TY - CONF A1 - Frei, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Resistance spot welding under external load for evaluation of LME susceptibility of zinc coated advanced high strength steel sheets N2 - Some zinc coated advanced high strength steels (AHSS), under certain manufacturing conditions, are known to be prone to liquid metal embrittlement (LME) during resistance spot welding. LME is an undesired phenomenon, which can cause both surface and internal cracks in a spot weld, potentially influencing its strength. An effort is made to understand influencing factors of LME better, and evaluate geometry-material combinations regarding their LME susceptibility. Manufacturers benefit from such knowledge because it improves the processing security of the materials. The experimental procedure of welding under external load is performed with samples of multiple AHSS classes with strengths up to 1200 MPa, including dual phase, complex phase and TRIP steels. This way, externally applied tensile load values are determined, which cause liquid metal embrittlement in the samples to occur. In the future, finite element simulation of this procedure gives access to in-situ stress and strain values present during LME formation. The visualization improves the process understanding, while a quantification of local stresses and strains allows an assessment of specific welded geometries. T2 - ESDAD 2019 CY - Dusseldorf, Germany DA - 24.06.2019 KW - RSW KW - LME KW - Advanced high strength steel KW - Testing method KW - Zinc coated steel PY - 2019 AN - OPUS4-49079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly non-linear and multi-coupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modelling. A 3D transient multi-physical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph and the element distribution from the energy dispersive X-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. T2 - ICALEO 2019 CY - Orlando, US DA - 07.10.2019 KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2019 AN - OPUS4-49300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Schirdewahn, S. A1 - Kromm, Arne A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - On the Influence of TiB2 , TiC and TiN Hard Particles on the Microstructure of Localized Laser Dispersed AISI D2 Tool Steel Surfaces N2 - The control of friction and wear is a major concern in many industrial applications. A promising method for a tailored surface modification is the so-called laser implantation technique. This method combines surface texturing and material optimization in one processing step by a localized dispersing of hard ceramic particles using pulsed laser radiation. Wear resistant, protruding micrometric features (implants) with defined geometry can be created in deterministic pattern where needed on highly stressed surfaces, i.e. on forming or cutting tools. However, in order to maintain the implants over the tool’s lifetime, a suitable selection of hard ceramic particles is a prerequisite. They must provide a defect-free Metal Matrix Composite with a high share of homogeneously distributed particles and especially a high implant hardness. In this study TiN, TiC and TiB2 hard particles were compared as implant materials for the first time. By a systematic variation of the pulse power and pulse duration, their dispersing behavior and influence on the material properties of AISI D2 tool steel was investigated. Although all powder materials had grain sizes smaller than 10 µm, it was possible to disperse them by pulsed laser radiation and to obtain defect-free protruding implants. The highest share of dispersed particles (~64 %) was observed for TiB2. By scanning electron microscopy and energy dispersive X-ray spectroscopy, it was also shown that a significant share of the pre-placed particles was dissolved by the laser beam and precipitated as nanometer sized particles within the matrix during solidification. These in-situ formed particles have a decisive influence on the material properties. While the TiN and TiC implants have shown maximum hardness values of 750 HV1 and 850 HV1, the TiB2 implants have shown the highest hardness values with more than 1600 HV1. By X-ray diffraction, it was possible to ascribe the lower hardness values of TiC and TiN implants to high amounts of retained austenite in the metal matrix. By implanting TiB2, the formation of retained austenite was successfully suppressed due to the in-situ formation of TiC particles, which was proven by electron backscatter diffraction. In conclusion, all the implant materials are basically suitable for laser implantation on AISI D2 tool steel. However, TiB2 has shown the most promising results. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser implantation KW - Surface texturing KW - AISI D2 KW - TiB2 PY - 2019 AN - OPUS4-49316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Rethmeier, Michael T1 - Laser-Plasma-Auftragschweißen als hybrides Beschichtungsverfahren für hohe Auftragsraten mit geringer thermischer Belastung N2 - Gut kombiniert: Laser-Plasma-Auftragschweißen Für den Schutz vor starkem abrasiven Verschleiß (Panzern) oder vor korrosiven Medien (Plattieren) sowie für das Auftragen einer Pufferlage können das Laser-Pulver-Auftragschweißen oder das Plasma-Pulver-Auftragschweißen zum Einsatz kommen. Während das Laser-Pulver-Auftragschweißen eine geringe thermische Belastung verspricht, ermöglicht das Plasma-Pulver-Auftragschweißen hohe Auftragraten. Wissenschaftler des Fraunhofer IPK erarbeiten neuartige Verfahrenskombinationen und Düsenkonzepte, die die jeweiligen Vorteile dieser bestehenden Verfahren vereinen und somit eine hohe Qualität und Effizienz garantieren. So kann beispielsweise die punktgenaue Energie der Laserstrahlung den Plasmalichtbogen stabilisieren und den Wärmeeintrag in das Bauteil besser kontrollieren. T2 - 5. PbA-Sitzung bei der GTV Verschleißschutz GmbH CY - Luckenbach, Germany DA - 21.03.2019 KW - Highspeed-plasma-laser-cladding KW - Wear resistance KW - NiCrBSi KW - Tungsten carbide KW - Deposition welding PY - 2019 AN - OPUS4-49243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-Plasma-Hybrid-Cladding: Possibilities in the combination of arc and laser for deposition welding N2 - Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal 9 load on the component. Laser based Direct Energy Deposition (DED) welding, on the other hand, achieves a high level of 10 precision and thus comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc 11 energy aims to exploit the respective advantages of both technologies. 12 In this study, different possibilities of this process combination are presented using a PTA system and a 2 kW disk laser. 13 This includes the combination in a common process zone as a highspeed plasma laser cladding technology (HPLC), which 14 achieves process speeds of 10 m/min. Besides that it is being examined whether a pre-running plasma arc can be used to 15 coat difficult-to-weld rail steel with a carbon content of 0.8 % due to a preheating effect. Furthermore, a smoothing of the 16 coating by a plasma arc following the laser is investigated. T2 - LiM 2019 CY - Aachen, Germany DA - 25.06.2019 KW - Plasma-Transferred-Arc KW - Direct Energy Deposition KW - Highspeed plasma KW - Laser cladding KW - Deposition welding PY - 2019 AN - OPUS4-49247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bakir, Nasim A1 - Meng, Xiangmeng A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Lamé curves approximation for the assessment of the 3-D temperature distribution in keyhole mode welding processes N2 - A novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes’ temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g. the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO 2019) CY - Orlando, FL, USA DA - 07.10.2019 KW - Weld pool shape approximation KW - Keyhole mode laser beam welding KW - Numerical simulation KW - Superelliptic Lamé curves PY - 2019 AN - OPUS4-49309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A decoupling numerical approach for the study of hot cracking formation during high power keyhole mode welding of steel plates with a high sheet thickness N2 - The weld pool dynamics and shape play a fundamental role in keyhole mode welding. The presented work aims the experimental and numerical investigation of the influence of the weld pool characteristics on the formation of hot cracking. The experimental procedure allows recording the molten pool in the longitudinal section of a butt joint configuration of 15 mm thick structural steel and transparent quartz glass by using a high-speed video camera and two thermal imaging cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop-shaped weld pool. A bulge-region and its temporal evolution are observed approximately in the middle of the depth of the weld pool, where hot cracking appears. A numerical framework including models for the weld pool dynamics, global temperature field, transient stress state, crystal growth, diffusion and macro-segregation and subroutines for their one-way couplings is developed. The numerically obtained and experimentally observed results are in a good agreement. It is shown that the bulge-region leads to a delay in the solidification behavior, increased temporal tensile stresses and accumulation of impurities in the defect region and hence enhance the probability of hot cracking formation. T2 - Colloquium, Dept. Materials Science & Engineering, The Ohio State University CY - Columbus, Ohio, USA DA - 18.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - Bulge KW - Hot cracking PY - 2019 AN - OPUS4-49339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Karkhin, V. T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool N2 - The geometrical characteristics of the weld end crater are commonly used for the validation of numerical results in welding simulation. A semi-analytical model calculating the cooling stage of the welding process after the moving energy source is turned off has been developed. A solution for various combinations of heat sources and workpieces has been found. The theoretical limits for the heat transfer of the absorbed energy during cooling in a thin plate and a semi-infinite body were studied. It is shown that after turning off the energy source, an additional melting of the base material in longitudinal direction may occur. The developed technique is applied to complete-penetration keyhole laser beam welding of a 2 mm thick austenitic chromium-nickel 316L steel plate at a welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase of the weld end crater length in comparison to the length of the steady-state weld pool of up to 19 %. A shift of the centre of the end crater, in which the solidification of the liquid metal ends, towards the tail of the end crater relative to the axis of the heat source at the time of its termination, was computed. The speed and the direction of crystallization of the molten material in the weld pool and the end crater were found to be different. A good agreement between the computational results and the welding experiments was achieved. T2 - ICALEO 2019 - The International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - End-crater KW - Heat conduction PY - 2019 AN - OPUS4-49341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Cagtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Digitalization and Open Science in Welding Research N2 - The talk will give an overview of past, ongoing and future activities at BAM welding divisions, specifically those regarding prospects and challenges of the ongoing digital transformation and the move to more accessible research data (open science) with concerns to welding research. We will discuss current ways to publish and share research results inside the welding community and highlight approaches and advancements from other scientific fields to improve accessibility and reproducibility. We would also like to discuss the feasibility of integrating open science principles into the current IIW landscape of meetings, publications and education. In Addition we will introduce our upcoming series of workshops organized by BAM focusing on defining and implementing an open source file format specifically designed to publish and exchange high quality welding research data. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - Digitalization KW - Open science KW - Welding KW - Open data KW - Research data management PY - 2019 AN - OPUS4-49381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Cagtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX - towards a common file format for open science in welding N2 - WelDX is a newly started research project at BAM publicly funded by the German Federal Ministry of Education and Research. Over the course of three years the project aims to build the foundation for a publicly accessible file format and to foster research collaboration in arc welding on a national and international level. The talk will motivate benefits and discuss challenges of using a common file format designed to describe, store and share arc welding research data in the scope of "Open Science". By using common open source software and tools, welding data will be made more accessible and reusable so that new scientific practices may emerge. The proposed file format aims to be easy to use for common welding applications while also offering the possibility to describe complex experiments for state of the art welding research. In addition the talk will illustrate how in the future other facilities and researchers will be able to use experimental arc welding data generated at BAM for their own research, for example to conduct their own data analysis or welding process and thermo-mechanical simulations. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - Welding KW - Research data management KW - Open science KW - Open data KW - Digitalization PY - 2019 AN - OPUS4-49382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -