TY - CHAP A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schroepfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas ED - da Silva, L. F. M. ED - Martins, P. A. F. ED - Reisgen, U. T1 - Nickel-Iron-Alloy Modification to Enhance Additively Welded Microstructure for Subsequent Milling N2 - The aerospace industry uses nickel–iron alloys, e.g., FeNi36, to create moulding tools for composite materials, since these alloys have a low coefficient of thermal expansion. Nickel–iron alloys are hard-to-cut materials. The moulding tools are large in size and involve complex structures, making them cost-intensive and difficult to manufacture. Thus, the focus is set on additive manufacturing, which can additionally enable the repair of components in order to eliminate local defects. However, the process usually results in a heterogeneous microstructure and anisotropic mechanical properties. As there is a high demand for a precise and exact fit of the precision moulds and the surface quality, the welded components must be subsequently machined. Additionally, inhomogeneous microstructure may lead to unstable cutting forces and conditions. Consequently, a modification of the microstructure morphology is achieved through specific alloy modifications in order to stabilise and improve the subsequent machining process. Therefore, titanium and zirconium are chosen as modification elements with a maximum 1% weight percent and are added to nickel–iron alloy powder. The elements are alloyed, and build-up welded by plasma-transferred-arcwelding. The resulting microstructure morphology of the welded wall structure and the machining properties are then determined. It can be shown that titanium has a significant effect on the structural morphology of the welded layers, as well as on the machining. KW - Alloy modification KW - Alloy 36 KW - Plasma-transferred arc welding KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SN - 978-3-030-95463-5 DO - https://doi.org/10.1007/978-3-030-95463-5_6 SP - 85 EP - 99 PB - Springer CY - Cham AN - OPUS4-55484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Determination of residual stress evolution during repair welding of high-strength steel components N2 - During the assembly of steel structures, unacceptable weld defects may be found. An economical solution is local thermal gouging of the affected areas and re-welding. Due to high shrinkage restraints of repair weld and sur- rounding structure, high global and local welding stresses superimpose, and may lead to cracking and component failure, especially in connection with the degraded microstructure and mechanical properties of high-strength steels during the repair process. Component-related investigations of high-strength steels (FOSTA P1311/ IGF20162N) focus on welding residual stress evolution during local thermal gouging and rewelding. In this study, repair welding of S500MLO (EN 10225) is carried out using in-situ digital image correlation (DIC) and ex- situ X-ray diffraction (XRD) to analyse strains and stresses. Self-restrained slit specimen geometries were identified representing defined rigidity conditions of repair welds of real components, which were quantified using the restraint intensity concept. The specimens were rewelded with constant welding heat control and parameters. Weld specimens exhibited significantly increased transverse residual stresses with higher transverse restraint intensities, in the weld metal, and in the heat affected zone. Transverse stresses along the weld seam decrease at the weld seam ends leading to different stress state during gouging and welding. XRD analysis of the longitudinal and transverse local residual stresses after cooling to RT showed a good comparability with global DIC analyses. KW - Repair-welding KW - High-strength steels KW - X-ray diffraction KW - Digital image correlation KW - Residual stresses PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555672 DO - https://doi.org/10.1016/j.finmec.2022.100073 SN - 2666-3597 VL - 6 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-55567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SP - 57 EP - 67 AN - OPUS4-55430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Wesling, V. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Modification of Co–Cr alloys to optimize additively welded microstructures and subsequent surface finishing N2 - Cobalt chromium alloys are often used in turbine and plant construction. This is based on their high thermal and mechanical stress resistance as well as their high wear resistance to corrosive and abrasive loads. However, cobalt is a cost-intensive material that is difficult to machine. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components in many sectors. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. As a result of the high stresses on the components and requirements for a high surface quality, a complementary use of additive and machining manufacturing processes is necessary. Thereby, Co–Cr alloys are extremely challenging for machining with geometrically defined cutting edges because of their low thermal conductivity combined with high strength and toughness. An approach to solve this problem is to refine and homogenise the microstructure. This is achieved by modifying the alloy with elements zirconium and hafnium, which are added up to a maximum of 1 wt.-%. A reduction of the process forces and stresses on the tool and work piece surface is also achievable via hybrid milling processes. There are already studies on the combined use of additive and machining manufacturing processes based on laser technology. However, knowledge based on powder and wire-based arc processes is important, as these processes are more widespread. Furthermore, the effects on the surface zone of additively manufactured components by hybrid finish milling have not yet been a subject of research. The results show that the structural morphology could be significantly influenced with the addition of zirconium and hafnium. KW - Alloy modification KW - Ultrasonic-assisted milling KW - Plasma-transferred arc welding KW - Co-Cr-alloy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554182 DO - https://doi.org/10.1007/s40194-022-01334-0 SN - 0043-2288 SN - 1878-6669 SP - 1 EP - 13 PB - Springer CY - Heidelberg AN - OPUS4-55418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Eissel, A. A1 - Treutler, K. A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912) is an alloy with 36% nickel and 64% iron and is generally classified as a difficult-to-cut material. Increasingly complex structures and the optimization of resource efficiency are making additive manufacturing (AM) more and more attractive for the manufacture or repair of components. Subsequent machining of AM components is unavoidable for its final contour. By using modern, hybrid machining processes, e.g., ultrasonic-assisted milling (US), it is possible to improve the cutting situation regarding the resulting surface integrity as well as the cutting force. Part I deals with the influence of the alloying elements Ti, Zr, and Hf on the microstructure and the hardness of the initial alloy 36. Part II focusses on the effect of the alloy modifications and the ultrasonic assistance on machinability as well as on the surface integrity after finish-milling. The results show a highly significant influence of the ultrasonic assistance. The cutting force during the US is reduced by over 50% and the roughness of approx. 50% compared to conventional milling (CM) for all materials investigated. Moreover, the US causes a defect-free surface and induces near-surface compressive residual stresses. CM leads to a near-surface stress state of approx. 0 MPa. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy 36 KW - Ultrasonic-assisted milling KW - Surface integrity KW - Modification of structural morphology PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566609 DO - https://doi.org/10.1007/s40194-022-01438-7 SP - 1 EP - 8 PB - Springer CY - Heidelberg AN - OPUS4-56660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, Julien A1 - Schröpfer, Dirk A1 - Hamacher, M. A1 - Michels, H. A1 - Hamm, C. A1 - Appelt, M. A1 - Börner, Andreas A1 - Kannengießer, Thomas T1 - Tool development for hybrid finishing milling of iron aluminides N2 - The importance of high-temperature materials made of iron aluminides (FeAl) has been increasing in light weight applications, e.g., airplane turbines, due to the high material’s specific strength. However, the highly economic production by means of permanent mold casting involves special microstructures for Fe26Al4Mo0.5Ti1B alloy components leading to difficult machinability for subsequent finishing milling and low surface qualities. Major effects of tool and machining parameter variation incorporating ultrasonic assistance on the milling process and surface integrity are shown. Loads for tool and component surface are significantly adjustable to enable an economic process chain regarding the surface integrity of safety-relevant components. KW - Ultrasonic-assisted milling KW - Iron aluminide KW - Surface integrity KW - Tool wear PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566294 DO - https://doi.org/10.1016/j.procir.2022.03.123 SN - 2212-8271 VL - 108 SP - 793 EP - 798 PB - Elsevier B.V. AN - OPUS4-56629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Heat control and design‑related effects on the properties and welding stresses in WAAM components of high‑strength structural steels N2 - Commercial high-strength fller metals for wire arc additive manufacturing (WAAM) are already available. However, widespread industrial use is currently limited due to a lack of quantitative knowledge and guidelines regarding welding stresses and component safety during manufacture and operation for WAAM structures. In a joint research project, the process- and material-related as well as design infuences associated with residual stress formation and the risk of cold cracking are being investigated. For this purpose, reference specimens are welded fully automated with defned dimensions and systematic variation of heat control using a special, high-strength WAAM fller metal (yield strength>790 MPa). Heat control is varied by means of heat input (200–650 kJ/m) and interlayer temperature (100–300 °C). The ∆t8/5 cooling times correspond with the recommendations of fller metal producers (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. High heat input leads to a lower tensile stress in the component and may cause unfavorable microstructure and mechanical properties. However, a sufciently low interlayer temperature is likely to be suitable for obtaining adequate properties at a reduced tensile stress level when welding with high heat input. The component design afects heat dissipation conditions and the intensity of restraint during welding and has a signifcant infuence on the residual stress. These complex interactions are analyzed within this investigation. The aim is to provide easily applicable processing recommendations and standard specifcations for an economical, appropriate, and crack-safe WAAM of high-strength steels. KW - GMA welding KW - Additive manufacturing KW - Residual stresses KW - High-strength steel KW - Cold cracking safety KW - Heat control KW - Wind energy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567397 DO - https://doi.org/10.1007/s40194-022-01450-x SN - 1878-6669 VL - 2022 SP - 1 EP - 11 PB - Springer CY - Berlin AN - OPUS4-56739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Gustus, R. A1 - Treutler, K. A1 - Wesling, V. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Alloy modification for additive manufactured Ni alloy components—part I: effect on microstructure and hardness of Invar alloy N2 - Alloy 36 (1.3912), also known as “Invar,” is an alloy with 36% nickel. The alloy has a remarkably low thermal expansion coefficient in certain temperature ranges. This peculiarity is called the invar effect, which was discovered in 1896 by the Swiss physicist Charles Édouard Guillaume. Therefore, it is used in applications in which dimensional stability is critical, such as molding tools for composite materials in aerospace, automotive applications, or liquified natural gas (LNG) cargo tanks. Moreover, increasingly complex structures and the optimization of resource efficiency also require additive manufacturing steps for the production or repair of components. Additively manufactured components have a heterogeneous microstructure and anisotropic mechanical properties. In addition, the manufactured components require subsequent machining surface finishing, like finish milling, to achieve their final contour. Nickel iron alloys are difficult to machine. Additionally, inhomogeneous microstructure may lead to unstable cutting forces and conditions. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr, and Hf up to a maximum of 0.33 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Furthermore, one modification is applied to metal arc welding process and investigated. Part II focuses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy modification KW - Alloy 36 KW - Plasma-transferred arc welding PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571777 DO - https://doi.org/10.1007/s40194-023-01510-w SN - 0043-2288 SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-57177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Rapid solidification during welding of duplex stainless steels – in situ measurement of the chemical concentration by Laser-Induced Breakdown Spectroscopy (LIBS) N2 - Duplex stainless steels (DSS) are frequently used, especially in applications requiring high strength combined with high corrosion resistance in aggressive media. Examples include power plant components and maritime structures. During welding of these steels, local variations in chemical composition can occur. This results in ferritization of the material and negatively affects the mechanical properties of the components. In this work, tungsten inert gas (TIG) welding experiments were performed with DSS. Chemical composition analysis was realized in situ by using Laser Induced Breakdown Spectroscopy (LIBS). The aim of the work is to quantitatively measure the chemical composition in the weld seam of various DSS and to identify possible influences of welding parameters on the microstructure of the material. The chemical concentrations of the main alloying elements Cr, Ni, Mn on the surface of the sample during the welding process and the cooling process were measured. Mn and Ni are austenite stabilizers and their content increases during welding by using certain high alloyed filler material. Spectra were recorded every 1.3 s at a spacing of approximately 2 mm. During the cooling process the location of the measurement was not changed. The LIBS method is proofed to be suitable for the quantitative representation of the chemical compositions during the welding process. T2 - ICASP-6 CY - Le Bischenberg, France DA - 20.06.2022 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding KW - Evaporation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571308 DO - https://doi.org/10.1088/1757-899X/1274/1/012018 VL - 1274 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-57130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas ED - Lippold, J. ED - Boellinghaus, Thomas ED - Richardson, I. T1 - Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process N2 - In order to satisfy the growing requirements towards lightweight design and resource efficiency in modern steel constructions, e.g., mobile cranes and bridges, high-strength steels with typical yield strength ≥ 690 MPa are coming into use to an increasing extent. However, these steels require special treatment in welding. The susceptibility for degradation of the mechanical properties in the presence of hydrogen increases significantly with increasing yield strength. In case of missing knowledge about how and the amount of hydrogen that is uptaken during welding, hydrogen-assisted cracking (HAC) can be a negative consequence. Moreover, modern weld technology like the modified spray arc process enables welding of narrower weld seams. In this context, a reduced number of weld beads, volume, and total heat input are technical and economical benefits. This work presents the influence of welding parameters on the diffusible hydrogen content in both (1) single-pass and (2) multi-layer welds. Different hydrogen concentrations were detected by varied contact tube distance, wire feed speed, arc length, and varied arc type (transitional arc and modified spray arc). The results show that all welding parameters have significant influence on the diffusible hydrogen concentration in the single-pass welds. By increasing the number of weld beads in case of multi-layer welding, the hydrogen concentration has been reduced. Whereby, differences in hydrogen concentrations between both arc types are present. KW - Hydrogen KW - MAG welding KW - High-strength steels KW - Process parameters PY - 2018 DO - https://doi.org/10.1007/s40194-017-0535-9 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 1 SP - 9 EP - 18 PB - Springer CY - Berlin Heidelberg AN - OPUS4-43864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -