TY - JOUR A1 - Nützmann, Kathrin A1 - Wollschläger, Nicole A1 - Rockenhäuser, Christian A1 - Kranzmann, Axel A1 - Stephan-Scherb, Christiane T1 - Identification and 3D reconstruction of Cr5S6 precipitates along grain boundaries in Fe13Cr N2 - Metal sulfide grain boundary precipitates of a ferrous model alloy with 13 wt.% chromium formed at 650°C under a gas atmosphere containing 0.5% SO2 and 99.5% Ar were investigated after ageing for 3 h, 6 h, and 12 h. The precipitates formed along grain boundaries were identified as Cr5S6 using energy-dispersive x-ray spectroscopy in transmission electron microscopy and electron backscatter diffraction analysis. Serial focused ion beam slicing was conducted followed by three-dimensional reconstruction to determine the number, size, and penetration depth of the precipitates evolved at the different time steps. There was a linear increase in the number of precipitates with time, while their average size increased only for the initial aging time but became constant after 6 h. Based on these results, a model for grain boundary sulfidation of ferritic alloys is discussed. KW - Internal Sulfidation KW - Grain Boundary Corrosion KW - FIB Tomography PY - 2018 DO - https://doi.org/10.1007/s11837-018-2940-y SN - 1047-4838 SN - 1543-1851 VL - 70 IS - 8 SP - 1478 EP - 1483 PB - Springer Science + Business Media CY - New York, NY AN - OPUS4-45090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Marynowski, P. A1 - Wozny, K. T1 - Morphology and chemical composition of inconel 686 after high-temperature corrosion N2 - The work presents the microstructure, chemical composition and mechanical properties of Inconel 686 coatings after high - temperature corrosion in environment of aggressive gases and ashes. To produce the Ni - based coatings the QS Nd:YAG laser cladding process was carried out. As the substrate used 13CrMo4-5 boilers plate steel. Ni - base alloys characterize the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. Formed clad were characterized by high quality of metallurgical bonding with the substrate material and sufficiently low amount of the iron close to the clad layer surface. After corrosion experiment the oxide scale on the substrate and clad created. The scale on 13CrMo4-5 steel had 70 μm thickness while the scale of the clad had less than 10 μm. The microstructure, chemical composition of the obtained clad and scales were investigated by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA) equipped with the EDS detectors. T2 - 27th International conference on metallurgy and materials CY - Brno, Czech Republic DA - 23.05.2018 KW - laser cladding KW - Inconel 686 KW - High - temperature corrosion KW - Aggressive environment KW - Oxide scale PY - 2018 SP - 1010 EP - 1016 AN - OPUS4-49660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koclega, Damian A1 - Petrzak, P. A1 - Kowalski, K. A1 - Rozmus-Gornikowska, M. A1 - Debowska, A. A1 - Jedrusik, M. T1 - Annealing effect on microstructure and chemical composition of Inconel 625 alloy N2 - Our research focused on Inconel 625 weld overlays on 16Mo3 steel boiler pipes. The Investigation focused on the characterization of changes in the microstructure and chemical composition after annealing. The annealing was performed for ten hours at temperatures from 600 to 1000°C. Changes in the microstructure were observed with a scanning and transmission electron microscope (SEM and TEM). The investigation was supplemented by hardness measurements. KW - Inconel 625 KW - Microsegregation KW - Annealing PY - 2018 DO - https://doi.org/10.7494/mafe.2018.44.2.73 SN - 1230-2325 SN - 0860-6307 SN - 2300-8377 VL - 44 IS - 2 SP - 73 EP - 80 PB - AGH University of Science and Technology Press CY - Cracow AN - OPUS4-49659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Pittner, Andreas A1 - Werner, Daniel A1 - Wimpory, R. A1 - Boin, M. A1 - Kreutzbruck, Marc A1 - Bruno, Giovanni T1 - Influence of the microstructure on magnetic stray fields of low-carbon steel welds N2 - This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields. KW - TIG-welding KW - GMR sensors KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel PY - 2018 DO - https://doi.org/10.1007/s10921-018-0522-0 SN - 0195-9298 SN - 1573-4862 VL - 37 IS - 3 SP - 66,1 EP - 18 PB - Springer US CY - New York AN - OPUS4-45855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Nützmann, Kathrin A1 - Kranzmann, Axel A1 - Klaus, M. A1 - Genzel, C. T1 - Real time observation of high temperature oxidation and sulfidation of Fe-Cr model alloys N2 - Insights into early damage mechanisms during high-temperature gas corrosion provide important aspects for the prediction of the long-term stability of hightemperature materials exposed to a hot and corrosive environment. The current work presents a real time study concerning the combined oxidation and sulfidation of ferritic model alloys in a hot SO2 containing atmosphere using energy dispersive X-ray diffraction. The applied high temperature reactor allows the transmittance of high energetic X-rays in order to collect X-ray diffraction pattern of the sample surface in situ during the reaction with the reactive environment. The results revealed that the first phases crystallizing on iron with 2 wt% chromium and with 9 wt% chromium are oxides. The aging experiments at T = 650° C with 0.5% SO2 and 99.5% Ar were followed in situ and caused an external mixed oxide-sulfide layer on top of iron with 2 wt% chromium. On the higher alloyed material the external scale consists of iron oxides and the inner scale of mixed (Fe,Cr)-oxides and chromium-sulfides. The oxide content continuously increases parallel to an increase of the sulfide amount. Thus, the initially formed (Fe,Cr)-oxides do not have a protective character and support the transport of sulfur through the growing oxide scale. KW - High temperature corrosion KW - In situ diffraction KW - Sulfidation PY - 2018 DO - https://doi.org/10.1002/maco.201709892 SN - 0947-5117 VL - 69 IS - 6 SP - 678 EP - 689 PB - Wiley VCH Verlag AN - OPUS4-44776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reith, F. A1 - Rea, M.A.D. A1 - Sawley, P. A1 - Zammit, C.M. A1 - Nolze, Gert A1 - Reith, T. A1 - Rantanen, K. A1 - Bissett, A. T1 - Biogeochemical cycling of gold: Transforming gold particles from arctic Finland N2 - (Bio)geochemical cycling of gold (Au) has been demonstrated in present-day (semi)-arid, (sub)-tropical and temperate environment. Hereby biofilms on Au-bearing mineral- and Au-particle surfaces drive Au dispersion and reconcentration, thereby (trans)forming the particles. However, it is unknown if biogeochemical cycling of Au occurs in polar environments, where air temperatures can reach −40 °C and soils remain frozen for much of the year. Therefore, placer Au-particles, soils and waters were collected at two placer mining districts in arctic Finland, i.e., the Ivalojoki and Lemmenjoki goldfields. Sites were chosen based on contrasting settings ((glacio)-fluvial vs. glacial-till deposits) and depths (surface to 5m below current surface). Gold particles were studied using a combination of tagged 16S rRNA gene next generation sequencing and electron microscopic/microanalytical techniques. Across all sites a range of Au-particle morphologies were observed, including morphotypes indicative of Au dissolution and aggregation. Elevated Au concentrations indicative of Au mobility were detected in placer particle bearing soils at both districts. Typically Au-particles were coated by polymorphic biofilm layers composed of living and dead cells embedded in extracellular polymeric substances. Intermixed were biominerals, clays and iron-sulfides/oxides and abundant secondary Au morphotypes, i.e., nano-particles, microcrystals, sheet-like Au, branched Au networks and overgrowths and secondary rims. Biofilms communities were composed of Acidobacteria (18.3%), Bacteroidetes (15.1%) and Proteobacteria (47.1%), with β-Proteobacteria (19.5%) being the most abundant proteobacterial group. Functionally, biofilms were composed of taxa contributing to biofilm establishment, exopolymer production and nutrient cycling, abundant taxa capable of Au mobilization, detoxification and biomineralization, among them Cupriavidus metallidurans, Acinetobacter spp. and Pseudomonas spp., were detected. In conclusion, these results demonstrate that placer Au-particle transformation and Au dispersion occur in cold, arctic environments. This corroborates the existence of biogeochemical Au cycling in present-day cold environments. KW - Gold KW - Bacteria KW - Biogeochemistry KW - Mobility KW - Finland KW - Cupriavidus metallidurans KW - NGS PY - 2018 DO - https://doi.org/10.1016/j.chemgeo.2018.03.021 SN - 0009-2541 VL - 483 SP - 511 EP - 529 PB - Elsevier AN - OPUS4-44805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclęga, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Dymek, S. T1 - Microstructure characterization of the Inconel 686 clad layer after high-temperature corrosion tests in aggressive gases and ashes N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Laser Cladding KW - Inconel 686 KW - High temperature corrosion KW - Aggressive environement KW - Material oxidation PY - 2018 AN - OPUS4-45627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Menneken, Martina A1 - Falk, Florian A1 - Stephan-Scherb, Christiane T1 - Early stages of corrosion in hot, aggressive environments N2 - We investigated the effect of water vapor in the initial stages of SO2 corrosion of an Fe-9Cr-0.5Mn model alloy at 650 °C. Two separate experiments were run, one with 99.5%-Ar + 0.5%-SO2 and one with 69.5%-Ar + 0.5%-SO2 with 30%-H2O atmosphere. During the experiment the scale growth was observed in-situ, using energy dispersive X-ray diffraction (EDXRD). Our results confirm an increased speed of oxygen transport into the material, with the addition of water, while the transport of sulfur appears to be less affected. T2 - Sektionstreffen der DMG Sektionen "Angewandte Mineralogie in Umwelt & Technik" und "Chemie, Physik und Kristallographie der Minerale" CY - Bad Windsheim, Germany DA - 28.02.2018 KW - Corrosion KW - In-situ KW - EDXRD PY - 2018 AN - OPUS4-45369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - In-situ observation of the hydrogen behaviour in austenitic stainless steel by time-of-flight secondary ion mass spectrometry during mechanical loading N2 - The reduction of harmful emissions to the environment is one of the most urgent challenges of our time. To achieve this goal, it is inevitable to shift from using fossil fuels to renewable energy sources. Within this transition, hydrogen can play a key role serving as fuel in transportation and as means for energy storage. The storage and transport of hydrogen using austenitic stainless steels as the infrastructure, as well as the use of these grades in hydrogen containing aggressive environments, remains problematic. The degradation of the mechanical properties and the possibility of phase transformation by ingress and accumulation of hydrogen are the main drawbacks. Advanced studies of the behaviour of hydrogen in austenite is necessary to fully understand the occurring damage processes. This knowledge is crucial for the safe use of components in industry and transportation facilities of hydrogen. A powerful tool for depicting the distribution of hydrogen in steels, with high accuracy and resolution, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). We here present a comprehensive research on the hydrogen degradation processes in AISI 304L based on electrochemical charging and subsequent ToF-SIMS experiments. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed afterwards. All the gathered data was treated employing data fusion, thus creating a thorough portrait of hydrogen diffusion and its damaging effects in AISI 304L. Specimens were charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and traces existing in the material or adsorbed from the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw onclusions from the experiments. T2 - International Conference on Metals and Hydrogen; Steely Hydrogen 2018 CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Deuterium KW - ToF-SIMS KW - AISI 304L PY - 2018 AN - OPUS4-45079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Use of time-of-flight secondary ion mass spectrometry for the investigation of hydrogen-induced effects in austenitic steel AISI 304L N2 - During the energy transformation from fossil fuels to renewable energy sources, the use of hydrogen as fuel and energy storage can play a key role. This presents new challenges to industry and the scientific community alike. The storage and transport of hydrogen, which is nowadays mainly realized by austenitic stainless steels, remains problematic, which is due to the degradation of mechanical properties and the possibility of phase transformation by hydrogen diffusion and accumulation. The development of materials and technologies requires a fundamental understanding of these degradation processes. Therefore, studying the behavior of hydrogen in austenitic steel contributes to an understanding of the damage processes, which is crucial for both life assessment and safe use of components in industry and transportation. As one of the few tools that is capable of depicting the distribution of hydrogen in steels, time-of-flight secondary ion mass spectrometry was conducted after electrochemical charging. To obtain further information about the structural composition and cracking behavior, electron-backscattered diffraction and scanning electron microscopy were performed. Gathered data of chemical composition and topography were treated employing data fusion, thus creating a comprehensive portrait of hydrogen-induced effects in the austenite grade AISI 304L. Specimens were electrochemically charged with deuterium instead of hydrogen. This arises from the difficulties to distinguish between artificially charged hydrogen and traces existing in the material or the rest gas in the analysis chamber. Similar diffusion and permeation behavior, as well as solubility, allow nonetheless to draw conclusions from the experiments. T2 - 21st International Conference on Secondary Ion Mass Spectrometry CY - Kraków, Poland DA - 10.09.2017 KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Austenitic stainless steel PY - 2018 DO - https://doi.org/10.1116/1.5013931 SN - 1071-1023 VL - 36 IS - 3 SP - Article 03F103, 1 EP - 6 PB - American Vacuum Society (AVS) AN - OPUS4-44840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -