TY - JOUR A1 - Fink, Friedrich A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Identification and Classification of Technical Lignins by means of Principle Component Analysis and k-Nearest Neighbor Algorithm N2 - The characterization of technical lignins is a key step for the efficient use and processing of this material into valuable chemicals and for quality control. In this study 31 lignin samples were prepared from different biomass sources (hardwood, softwood, straw, grass) and different pulping processes (sulfite, Kraft, organosolv). Each lignin was analysed by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. Statistical analysis of the ATR-FT-IR spectra by means of principal component analysis (PCA) showed significant differences between the lignins. Hence, the samples can be separated by PCA according to the original biomass. The differences observed in the ATR-FT-IR spectra result primarily from the relative ratios of the p-hydroxyphenyl, guaiacyl and syringyl units. Only limited influence of the pulping process is reflected by the spectral data. The spectra do not differ between samples processed by Kraft or organosolv processes. Lignosulfonates are clearly distinguishable by ATR-FT-IR from the other samples. For the classification a model was created using the k-nearest neighbor (k NN) algorithm. Different data pretreatment steps were compared for k=1…20. For validation purposes, a 5-fold cross-validation was chosen and the different quality criteria Accuracy (Acc), Error Rate (Err), Sensitivity (TPR) and specificity (TNR) were introduced. The optimized model for k=4 gives values for Acc = 98.9 %, Err = 1.1 %, TPR = 99.2 % and TNR = 99.6 %. KW - Classification KW - PCA KW - K-nearest neighbor KW - FT-IR KW - Technical lignin PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533855 DO - https://doi.org/10.1002/cmtd.202100028 VL - 1 IS - 8 SP - 350 EP - 396 PB - Wiley-VCH GmbH AN - OPUS4-53385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Falkenhagen, Jana A1 - Panne, Ulrich A1 - Hiller, W. A1 - Gruendling, T. A1 - Staal, B. A1 - Lang, C. A1 - Lamprou, A. T1 - Simultaneous characterization of poly(acrylic acid) andpolysaccharide polymers and copolymers N2 - Copolymer products that result from grafting acrylic acid and other hydrophilicmonomers onto polysaccharides have recently gained significant interest in researchand industry. Originating from renewable sources, these biodegradable, low toxicity,and polar copolymer products exhibit potential to replace polymers from fossil sourcesin several applications and industries. The methods usually employed to character-ize these copolymers are, however, quite limited, especially for the measurement ofbulk properties. With more sophisticated applications, for example, in pharmaceu-tics requiring a more detailed analysis of the chemical structure, we describe a newapproach for this kind of complex polymers. Our approach utilizes chromatographyin combination with several detection methods to separate and characterize reactionproducts of the copolymerization of acrylic acid and chemically hydrolyzed starch.These samples consisted of a mixture of homopolymer poly (acrylic acid), homopoly-mer hydrolyzed starch, and – in a lower amount – the formed copolymers. Several chro-matographic methods exist that are capable of characterizing either poly (acrylic acid)or hydrolyzed starch. In contrast, our approach offers simultaneous characterization ofboth polymers. The combination of LC and UV/RI offered insight into the compositionand copolymer content of the samples. Size exclusion chromatography experimentsrevealed the molar mass distribution of homopolymers and copolymers. FTIR inves-tigations confirmed the formation of copolymers while ESI-MS gave more details onthe end groups of hydrolyzed starches and poly (acrylic acids). Evidence of copolymerstructures was obtained through NMR measurements. Finally, two-dimensional chro-matography led to the separation of the copolymers from both homopolymers as wellas the additional separation of sodium clusters. The methods described in this work area powerful toolset to characterize copolymerization products of hydrolyzed starch andpoly(acrylic acid). Together, our approach successfully correlates the physicochemicalproperties of such complex mixtures with their actual composition. KW - 2D chromatography KW - LC-MS KW - SEC KW - Renewable copolymers KW - Grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508873 DO - https://doi.org/10.1002/ansa.202000044 SP - 1 EP - 12 PB - Wiley-VCH Verlag-GmbH&Co. KGaA CY - Weinheim AN - OPUS4-50887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Falkenhagen, Jana T1 - Combined impact of UV radiation and nitric acid (HNO3) on HDPE jerrycans – comparison of outdoor and lab test N2 - A damaging action of HNO3-55% only occurs in combination with its decomposition into nitrous gases, which can be caused by UV radiation. In a laboratory test, transparent HDPE jerrycans have been exposed to both UV radiation and 55 wt-% nitric acid solution at (41 ± 2)°C, for up to 20 days. For comparison, UV radiant exposure (21 days) and nitric acid exposure (up to 6 weeks) were performed separately, at nearly equal temperatures. The respective damages are compared with FTIR spectroscopy in ATR and HT-gel permeation chromatography (GPC) on a molecular level and with hydraulic internal pressure testing as a component test. For the used jerrycans, relevant oxidation can only be found after the combined exposure. The gradual increase in oxidative damage shows the good reproducibility of the lab exposure. The decomposition of nitric acid into nitrous gases by UV radiation – as well as the jerrycan oxidation – is also observed at lower HNO3 concentration (28 wt- %). Similar results are obtained after outdoor tests. Again, the damage occurs only after combined exposure, in contrast to the exposures to UV only and to HNO3 only, which were conducted in parallel. Outdoor exposures are most readily accepted as they represent possible end-use conditions. However, the reproducibility of these exposures is poor due to the large temporal variations in weather. There are also several safety risks, which is why the number of replicates remains limited. Since the outdoor and lab exposure tests show the same qualitative results, it is appropriate to conduct systematic studies in the laboratory. After 6 days of lab exposure, the oxidation damage is rated as critical, which corresponds to about 1/10 year in Central Europe, according to the UV radiant exposure. It should be noted that this amount can also occur in two sunny weeks. T2 - 24th iapri World Packaging Conference CY - Valencia, Spain DA - 17.06.2024 KW - Ppolyethylene KW - UV exposure KW - Nitric acid KW - Oxidation PY - 2024 VL - 2 SP - 30 EP - 37 PB - ITENE AN - OPUS4-60414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed and alcohol-initiated ROPs of L-lactide – About the influence of initiators on chemical reactions in the melt and the solid state N2 - SnOct2 (Sn(II) 2-ethylhexanoate) catalyzed ROPs of L-lactide were performed in bulk with eight different alcohols as initiators. The time was varied between 1 h and 24 h for all initiators. For two initiators the temperature was also lowered to 115 ◦C. Even-numbered chains were predominantly formed in all polymerizations at short times, but the rate of transesterification (e.g. even/odd equilibration) and the molecular weight distribution were found to depend significantly on the nature of the initiator. Observed transesterification reactions also continued in solid poly (L-lactide), and with the most active initiator, almost total equilibration was achieved even at 130 ◦C. This means that all chains including those of the crystallites were involved in transesterification reactions proceeding across the flat surfaces of the crystallites. The more or less equilibrated crystalline polylactides were characterized by DSC and SAXS measurements with regard to their melting temperature (Tm), crystallinity and crystal thickness. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization KW - Catalysts KW - SAXS PY - 2021 DO - https://doi.org/10.1016/j.eurpolymj.2021.110508 VL - 153 SP - 110508 PB - Elsevier Ltd. AN - OPUS4-52633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Panne, Ulrich A1 - Falkenhagen, Jana T1 - Power of ultra performance liquid chromatography/electrospray ionization-MS reconstructed ion chromatograms in the characterization of small differences in polymer microstructure N2 - From simple homopolymers to functionalized, 3-dimensional structured copolymers, the complexity of polymeric materials has become more and more sophisticated. With new applications for instance in the semiconductor or pharmaceutical industry, the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isomeric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector, but affect the properties of materials significantly. For a drug delivery system for example, the degree of branching and branching distribution is crucial for the formation of micelles. Instead of a complicated, time consuming and/or expensive 2d-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, in this work a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization mass spectrometry (ESI) is proposed. The online coupling allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities. Although some microstructural heterogeneities like short chain branching can for large polymers be characterized with methods such as light scattering, for oligomers where the heterogeneities just start to form and their influence is at the maximum, they are inaccessible with these methods. It is also shown, that with a proper calibration even quantitative information can be obtained. This method is suitable to detect small differences in e. g. branching, 3d-structure, monomer sequence or tacticity and could potentially be used in routine analysis to quickly determine deviations. KW - Polymer KW - Microstructure KW - UPLC KW - ESI-TOF-MS KW - Reconstructed ion chromatograms PY - 2018 DO - https://doi.org/10.1021/acs.analchem.7b05214 SN - 0003-2700 SN - 1520-6882 VL - 90 IS - 5 SP - 3467 EP - 3474 PB - ACS Publ. CY - Washington, DC AN - OPUS4-44423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Characterization of co (polyamide)s N2 - Charactrization of Co(polyamide)s Molar mass distribution; Functionalization; supression of end group effects in favor of sequence distribution analysis; Evidence of of randomization with increasing reaction time T2 - Polyamide Meeting, DSM CY - Sittard, The Netherlands DA - 20.04.2018 KW - Liquid chromatography KW - Mass spectrometry of polymers PY - 2018 AN - OPUS4-44747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 31.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Famy, A. A1 - Agudo Jácome, Leonardo A1 - Schönhals, Andreas T1 - Effect of Silver Nanoparticles on the Dielectric Properties and the Homogeneity of Plasma Poly(acrylic acid) Thin Films N2 - For the first time, structure−electrochemical relationships of thin films of a plasma-polymerized acrylic acid/carbon dioxide AA/CO2 (75/25%) copolymer modified by implanted silver nanoparticles are discussed. The pulsed plasma polymerization of AA/CO2 was utilized and adjusted to obtain a maximal amount of COOH Groups forming an almost uncross-linked polymer structure. The prepared polymer layer is rinsed by a silver nitrate solution to impregnate Ag+ ions. This step is followed by its reduction of Ag+ with NaBH4 as a chemical route in comparison to the reduction by sunlight as an ecofriendly photoreduction method. The chemical composition and morphology of the topmost surface layer of the AA/CO2 polymer thin film were investigated by X-ray photoelectron spectroscopy and atomic force microscopy. Moreover, the molecular mobility, conductivity, and thermal stability of the polymer layer were analyzed using broadband dielectric spectroscopy. The dielectric properties of the AA/ CO2 polymer thin film were studied in the presence of Ag+ ions or Ag0. It was found that a cross-linked polymer layer with a smooth surface and high conductivity was obtained in the presence of Ag+/ Ag0. KW - Nanoparticles PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c06712 SN - 1932-7447 VL - 124 IS - 41 SP - 22817 EP - 22826 PB - ACS AN - OPUS4-51468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baumann, Maria A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Wold, C. A1 - Uliyanchenko, E. T1 - Characterization of copolymers of polycarbonate and polydimethylsiloxane by 2D chromatographic separation, MALDI-TOF mass spectrometry, and FTIR spectroscopy N2 - The structure and composition of polycarbonate polydimethylsiloxane copolymer (PC-co-PDMS) was investigated by applying various analytical approaches including chromatographic separation methods, spectrometric, and spectroscopic detection techniques. In particular, size exclusion chromatography (SEC) and liquid adsorption chromatography operating at different conditions (e.g. using gradient solvent systems) were used to achieve separations according to molar mass and functionality distribution. The coupling of both techniques resulted in fingerprint two-dimensional plots, which could be used to easily compare different copolymer batches. Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied for structural investigations. The different ionization behavior of both comonomers, however, strongly limited the applicability of this technique. In contrast to that, Fourier-transform Infrared (FTIR) spectroscopy could be used to quantify the amount of PDMS in the copolymer at different points in the chromatogram. The resulting methodology was capable of distinguishing PC-co-PDMS copolymer from PC homopolymer chains present in the material. KW - FTIR KW - Liquid chromatography KW - Mass spectrometry KW - Gradient elution KW - Polycarbonate-co-dimethylsiloxane copolymer PY - 2020 DO - https://doi.org/10.1080/1023666X.2020.1820170 VL - 25 IS - 7 SP - 1 EP - 12 PB - Taylor & Francis AN - OPUS4-51369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Epping, Ruben T1 - Coupling of chromatographic and spectrometric techniques for polymer characterization N2 - Coupling of chromatographic and spectrometric techniques for polymer characterization; focus topics: LCxMALDI-TOF-MS and UPLC x ESI-TOF-MS T2 - 16. Tagung des Arbeitskreises Polymeranalytik CY - Online meeting DA - 22.03.2022 KW - Liquid chromatography KW - Mass spectrometry KW - Polymers KW - Two-dimensional chromatography (2D-LC) PY - 2022 AN - OPUS4-54567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -