TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 AN - OPUS4-55429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SP - 57 EP - 67 AN - OPUS4-55430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Investigations on influencing the microstructure of additively manufactured Co-Cr alloys to improve subsequent machining conditions N2 - Co-Cr alloys are frequently used for highly stressed components, especially in turbine and plant construction, due to their high resistance to thermal and mechanical stress, as well as to corrosive and abrasive loads. Furthermore, they are classified as difficult-to-cut materials because of their high strength and toughness as well as their low thermal conductivity. However, for Co, an increased cost and supply risk can be observed in recent years. Therefore, additive manufacturing (AM) offers significant economic advantages due to higher material efficiency regarding repair, modification, and manufacturing of such components. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. In addition, subsequent machining, particularly contour milling, is essential to generate the required complex contours and surfaces. Hence, additive and machining manufacturing processes need to be coordinated in a complementary way, especially due to additional challenges arising in milling of heterogeneous hard-to-cut microstructures. Recently, it has been shown that modern, hybrid cutting processes, such as ultrasonic-assisted milling (US), can improve the cutting situation. In this investigation, the Co-Cr initial alloy is additionally modified with Ti and Zr up to 1 wt.-% with the aim to enhance the homogeneity of the microstructure and, thus, the machinability. Hence the investigation includes finish milling tests of the AM components and the comparison of US and conventional machining. Both the modifications and the ultrasonic assistance exhibit a significant effect on the machining situation, e.g., US causes a higher surface integrity of the finish milled surfaces compared to conventional milling. T2 - International Congress on Welding, Additive Manufacturing and associated non destructive testing CY - Online meeting DA - 08.06.2022 KW - Co-Cr-alloy KW - Additive manufacturing KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 AN - OPUS4-55431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912), also known as “Invar”, is an alloy with 36% nickel. It was developed in 1897 by Guillaume and stands out for its very low thermal expansion coefficient. It is classified as a difficult-to-cut material and is commonly used for the production of fiber-reinforced composites in the field of mold construction. Additive manufacturing (AM) offers many economic advantages regarding the repair, modification and manufacture of entire components. Subsequent machining of the AM components is necessary to account for complex structures, final contours or defined surfaces. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr and Hf up to a maximum of 0.33 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Part II focusses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. Machining tests were carried out, to investigate the influence of ultrasonic assistance and the effects of modification elements Ti, Zr and Hf on the occurring cutting forces, temperatures and resulting surface integrity of the AM components made of alloy 36 and their modifications. The results show a significant positive influence of ultrasonic assistance on the resulting cutting force as well as on the roughness of all materials investigated. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy modification KW - Alloy 36 KW - Additive manufacturing KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 AN - OPUS4-55432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Madia, Mauro A1 - Pirling, T. A1 - Evans, Alexander A1 - Klaus, M. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Influence of a 265 °C heat treatment on the residual stress state of a PBF-LB/M AlSi10Mg alloy N2 - Laser Powder Bed Fusion (PBF-LB/M) additive manufacturing (AM) induces high magnitude residual stress (RS) in structures due to the extremely heterogeneous cooling and heating rates. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their generation and evolution after post-process heat treatments. In this study, one of the few of its kind, the RS relaxation induced in an as-built PBF-LB/M AlSi10Mg material by a low-temperature heat treatment (265 °C for 1 h) is studied by means of X-ray and neutron diffraction. Since the specimens are manufactured using a baseplate heated up to 200 °C, low RS are found in the as-built condition. After heat treatment a redistribution of the RS is observed, while their magnitude remains constant. It is proposed that the redistribution is induced by a repartition of stresses between the a-aluminium matrix and the silicon phase, as the morphology of the silicon phase is affected by the heat treatment. A considerable scatter is observed in the neutron diffraction RS profiles, which is principally correlated to the presence (or absence) of pockets of porosity developed at the borders of the chessboard pattern. KW - Neutron diffraction KW - Additive manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565115 DO - https://doi.org/10.1007/s10853-022-07997-w SN - 1573-4803 VL - 57 SP - 22082 EP - 22098 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-56511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Alloy modification for additive manufactured Ni alloy components Part I: Effect on microstructure and hardness N2 - Alloy 36 is an iron-based alloy with 36% nickel. It is used in applications in which dimensional stability is critical, such as molding tools for composite materials in aerospace and automotive applications. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components. Additively manufactured components have a heterogeneous microstructure and anisotropic mechanical properties. In addition, the manufactured components require subsequent machining surface finishing due to the high requirements. Nickel iron alloys are difficult to machine. Additionally, inhomogeneous microstructure may lead to unstable cutting forces and conditions. Alloy modifications are made to the alloy 36. For this purpose, titanium, zirconium and niobium are added up to 1 % by mass each. Plasma-Transferred-Arc is used for the welding tests. The hardness profile is determined on the transverse section. The initial structure as well as the modifications have an austenitic structure. The microstructure of the modifications of Alloy 36 with 1% Ti and 1% Zr is not refined, instead the grain size increases. T2 - IIW C-II Intermediate meeting CY - Online meeting DA - 17.03.2022 KW - Alloy modification KW - Alloy 36 KW - Additive manufacturing PY - 2022 AN - OPUS4-56622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - How Temperature Gradient Influences the Formation of Residual Stresses in Metallic Parts Made by L-PBF N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured (AM) parts and important factors for residual stress formation which have implications on structural integrity. This study examined the influence of heat input on the distribution of residual stresses in two prisms produced by laser powder bed fusion (L-PBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two distinct helix scanning strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. Residual stresses were characterised at one plane perpendicular to the building direction at half of its build height using neutron diffraction. In addition, the defect distribution was analysed via micro X-ray computed tomography (µCT) in a twin specimen. Both scanning strategies reveal residual stress distributions typical for AM: compressive stresses in the bulk and tensile stresses at the surface. However, temperature gradients and maximum stress levels differ due to the different heat input. Regarding the X-ray µCT results, they show an accumulation of defects at the corners where the laser direction turned through 90°. The results demonstrate that neutron diffraction and X-ray µCT can be successfully used as non-destructive methods to analyse through-thickness residual stress and defect distribution in AM parts, and in the presented case, illustrate the influence of scanning strategies. This approach contributes to deeper assessment of structural integrity of AM materials and components. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norwegen DA - 09.09.2019 KW - AGIL KW - Neutron diffraction KW - Thermography KW - Additive manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Werner, Tiago A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post-laser powder bed fusion stress-relieve treatments of stainless steel 316L N2 - This study reports on the stress relaxation potential of stress-relieving heat treatments for laser powder bed fused 316L. The residual stress is monitored non-destructively using neutron diffraction before and after the heat treatment. Moreover, the evolution of the microstructure is analysed using scanning electron microscopy. The results show, that a strong relaxation of the residual stress is obtained when applying a heat treatment temperature at 900°C. However, the loss of the cellular substructure needs to be considered when applying this heat treatment strategy. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Projekt AGIL - Alterung additiv gefertigter metallischer Materialien und Komponenten PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536045 DO - https://doi.org/10.1007/s11661-021-06472-6 SN - 1543-1940 VL - 52 IS - 12 SP - 5342 EP - 5356 PB - Springer CY - Boston AN - OPUS4-53604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Treutler, K. A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Nickel-iron-alloy modification to enhance additively welded microstructure for subsequent milling N2 - The aerospace industry uses nickel-iron-alloys to create moulding tools for composite materials because of the low coefficient of thermal expansion. These tools have a large-sized and complex structure, making them cost-intensive and difficult to manufacture. Therefore, the focus is set on additive manufacturing, which can additionally enable the repair of components in order to eliminate local defects. However, the process usually results in a heterogeneous microstructure and anisotropic mechanical properties. As there is a high demand for a precise and exact fit of the precision moulds and thus the surface quality, the welded components must be subsequently machined. Nickel-iron alloys are difficult to machine and an inhomogeneous microstructure also leads to unstable cutting forces. Consequently, a refinement and homogenisation of the microstructure morphology is achieved through specific alloy modifications in order to stabilise and improve the subsequent machining process. Studies on the refinement of FeNi 36 based on vacuum arc melting furnaces are used as a starting point. Therefore, titanium and niobium are chosen as modification elements with a maximum 1 % weight percent and are added to nickel-iron base alloy. The elements are alloyed and build-up welded by using plasma-transferred-arc welding. The resulting microstructure morphology of the welded wall structure and the machining properties are then determined. Furthermore, the influence on the coefficient of thermal expansion is investigated in connection with the modification and the welding process itself. It can be shown that even small amounts of niobium have a significant influence on the structural morphology of the welded layers during plasma-transferred-arc welding. T2 - 2nd international Conference on Advanced Joining Processes 2021 CY - Sintra, Portugal DA - 21.10.2021 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Nickel-iron-alloy KW - Additive manufacturing KW - Plasma transferred arc welding PY - 2021 AN - OPUS4-53635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are performed. The objective of the contribution is to investigate, under different heat treatment condition, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. T2 - Fatigue Design 2021 CY - Senlis, France DA - 17.11.2021 KW - AlSi10Mg KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2021 AN - OPUS4-53794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -