the sample holder leads to a significant increase in the background level, as well as to additional noise in the final Kikuchi diffraction signal. The clean TKD signal of the optimized holder design with reduced background scattering makes it possible to use small signal changes in the range of 2% of the camera full dynamic range. As is shown by an analysis of the power spectrum, the signal-to-noise ratio in the processed Kikuchi diffraction patterns is improved by an order of magnitude. As a result, the optimized design allows an increase in pattern signal to noise ratio which may lead to increase in measurement speed and indexing reliability. KW - EBSD KW - SEM KW - Transmission Kikuchi diffraction KW - Sample holder PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531743 DO - https://doi.org/10.1016/j.ultramic.2021.113372 SN - 0304-3991 SN - 1879-2723 VL - 230 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Camin, B. A1 - Hansen, L. A1 - Chyrkin, A. A1 - Nolze, Gert T1 - Synchrotron Sub-μ X-ray Tomography of Kirkendall Porosity in a Diffusion Couple of Nickel-Base Superalloy and Nickel after Annealing at 1250 °C JF - Advanced Engineering Materials N2 - Kirkendall porosity that forms during interdiffusion in a diffusion couple of nickel-base superalloy CMSX-10 with pure nickel is investigated. The diffusion experiments are conducted at a temperature of 1250 °C, where the strengthening ƴ'-phase ist partially dissolved. The porosity is studied by X-ray sub-μ tomography with a spatial resolution of about 0.35³ μm³ at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. It is found that depending on the distance from the interface the Kirkendall pores take different shapes: octahedral, rounded pyramidal, drop shaped, dendritic, pear shaped, and joint shapes. Such a variety of pore morphologies indicates a complex multistage process of porosity nucleation and growth under vacancy supersaturation of different degrees. The experimental findings are interpreted on the basis of the results of diffusion modeling. It is shown that the kinetics of porosity growth is essentially influenced by the dissolution of the ƴ'-phase. KW - Diffusion KW - Nickel alloys KW - Porous materials KW - Synchrotron radiations KW - Three-dimensional tomographies PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521476 DO - https://doi.org/10.1002/adem.202001220 VL - 23 IS - 4 SP - 1220 PB - Wiley Online Library AN - OPUS4-52147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Manzoni, Anna Maria A1 - Schneider, M. A1 - Laplanche, G. T1 - Welding of high-entropy alloys and compositionally complex alloys - an overview JF - Welding in the World N2 - High-entropy alloys (HEAs) and compositionally complex alloys (CCAs) represent new classes of materials containing five or more alloying elements (concentration of each element ranging from 5 to 35 at. %). In the present study, HEAs are defined as single-phase solid solutions; CCAs contain at least two phases. The alloy concept of HEAs/CCAs is fundamentally different from most conventional alloys and promises interesting properties for industrial applications (e.g., to overcome the strength-ductility trade-off). To date, little attention has been paid to the weldability of HEAs/CCAs encompassing effects on the welding metallurgy. It remains open whether welding of HEAs/CCAs may lead to the formation of brittle intermetallics and promote elemental segregation at crystalline defects. The effect on the weld joint properties (strength, corrosion resistance) must be investigated. The weld metal and heat-affected zone in conventional alloys are characterized by non-equilibrium microstructural evolutions that most probably occur in HEAs/CCAs. The corresponding weldability has not yet been studied in detail in the literature, and the existing information is not documented in a comprehensive way. Therefore, this study summarizes the most important results on the welding of HEAs/CCAs and their weld joint properties, classified by HEA/CCA type (focused on CoCrFeMnNi and AlxCoCrCuyFeNi system) and welding process. KW - High-entropy alloy KW - Compositionally complex alloy KW - Welding KW - Properties KW - Review PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527068 DO - https://doi.org/10.1007/s40194-021-01110-6 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-52706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, M. A1 - Diercks, P. A1 - Manzoni, Anna Maria A1 - Čížek, J. A1 - Ramamurty, U. A1 - Banhart, J. T1 - Positron annihilation investigation of thermal cycling induced martensitic transformation in NiTi shape memory alloy JF - Acta Materialia N2 - Thermal cycling of a Ni-excess NiTi alloy was conducted between 50 °C and liquid nitrogen temperature to induce martensitic transformations and to reverse them after. The starting point was an annealed and slowly cooled state, the end point a sample thermally cycled 1500 times. Positron annihilation lifetime spectra and Coincidence Doppler Broadening profiles were obtained in various states and at various tem- peratures. It was found that the initial state was low in defects with positron lifetimes close to that of bulk NiTi. Cycling lead to a continuous build-up of a defect structure up to 20 0 −50 0 cycles after which saturation was reached. Two types of defects created during cycling were identified, namely pure dislo- cations and vacancies attached to dislocations. KW - Shape memory alloy KW - Thermal Cycling KW - Defects KW - Positron annihilation spectroscopy KW - Austenite-to-martensite phase transformation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533641 DO - https://doi.org/10.1016/j.actamat.2021.117298 VL - 220 SP - 117298 PB - Elsevier Ltd. AN - OPUS4-53364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -