TY - JOUR A1 - Maack, Stefan A1 - Kneib, G. T1 - Elastic wave propagation of ultrasound in bituminous road surfaces - simulations and measurements JF - The e-journal of nondestructive testing & ultrasonics N2 - Maintenance costs of road infrastructure are increasing steadily. The main cause of this is the nearly exponential increase of traffic during the last decades. Adverse environmental impacts on infrastructure get more and more important as well. Therefore, it is important to determine how limited financial resources can be directed with an optimum pay-out. Often a decision has to be made whether existing structures have to be rebuilt or repaired based on the condition of the structures. The present study takes first steps towards the usage of low-frequency ultrasound as a tool to evaluate the road condition. The overall aim is to derive a prediction model for future road conditions. In order to better understand and interpret recorded wave fields simulations of elastic wave propagation in layered and scattering road models have been performed. The study combined investigations in the laboratory with field measurements. In a series of extensive laboratory tests with different asphalt mixtures characteristic wave properties have been derived. Travel time (resp. velocity) as important material parameter has been investigated for different wave types, different centre frequencies and at various temperatures. An investigation of the directivity of wave radiation in the heterogeneous asphalt bodies led to an estimate of the related disturbing influences. Based on the laboratory results field measurements were performed on a real road and the records were processed to identify layers, propagation speeds and attenuation. The results were verified by a series of simulations. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Bituminous material KW - Road inspection KW - Elastic waves KW - Ultrasound KW - Non-destructive testing PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345364 UR - https://www.ndt.net/?id=18421 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-34536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -