TY - JOUR A1 - Yang, Chunliang A1 - Yan, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Phase-field simulation of the dendrite growth in aluminum alloy AA5754 during alternating current electromagnetic stirring laser beam welding N2 - Electromagnetic stirring is known to promote material flow, reduce porosity, uniform elements distribution, and refine grain in laser beam welding (LBW), which enhances the applicability of LBW in various industries. In this study, a phase-field model of dendrite growth in AA5754 Al alloy electromagnetic stirring laser beam welding was established. The model considered the thermal electromagnetic Lorentz force resulting from the interaction between the electric field generated by the Seebeck effect and the magnetic field, as well as the temperature gradient and solidification rate of the solidification interface obtained from the computational fluid dynamics electromagnetic stirring LBW model. The variation rules of dendrite growth with different magnetic parameters and effects are analyzed. Comprehensively, the magnetic field promotes the solidification rate, thus promoting interfacial instability and a large magnetic flux density leads to a faster interface instability. The solidification rate as well as the temperature gradient affect the growth rate, and the accelerated growth caused by the so lidification rate with a high frequency and a large magnetic flux density effectively inhibits the slow growth caused by the temperature gradient. The thermal electromagnetic Lorentz force is the main factor for the branch increment at low frequencies, while both thermal electromagnetic Lorentz force and temperature gradient in crease the number of branches at high frequencies. The calculated average branch numbers considering various factors in the stable stage under different magnetic parameters were consistent with the results of the scanning electron microscope tests. KW - Laser beam welding KW - Electromagnetic KW - Aluminum alloys KW - Phase field method KW - Dendrite growth PY - 2024 U6 - https://doi.org/10.1016/j.ijheatmasstransfer.2023.124754 SN - 0017-9310 VL - 218 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-58489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Klawoon, Alexander A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Robens-Radermacher, Annika T1 - Efficient bead-on-plate weld model for parameter estimation towards effective wire arc additive manufacturing simulation N2 - Despite the advances in hardware and software techniques, standard numerical methods fail in providing real-time simulations, especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control through the combination of process monitoring and automated feedback, which increases the flexibility and quality of a process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in the form of a beadon-plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced order model for the transient thermal problem of the bead-on-plate weld simulation is developed, allowing an efficient model calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method, a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple times in parameter estimation, control, and optimization. The welding torch is modeled by a moving heat source, which leads to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the temperature. The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized real-time simulation approach for welding experiment using synthetic as well as real measurement data. KW - Proper generalized decomposition KW - Model order reduction KW - Hardly separable problem KW - Additive manufacturing KW - Model calibration KW - Wire arc additive manufacturing PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-596502 SN - 0043-2288 SP - 1 EP - 18 PB - Springer AN - OPUS4-59650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Simulation of solidification during keyhole laser welding of thick plates T1 - Моделирование процесса кристаллизациипри лазерной сварке со сквозным проплавлением пластин большой толщины N2 - A method of solving the thermo-fluid dynamics problem is presented, enabling the prediction of the shape and dimensions of the weld pool during keyhole laser welding of thick plates. It is shown that the rear weld pool boundary can be satisfactorily approximated by a set of superellipses (Lamé curves). The presence of a convex rear weld pool boundary in the mid-plane has been observed experimentally and reproduced numerically. It was shown that in this zone the concentration of liquating impurities increases and the local solidification temperature decreases, contributing to the susceptibility to hot cracking. KW - Laser beam welding KW - Three-dimensional crystallization KW - Mathematical modeling KW - Superellipse KW - Thick steel plates PY - 2024 U6 - https://doi.org/10.34641/SP.2023.1062.5.041 VL - 5 SP - 31 EP - 36 AN - OPUS4-59639 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabitz, Konstantin Manuel A1 - Antretter, Thomas A1 - Rethmeier, Michael A1 - El-Sari, Bassel A1 - Schubert, Holger A1 - Hilpert, Benjamin A1 - Gruber, Martin A1 - Sierlinger, Robert A1 - Ecker, Werner T1 - Numerical and experimental assessment of liquid metal embrittlement in externally loaded spot welds N2 - Zinc-based surface coatings are widely applied with high-strength steels in automotive industry. Some of these base materials show an increased brittle cracking risk during loading. It is necessary to examine electrogalvanized and uncoated samples of a high strength steel susceptible to liquid metal embrittlement during spot welding with applied external load. Therefore, a newly developed tensile test method with a simultaneously applied spot weld is conducted. A fully coupled 3D electrical, thermal, metallurgical and mechanical finite element model depicting the resistant spot welding process combined with the tensile test conducted is mandatory to correct geometric influences of the sample geometry and provides insights into the sample’s time dependent local loading. With increasing external loads, the morphology of the brittle cracks formed is affected more than the crack depth. The validated finite element model applies newly developed damage indicators to predict and explain the liquid metal embrittlement cracking onset and development as well as even ductile failure. KW - Resistance spot welding KW - Finite element simulation KW - Advanced high-strength steel KW - Liquid metal embrittlement KW - Damage prediction KW - Tensile resistance spot welding experiment PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-594848 SN - 0043-2288 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-59484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - A fundamental study of physical mechanisms of wineglass-shaped fusion zone profile in laser melting N2 - The fusion zone geometry in laser melting processes e.g., laser welding and laser-based additive manufacturing, of metallic materials has commonly a wineglass-shaped profile which is critical to the grain orientation and stress distribution. Hereby, we adopt for the first time a decoupling work through a combination of multi-physics modelling and experiments to reveal the fundamental mechanisms of this special morphology. Two physicsbased easy-to-use metal vapour models are proposed to consider the vapour’s momentum and thermal effects separately. It is found that the direct laser energy absorption and Marangoni shear stress which are widely hypothesised to dominate the wineglass-shape formation show only a minor influence. The additional heating from the metallic vapour plume rather than its momentum impact contributes predominantly to the enlarging of the molten pool top region, resulting directly in the formation of the wineglass-shaped fusion zone. The generality of the plume heating effect is also validated in two types of materials (steel and Al) in a wide range of parameters. KW - Laser melting KW - Fusion zone profile KW - Wineglass shape KW - Multi-physical modelling KW - Metallic vapour plume KW - Steel and Al PY - 2024 U6 - https://doi.org/10.1016/j.jmatprotec.2023.118265 SN - 0924-0136 VL - 324 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-59692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Gook, S. A1 - Rethmeier, Michael T1 - KI zur Prozessüberwachung im Unterpulverschweißen N2 - Beim Unterpulverschweißen sind die Prozessgeräusche ein Indikator für eine gute Fügequalität. Diese Beurteilung kann i.d.R. nur von einer erfahrenen Fachkraft durchgeführt werden. Eine kürzlich entwickelte künstliche Intelligenz kann automatisch das akustische Prozesssignal anhand vortrainierter Merkmale klassifizieren und die Fügequalität anhand des Geräuschs beurteilen. Der Algorithmus, einmal richtig trainiert, kann den Prüfaufwand beim Unterpulverschweißen deutlich reduzieren. KW - Unterpulverschweißen KW - Künstliche Intelligenz KW - Prozessüberwachung KW - Körperschall PY - 2024 SP - 1 EP - 2 AN - OPUS4-59483 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical analysis of the effect of an oscillating metal vapor plume on the keyhole and molten pool behavior during deep penetration laser beam welding N2 - The effect of the oscillating metal vapor plume on the keyhole and molten pool behavior during the laser beam welding of AlMg3 aluminum alloys is investigated by experimental and numerical methods. The real-time height of the metal vapor plume is measured by high-speed camera observation. The obtained experimental results are used to evaluate the additional heating source and laser beam attenuation caused by the scattering and absorption based on the Beer–Lambert theory. Furthermore, the dynamic behavior of the metal vapor plume is incorporated into a 3D transient heat transfer and fluid flow model, coupled with the ray tracing method, for the laser beam welding of the AlMg3 alloy. It is found that additional heating resulting from the scattered and absorbed laser beam energy by the metal vapor plume significantly expands the shape of the molten pool on the top region. Moreover, the oscillating metal vapor plume caused the fluctuation of the high-temperature region in the molten pool. The probability of keyhole collapse at the bottom increases 17% due to the oscillating laser power induced by the laser beam attenuation. The internal interplay between the metal vapor plume, molten pool shape, and keyhole collapse is obtained. The developed model has been validated by experiments, which shows a good agreement. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Deep penetration laser beam welding KW - Numerical simulation KW - Oscillating vapor plume KW - Keyhole collapse PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-587978 SN - 1938-1387 SN - 1042-346X VL - 35 IS - 4 SP - 1 EP - 10 PB - AIP Publishing CY - Melville, NY AN - OPUS4-58797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study on the formation of a bulging region in partial penetration laser beam welding N2 - A transient three-dimensional thermo-fluid dynamics numerical model was developed to study the formation of a bulging region in partial penetration laser beam welding. The model accounts for the coupling between the fluid flow, the heat transfer, and the keyhole dynamics by considering the effects of multiple reflections and Fresnel absorption of the laser beam in the keyhole, the phase transitions during melting and evaporating, the thermo-capillary convection, the natural convection, and the phase-specific and temperature-dependent material properties up to the evaporation temperature. The validity of the model was backed up by experimentally obtained data, including the drilling time, the weld pool length, the local temperature history outside the weld pool, the process efficiency, and a range of metallographic crosssections. The model was applied for the cases of partial penetration laser beam welding of 8 mm and 12 mm thick unalloyed steel sheets. The obtained experimental and numerical results reveal that the bulging region forms transiently depending on the penetration depth of the weld, showing a tendency to transition from a slight bulging to a fully developed bulging region between penetration depths of 6 mm and 9 mm, respectively. T2 - 13th International Seminar "Numerical Analysis of Weldability" CY - Seggau, Austria DA - 04.09.2022 KW - Laser beam welding KW - Deep penetration KW - Bulge formation KW - Numerical modeling PY - 2023 SN - 978-3-85125-968-1 SN - 978-3-85125-969-8 SN - 2410-0544 VL - 13 SP - 101 EP - 126 PB - Verlag der Technischen Universität Graz AN - OPUS4-58802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Kising, Pascal A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Rethmeier, Michael T1 - Numerical analysis of the dependency of the weld pool shape on turbulence and thermodynamic activity of solutes in laser beam welding of unalloyed steels N2 - A three-dimensional numerical model was developed to accurately predict the steady-state weld pool shape in full penetration laser beam welding. The model accounts for the coupling between the heat transfer and the fluid dynamics by considering the effects of solid/liquid phase transition, thermo-capillary convection, natural convection, and phase-specific and temperature-dependent material properties up to the evaporation temperature. A fixed right circular cone was utilized as a keyhole geometry to consider the heat absorbed from the laser beam. The model was used to analyze the influence of the thermodynamic activity of solutes and turbulence on the weld pool shape. A mesh sensitivity analysis was performed on a hybrid mesh combining hexahedral and tetrahedral elements. For the case of full penetration laser beam welding of 8 mm thick unalloyed steel sheets, the dependence of the weld pool shape on the surface-active element sulfur was found to be negligible. The analysis of the results showed that a laminar formulation is sufficient for accurately predicting the weld pool shape since the turbulence has a minor impact on the flow dynamics in the weld pool. The validity of the numerical results was backed up by experimental measurements and observations, including weld pool length, local temperature history, and a range of metallographic crosssections. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Weld pool shape KW - Numerical modeling KW - Laser beam welding KW - Thermo-capillary convection KW - Turbulence PY - 2023 SN - 978-3-85125-968-1 SN - 978-3-85125-969-8 SN - 2410-0544 VL - 13 SP - 161 EP - 188 PB - Verlag der Technischen Universität Graz AN - OPUS4-58803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Numerical analysis of the influence of an auxiliary oscillating magnetic field on suppressing the porosity formation in deep penetration laser beam alloys of aluminum alloys N2 - The contactless magnetohydrodynamic technology has been considered as a potential and promising method to improve the weld qualities of deep penetration laser beam welding. In this paper, numerical investigations are conducted to study the influence of the auxiliary oscillating magnetic field on the porosity suppression in laser beam welding of 5754 aluminum alloy. To obtain a deeper insight into the suppression mechanism, a three-dimensional transient multi-physical model is developed to calculate the heat transfer, fluid flow, keyhole dynamic, and magnetohydrodynamics. A ray tracing algorithm is employed to calculate the laser energy distribution on the keyhole wall. A time-averaged downward Lorentz force is produced by an oscillating magnetic field. This force acts in the molten pool, leading to a dominant downward flow motion in the longitudinal section, which blocks the bubble migration from the keyhole tip to the rear part of the molten pool. Therefore, the possibility for the bubbles to be captured by the solidification front is reduced. The electromagnetic expulsive force provides an additional upward escaping speed for the bubbles of 1 m/s ~ 5 m/s in the lower and middle region of the molten pool. The simulation results are in a good agreement with experimental measurements. Based on the results obtained in this study, a better understanding of the underlying physics in laser beam welding enhanced by an auxiliary oscillating magnetic field can be provided and thus the welding process can be further optimized reducing the porosity formation. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Deep penetration laser beam welding KW - Oscillating magnetic field KW - Numerical simulation KW - Porosity KW - Molten pool behaviour PY - 2023 SN - 2410-0544 VL - 13 SP - 237 EP - 254 PB - Verlag der Technischen Universität Graz AN - OPUS4-58804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -