TY - JOUR A1 - Scheuerlein, C. A1 - Andrieux, J. A1 - Michels, M. A1 - Lackner, F. A1 - Chiriac, R. A1 - Hagner, M. A1 - Di Michiel, M. A1 - Meyer, Christian A1 - Toche, F. ED - Foley, C. P. T1 - Effect of the fabrication route on the phase and volume changes during the reaction heat treatment of Nb3Sn superconducting wires N2 - Accelerator magnets that can reach magnetic fields well beyond the Nb-Ti performance limits are presently being built and developed, using Nb3Sn superconductors. This technology requires reaction heat treatment (RHT) of the magnet coils, during which Nb3Sn is formed from its ductile precursor materials (a “wind and react” approach). The Nb3Sn microstructure and microchemistry are strongly influenced by the conductor fabrication route, and by the Phase changes during RHT. By combining in situ differential scanning calorimetry, high Energy synchrotron x-ray diffraction, and micro-tomography experiments, we have acquired a unique data set that describes in great detail the phase and microstructure changes that take place during the processing of restacked rod process (RRP), powder-in-tube (PIT), and internal tin (IT) Nb3Sn wires. At temperatures below 450 ° the phase evolutions in the three wire types are similar, with respectively solid state interdiffusion of Cu and Sn, Cu6Sn5 formation, and Cu6Sn5 peritectic transformation. Distinct differences in phase evolutions in the wires are found when temperatures exceed 450 °C. The volume changes of the conductor during RHT are a difficulty in the production of Nb3Sn accelerator magnets. We compare the wire diameter changes measured in situ by dilatometry with the phase and void volume evolution of the three types of Nb3Sn wire. Unlike the Nb3Sn wire length changes, the wire diameter evolution is characteristic for each Nb3Sn wire type. The strongest volume increase, of about 5%, is observed in the RRP wire, where the main diameter increase occurs above 600 °C upon Nb3Sn formation. KW - Nb3Sn KW - Microstructure KW - Phase transformations KW - Volume changes KW - X-ray diffraction KW - Differential scanning calorimetry KW - Synchrotron micro-tomography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505128 DO - https://doi.org/10.1088/1361-6668/ab627c VL - 33 IS - 3 SP - 034004 PB - IOP Publishing CY - Bristol (UK) AN - OPUS4-50512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A. A1 - Saiyah, A. A1 - Khafagi, S. A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - Shielded metal arc welding of 9%Ni steel using matching ferritic filler metal N2 - Motivated by the tensile strength loss of 9%Ni steel arc welded joints made using Ni-based austenitic filler metals, the feasibility of maintaining the tensile strength using matching ferritic filler metal has been demonstrated. In comparison with shielded metal arc welded joint made using Ni-based austenitic electrode ENiCrMo-6, higher tensile strength comparable to that of the base metal was obtained using matching ferritic electrode. Besides, sufficient impact toughness energies with much lower mismatch were obtained for weld metal and heat-affected zone. Welded joint with a lower mechanical mismatching is of considerable importance for achieving acceptable combination of tensile strength and impact toughness.Abetter combination of These mechanical properties is ensured by applying a post weld heat treatment. KW - Mechanical mismatching KW - Mechanical properties KW - Microstructure KW - Austenitic welding electrode KW - Matching ferritic welding electrode PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1846936 SN - 1362-1718 SP - 1 EP - 7 PB - Taylor & Francis AN - OPUS4-51835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaytsev, D. A1 - Funk, Alexander T1 - On the crack evolutional in human dentin under uniaxial compression imaged by high resolution tomography N2 - An observation of the fracture process in front of the crack tip inside a dentin sample by means of ex-situ X-ray computed tomography after uniaxial compression at different deformation values was carried out in this work. This ex-situ approach allowed the microstructure and fracturing process of human dentin to be observed during loading. No cracks are observed up to the middle part of the irreversible deformation in the samples at least visible at 0.4μm resolution. First cracks appeared before the mechanical stress reached the compression strength. The growth of the cracks is realized by connecting the main cracks with satellite cracks that lie ahead of the main crack tip and parallel its trajectory. When under the stress load the deformation in the sample exceeds the deformation at the compression strength of dentin, an appearance of micro-cracks in front of the main cracks is observed. The micro-cracks are inclined (~60°) to the trajectory of the main cracks. The further growth of the main cracks is not realized due to the junction with the micro-cracks; we assume that the micro-cracks dissipate the energy of the main crack and suppressed its growth. These micro-cracks serve as additional stress accommodations, therefore the samples do not break apart after the compression test, as it is usually observed under bending and tension tests. KW - Dentin KW - Crack evolution KW - Compression strength KW - Mechanical properties KW - Microstructure KW - Ex-situ X-ray computed tomography PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594810 DO - https://doi.org/10.18149/MPM.5152023_5 SN - 1605-8119 VL - 51 IS - 5 SP - 38 EP - 51 PB - Advanced Study Center CY - St. Petersburg AN - OPUS4-59481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. A1 - Winkelmann, Aimo T1 - Advanced EBSD Pattern Interpretation through Iterative Post-Processing N2 - Since the BSE signal depends on many factors, like the chemistry of the phase and the acceleration voltage, the size and position of the detector array is (slightly) different from phase to phase so that an (iterative) post-processing of the stored patterns is highly recommended. The derived BSE signal can be used for phase assignment in high resolution and high speed maps when EBSD fails and/or EDS (energy dispersive spectroscopy) needs too much time for a suitable and parallel signal acquisition. KW - Electron backscatter diffraction KW - Phase identification KW - Microstructure KW - SEM PY - 2013 DO - https://doi.org/10.1017/S1431927613005631 VL - 19 IS - Suppl. 2 SP - 728 EP - 729 AN - OPUS4-37986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Link, T. A1 - Nolze, Gert A1 - Loshchinin, Yu. V. A1 - Gerstein, G. T1 - Thermal stability of the structure of a heat-resistant cobalt alloy hardened with intermetallic γ'-phase precipitates N2 - The thermal stability of the microstructure of a heat-resistant cobalt alloy, which consists of a γ solid solution strengthened with γ'-phase precipitates, has been studied. The temperature behavior of the dissolution of the hardening γ' phase and the kinetics of its coarsening at 700 and 800°C have been determined. It is found that, during prolonged annealing at 800°C, the γ' → β phase transformation occurs. KW - Superalloy KW - Microstructure KW - Hardening KW - Electron backscatter diffraction KW - TEM PY - 2016 DO - https://doi.org/10.1134/S0036029516040078 SN - 0036-0295 VL - 2016 IS - 4 SP - 286 EP - 291 PB - Pleiades Publishing AN - OPUS4-37768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering N2 - The current study reports on the effect of the sintering temperature and secondary carbide (VC, Mo2C and TiC) and Mo additions on the NbC grain growth, microstructure evolution as well as concomitant Vickers hardness (HV30) and fracture toughness of Ni-bonded NbC cermets. KW - Cermet KW - Niobium carbide KW - Sintering KW - Microstructure KW - Mechanical properties PY - 2018 DO - https://doi.org/10.1016/j.ijrmhm.2017.12.013 SN - 0263-4368 VL - 72 SP - 63 EP - 70 PB - Elsevier Science CY - Amsterdam AN - OPUS4-43582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Frank A1 - von Werder, Julia A1 - Manninger, Tanja A1 - Maier, Bärbel A1 - Fladt, Matthias A1 - Simon, Sebastian A1 - Gardei, Andre A1 - Höhnel, Desirée A1 - Pirskawetz, Stephan A1 - Meng, Birgit T1 - A multiscale and multimethod approach to assess and mitigate concrete damage due to alkali-silica reaction N2 - Alkali-silica reaction (ASR) is a chemical reaction within concrete which can lead over time to cracking and spalling. Due to the complexity of the problem, it still causes damage to concrete constructions worldwide. The publication aims to illustrate the interdisciplinary research of the German Federal Institute for Materials Research and Testing (BAM) within the last 20 years, considering all aspects of ASR topics from the macro to the micro level. First, methods for characterization and assessment of ASR risks and reaction products used at BAM are explained and classified in the international context. Subsequently the added value of the research approach by combining different, preferably nondestructive, methods across all scales is explained using specific examples from a variety of research projects. Aspects covered range from the development of new test-setups to assess aggregate reactivity, to analysis of microstructure and reaction products using microscopical, spectroscopical and X-ray methods, to the development of a testing methodology for existing concrete pavements including in-depth analysis of the visual damage indicator and the de-icing salt input using innovative testing techniques. Finally, research regarding a novel avoidance strategy that makes use of internal hydrophobization of the concrete mix is presented. KW - Mitigation strategies KW - Concrete KW - Damage analysis KW - Alkali silica reaction KW - Road pavement KW - Accelerated testing KW - Non-destructive testing KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:101:1-2022052515100075090235 DO - https://doi.org/10.1002/adem.202101346 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 36 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion N2 - AlSi10Mg is one of the most applied alloys for laser powder bed fusion (LPBF) technology, due to its great possibilities for implementing new lightweight concepts such as in automotive industries. For the component design it is necessary to know about the mechanical properties and the mechanical behaviour. The many published strength properties of LPBF processed AlSi10Mg show significant differences up to approximately 225 MPa in ultimate tensile strength (UTS) and 195 MPa in yield strength (YS). To understand these varying properties, a ring trial was carried out manufacturing specimens on 6 LPBF machines with different parameters and build-up strategies. They were studied in the as-built (AB) condition and after heat treatment at 300 °C for 30 min, respectively. For examining the mechanical properties, tensile tests and hardness measurements were carried out. The microstructure was characterized by optical light microscopy (OM), field emission scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The identified differences in strength properties were discussed based on the 4 strengthening mechanism known for metallic materials and at the background of material defects. It was found that the size of the typical sub-cell structure of LPBF AlSi10Mg affected substantially the mechanical properties in the AB condition, in which with decreasing sub-cell size strength increased. If heat treatment was applied, the strength properties decreased and did not differ anymore. Since annealing led to coarsened sub-cells, whereas the grains itself did not change in size, the influence of sub-cell structure on strength was further confirmed. In addition, acicular precipitates in the AB condition were observed at specimens from one LPBF machine showing the lowest tensile elongation. KW - Laser powder bed fusion KW - AlSi10Mg KW - Mechanical properties KW - Microstructure PY - 2020 DO - https://doi.org/10.1016/j.msea.2020.138976 VL - 776 SP - Paper 138976, 12 PB - Elsevier B.V. AN - OPUS4-50316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonego, M. A1 - Madia, Mauro A1 - Eder, M. A1 - Fleck, C. A1 - Pessan, L. A. T1 - Microstructural features influencing the mechanical performance of the Brazil nut (Bertholletia excelsa) mesocarp N2 - Brazil nut (Bertholletia excelsa) fruits are capable of resisting high mechanical forces when released from trees as tall as 50 m, as well as during animal dispersal by sharp-teethed rodents. Thick mesocarp plays a crucial part in seed protection. We investigated the role of microstructure and how sclereids, fibers, and voids affect nutshell performance using compression, tensile and fracture toughness tests. Fractured specimens were analyzed through scanning electron microscopy (SEM) and microtomography (microCT). Mesocarp showed high deformability (strain at max. stress of ~30%) under compression loading, a critical tensile strength of ~24.9 MPa, a Weibull modulus of ~3, and an elastic modulus of ~2 GPa in the tensile test. The fracture toughness, estimated through the work of fracture of SENB tests, reached ~2 kJ/m2. The thick and strong walls of mesocarp cells, with a weaker boundary between them (compound middle lamella), promote a tortuous intercellular crack path. Several toughening mechanisms, such as crack deflection, breaking of fiber bundles, fiber pullout and bridging as well as crack branching, occur depending on how fiber bundles and voids are oriented. KW - Toughening mechanisms KW - Brazil nut Mesocarp KW - Microstructure KW - Mechanical properties PY - 2021 DO - https://doi.org/10.1016/j.jmbbm.2020.104306 VL - 116 SP - 104306 PB - Elsevier Ltd. AN - OPUS4-52081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Marieke A1 - von Werder, Julia A1 - Meng, Birgit T1 - Investigation of the zonation of thermally treated ultra high performance concrete N2 - Ultra high performance concrete (UHPC) is characterised by its high compressive strength of more than 120 MPa and its high durability. With thermal treatment at 90°C, hydration is accelerated and a strength comparable to the 28-day strength can be achieved immediately after the treatment. In applying Optimum process conditions, the strength can be even further increased by up to 30%. Previous Research showed that thermal treatment can lead to inhomogeneities in form of a visible zonation within the cross-section, if the UHPC is not protected sufficiently from desiccation. This led to the question, to what extent the related changes in mechanical properties, microstructure and phase composition are of relevance for the performance of the UHPC. First investigations of small specimens thermally treated without protection exhibited a decrease of compressive strength, indicating that the zonation aspect requires further research. In this study the zonation of UHPC treated thermally at 90°C is investigated after applying four different procedures of treatment and curing in comparison. The samples are characterized with respect to their chemistry, mineral composition and microstructure to allow an assessment on durability and strength development, with focus on potential depth dependent changes associated with the zonation. The measurements reveal the formation of a visible zonation in case of unprotected treatment, if followed by immersion in water. The compressive strength is not significantly impaired, but a decrease in bending strength gives reason for concern. Further results allow clear correlation with changes in pore structure, whereas the interpretation of relationships with phase distribution, degree of hydration, microchemistry is more complex and therefore, provides only partial clarification. KW - UHPC KW - Thermal treatment KW - Zonation KW - Desiccation KW - Microstructure KW - Durability PY - 2020 DO - https://doi.org/10.1016/j.conbuildmat.2020.119187 VL - 254 SP - 119187 PB - Elsevier Ltd. AN - OPUS4-50828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -