TY - JOUR A1 - Waniek, Tassilo A1 - Braun, U. A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The impact of water released from boehmite nanoparticles during curing in epoxy-based nanocomposites JF - Journal of Applied Polymer Science N2 - The enhancing effect on mechanical properties of boehmite (γ-AlOOH) nanoparticles (BNP) in epoxy-based nanocomposites on the macroscopic scale encouraged recent research to investigate the micro- and nanoscopic properties. Several studies presented different aspects relatable to an alteration of the epoxy polymer network formation by the BNP with need for further experiments to identify the mode of action. With FTIR-spectroscopic methods this study identifies interactions of the BNP with the epoxy polymer matrix during the curing process as well as in the cured nanocomposite. The data reveals that not the BNP themselves, but the water released from them strongly influences the curing process by hydrolysis of the anhydride hardener or protonation of the amine accelerator. The changes of the curing processes are discussed in detail. The changes of the curing processes enable new explanation for the changed material properties by BNP discussed in recent research like a lowered glass transition temperature region (Tg) and an interphase formation. KW - Spectroscopy KW - Aluminium oxide hydroxide KW - Glass transition temperature KW - Material chemistry KW - Nanocomposites KW - Structure-property relationship PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527202 DO - https://doi.org/10.1002/app.51006 VL - 138 IS - 39 SP - 51006 PB - Wiley Periodicals LLC CY - Hoboken AN - OPUS4-52720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zarinwall, A. A1 - Waniek, Tassilo A1 - Saadat, R. A1 - Braun, U. A1 - Sturm, Heinz A1 - Garnweitner, G. T1 - Comprehensive Characterization of APTES Surface Modifications of Hydrous Boehmite Nanoparticles JF - Langmuir N2 - Hydrous boehmite (γ-AlOOH) nanoparticles (BNP) show great potential as nanoscale filler for the fabrication of fiber reinforced nanocomposite materials. Notably, the particle−matrix interaction has been demonstrated to be decisive for improving the matrix-dominant mechanical properties in the past years. Tailoring the surface properties of the nanofiller enables to selectively design the interaction and thus to exploit the benefits of the nanocomposite in an optimal way. Here, an extensive study is presented on the binding of (3-aminopropyl)triethoxysilane (APTES), a common silane surface modifier, on BNP in correlation to different process parameters (concentration, time, temperature, and pH). Furthermore, a comprehensive characterization of the modified BNP was performed by using elemental analysis (EA), thermogravimetric analysis (TGA) coupled with mass spectrometry (TGA-MS), and Kaiser’s test (KT). The results show an increasing monolayer formation up to a complete surface coverage with rising APTES concentration, time, and temperature, resulting in a maximal grafting density of 1.3 molecules/nm². Unspecific multilayer formation was solely observed under acidic conditions. Comparison of TGA-MS results with data recorded from EA, TGA, and KT verified that TGA-MS is a convenient and highly suitable method to elucidate the ligand binding in detail. KW - Boehmite KW - Nanoparticle KW - Surface KW - APTES KW - Functionalization KW - BET KW - TGA KW - Grafting KW - Nanocomposite KW - Silane PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.0c02682 VL - 37 IS - 1 SP - 171 EP - 179 PB - ACS Publications AN - OPUS4-51954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -