TY - JOUR A1 - Neumann, L. A1 - Jakobs, F. A1 - Spelthann, S. A1 - Zaremba, D. A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Evert, R. A1 - Kielhorn, J. A1 - Kowalsky, W. A1 - Johannes, H. H. T1 - Integration of beta-NaYF4 Upconversion Nanoparticles into Polymers for Polymer Optical Fiber Applications JF - Optics and spectroscopy N2 - Producing active polymer optical fibers (POFs) is a key step towards new applications such as fluorescent fiber solar concentrators (FFSCs), sensors, contactless coupling devices, or fiber integrated light sources and lasers. Therefore, integration of fluorescent nanoparticles into the polymer matrix is necessary and becomes accessible via in situ polymerization. For optical applications, the polymer has to fulfill various requirements such as chemical and physical stability, optical transparency in the application-relevant spectral region as well as a good synthetic accessibility. A common material for these is poly(methyl methacrylate) (PMMA). The beta-phase NaYF4 : Yb3+, Er3+ upconversion nanoparticles (UCNP) were synthesized from the rare earth salts via thermal decomposition method in high-boiling point solvent 1-octadecene and capping agent oleic acid. Current results show hazy samples of the polymer with integrated nanoparticles made from monomer solution of methyl methacrylate. However, further optical tuning such as increasing the transparency of the bulk samples by changing the monomer solution to non-polar n-butyl methacrylate (nButMA) or cyclohexyl methacrylate (CHMA) or further optimization of the UCNP shell could lead to more suitable polymer bulk samples. KW - Active fibers KW - Rare earth nanoparticles KW - Upconversion KW - Polymer PY - 2018 UR - https://journals.ioffe.ru/articles/46830 DO - https://doi.org/10.1134/S0030400X18110206 SN - 0030-400X VL - 125 IS - 5 SP - 711 EP - 715 PB - Pleiades Publishing CY - New York, NY AN - OPUS4-47167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Schavkan, A. A1 - Wahl, Sebastian A1 - Würth, Christian A1 - Tschiche, H. R. A1 - Krumrey, M. A1 - Resch-Genger, Ute T1 - Evolution of Size and Optical Properties of Upconverting Nanoparticles during High-Temperature Synthesis JF - Journal of physical chemistry C N2 - We investigated the growth of β-phase NaYF4:Yb3+,Er3+ upconversion nanoparticles synthesized by the thermal decomposition method using a combination of in situ and offline analytical methods for determining the application-relevant optical properties, size, crystal phase, and chemical composition. This included in situ steady state luminescence in combination with offline time-resolved luminescence spectroscopy as well as small-angle X-ray scattering (SAXS) transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and inductively coupled Plasma optical emission spectrometry (ICP-OES). For assessing the suitability of our optical monitoring approach, the in situ-collected spectroscopic data, which reveal the luminescence evolution during nanocrystal synthesis, were compared to measurements done after cooling of the reaction mixture of the as-synthesized particles. The excellent correlation of the in situ and time-resolved upconversion luminescence with the nanoparticle sizes determined during the course of the reaction provides important insights into the various stages of nanoparticle growth. This study highlights the capability of in situ luminescence monitoring to control the efficiency of UCNP synthesis, particularly the reaction times at elevated temperatures and the particle quality in terms of size, shape, and crystal structure, as well as luminescence lifetime and upconversion quantum yield. KW - Rare earth nanoparticles KW - Upconversion KW - TEM KW - SAXS PY - 2018 UR - https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b09819 DO - https://doi.org/10.1021/acs.jpcc.8b09819 VL - 50 IS - 122 SP - 28958 EP - 28967 PB - American Chemical Society CY - Washington, DC AN - OPUS4-47169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, L. A1 - Jakobs, F. A1 - Spelthann, S. A1 - Zaremba, D. A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Evert, R. A1 - Kowalsky, W. A1 - Johannes, H.-H. T1 - Upconverting POF by Incubation of β-NaYF4:Yb3+, Er3+ Nanoparticles via in situ Polymerization for Production of active Polymer Optical Fibers N2 - In the past, integration of fluorescent dyes into polymers for active polymer optical fibers (POFs) is well studied, however, photobleaching of organic chromophores is still a problem for several optical applications. Inorganic luminescent nanoparticles like lanthanide-based systems can present an alternative due to their high chemical stability. Furthermore they do not show photobleaching and photoblinking. Certainly, integration of nanoparticles into a polymer matrix is challenging because of their high affinity to agglomeration which leads to scattering of the polymer samples. T2 - 27th International Conference on Plastic Optical Fibers CY - Seattle, Washington, USA DA - 04.09.2018 KW - Copolymer KW - Active fibers KW - Rare earth nanoparticles KW - Upconversion PY - 2018 SP - 1 EP - 5 CY - Seattle, Washington, USA AN - OPUS4-45882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, L. A1 - Jakobs, F. A1 - Spelthann, S. A1 - Zaremba, D. A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Evert, R. A1 - Kielhorn, J. A1 - Kowalsky, W. A1 - Johannes, H.-H. T1 - Integration of β-NaYF4 Upconversion Nanoparticles into Polymers for Polymer Optical Fiber Applications N2 - Producing active polymer optical fibers (POFs) is a key step towards new applications such as fluorescent fiber solar concentrators (FFSCs), sensors, contactless coupling devices, or fiber integrated light sources and lasers. Therefore, integration of fluorescent nanoparticles into the polymer matrix is necessary and becomes accessible via in situ polymerization. For optical applications, the polymer has to fulfill various requirements such as chemical and physical stability, optical transparency in the application-relevant spectral region as well as a good synthetic accessibility. A common material for these is poly(methyl methacrylate) (PMMA). The β-phase NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNP) were synthesized from the rare earth salts via thermal decomposition method in high-boiling point solvent 1-octadecene and capping agent oleic acid. Current results show hazy samples of the polymer with integrated nanoparticles made from monomer solution of methyl methacrylate. However, further optical tuning such as increasing the transparency of the bulk samples by changing the monomer solution to non-polar n-butyl methacrylate (nButMA) or cyclohexyl methacrylate (CHMA) or further optimization of the UCNP shell could lead to more suitable polymer bulk samples. T2 - PCNSPA 2018 - Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications CY - St. Petersburg, Russia DA - 04.06.2018 KW - Copolymer KW - Active fibers KW - Rare earth nanoparticles KW - Upconversion PY - 2018 SP - 1 EP - 9 AN - OPUS4-45883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radunz, Sebastian A1 - Schavkan, A. A1 - Wahl, S. A1 - Tschiche, Harald Rune A1 - Würth, Christian A1 - Krumrey, M. A1 - Resch-Genger, Ute T1 - Investigation of upconverting nanoparticle growth utilizing in-situ luminescence monitoring in combination with offline small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) N2 - - UCNPs were succesfully synthesized and characterized - Various stages of UCNP growth were tracked using different analytical methods including real time in-situ & time-resolved luminescence spectroscopy, SAXS and TEM measurements - Additional size determination will be performed using inductively coupled plasma - mass spectrometry (ICP-MS) T2 - BAM-PTB-Nanoworkshop CY - PTB, Berlin, Germany DA - 14.05.2018 KW - Rare earth nanoparticles KW - Upconversion KW - TEM KW - SAXS PY - 2018 AN - OPUS4-45884 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -