TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Influence of ageing on sealability of HNBR, EPDM and FKM O-rings N2 - At BAM, which is a federal institute for materials research and testing in Germany, it is our responsibility to evaluate the safety of casks designed for transport and/or storage of radio-active material. This includes assessment of the elastomeric seals applied in the containers. Besides examining the low-temperature behaviour of elastomeric seals, it is our goal to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an ageing programme with selected rubbers (HNBR, EPDM and FKM) which are oven-aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) up to 1.5 years. In order to assess sealability, O-rings are aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings are aged as well. Further methods characterising seal performance are compression stress relaxation (CSR) reflecting the loss of sealing force of a compressed seal over time, and compression set (CS) which represents the recovery behaviour of a seal after release from compression. Many other properties, e.g. hardness or glass transition temperature, are influenced in opposite directions by crosslinking and chain scission reactions during ageing. By contrast, CSR and CS are influenced additively by each reaction type, as crosslinking leads to the formation of network chains that are in equilibrium with the compressed geometry, and broken chains lose their recovery potential and their contribution to the sealing force. The experimental results indicate that while CSR and CS show considerable degradation effects, the leakage rate stays constant or even decreases until shrinkage and the loss of resilience of the aged sample leads to the formation of a leak path. T2 - PolyMerTec 2016 CY - Merseburg, Germany DA - 15.07.2016 KW - Degradation KW - Elastomer KW - Seal KW - Compression PY - 2016 AN - OPUS4-36993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Lifetime Prediction of Elastomeric O-Ring Seals N2 - BAM is the federal institute for materials research and testing in Germany. One of our tasks is to evaluate the safety of casks designed for transport and/or storage of radioactive waste. As elastomeric seals are used in the containers as safety-relevant parts, it is our goal to be able to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. For this reason, an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) was started. Ageing was performed at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) for up to 2 years. For assessing properties related to the sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates. For comparison, uncompressed O-rings were aged as well. The aged materials were characterized with conventional polymer analysis methods such as hardness and tensile tests, but also with more seal-specific methods such as compression stress relaxation (CSR, reflecting the loss of sealing force of a compressed seal over time), and compression set (CS, representing the recovery behaviour of a seal after release from compression). CS is chosen as the property for lifetime prediction as it is both sensitive to degradation and related to the seal performance. CS data is extrapolated to 60 °C, which yields lifetimes of approximately 5 years for HNBR and 64 years for EPDM for a criterion of 85 % CS respectively, and approx. 40 years for FKM for a criterion of 65 % CS (the highest value measured so far). T2 - Herbsttagung DKG Bezirksgruppe Süd-Südwest CY - Würzburg, Germany DA - 06.10.2016 KW - Rubber KW - Ageing KW - EPDM KW - HNBR KW - FKM PY - 2016 AN - OPUS4-38010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Influence of Ageing on Sealability of HNBR, EPDM and FKM O-rings N2 - At BAM, which is a federal institute for materials research and testing in Germany, it is one of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes assessment of elastomeric seals applied in the containers. Besides examining the low-temperature behaviour and irradiation effects of elastomeric seals, it is our goal to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an accelerated ageing programme with selected rubbers often used in seals (HNBR, EPDM and FKM) which are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) up to 1.5 years. In order to assess sealability, O-rings are aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings are aged as well. Further methods characterising seal performance are compression stress relaxation (CSR) reflecting the loss of sealing force of a compressed seal over time, and compression set (CS) which represents the recovery behaviour of a seal after release from compression. In order to understand the underlying ageing mechanisms in each material, the change in material properties is examined using thermal and mechanical analysis. The experimental results indicate that while material properties, CSR and CS show considerable degradation effects, the leakage rate stays constant or even decreases until shrinkage and the loss of resilience of the aged seal leads to the formation of a leakage path. This indicates that static leakage rate, which is the most relevant criterion for seal performance, has only limited sensitivity for the degradation of the seal material. T2 - International Sealing Conference CY - Stuttgart, Germany DA - 12.10.2016 KW - Rubber KW - Degradation KW - Lifetime prediction PY - 2016 AN - OPUS4-38013 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Lifetime Prediction of Elastomeric O-Ring Seals N2 - The ageing of polymers, including elastomers, is an undesirable but inevitable process leading to a limited lifetime of rubber products such as seals. In order to investigate the degradation of material properties of elastomers used as seals, an ageing programme was started with hydrogenated acrylonitrile butadiene rubber (HNBR), ethylene propylene diene rubber (EPDM) and fluorocarbon rubber (FKM) [1-3]. Sheets of 2 mm thickness were aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) for time periods of 1 day up to 1 year. The aged samples were examined using standard analytical methods such as hardness, dynamic-mechanical analysis (DMA), thermogravimetric analysis (TGA), mass loss, density and tensile tests. Additionally, DMA equipment was used to investigate relaxation and recovery behaviour which is more sensitive to degradation effects and can help to correctly interpret data from hardness and DMA measurements. The results show e.g. an increase in hardness and glass transition temperature for HNBR and, less pronounced, for EPDM. This confirms ageing mechanisms described in the literature, e.g. dominant crosslinking reactions in HNBR and both chain scissions and crosslinking for EPDM. FKM, which is very heat resistant, exhibits only minor degradation. Where possible, shift factors for time-temperature data sets were determined. The values obtained from different methods are compared and discussed. T2 - Modification, Degradation and Stabilization of Polymer (MoDeSt) Conference CY - Cracow, Poland DA - 04.09.2016 KW - Rubber KW - Ageing KW - EPDM KW - HNBR KW - FKM PY - 2016 AN - OPUS4-38006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Jaunich, Matthias T1 - Lifetime Prediction of Elastomeric O-Ring Seals N2 - BAM is the federal institute for materials research and testing in Germany. One of our tasks is to evaluate the safety of casks designed for transport and/or storage of radioactive waste. As elastomeric seals are used in the containers as safety-relevant parts, it is our goal to be able to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. For this reason, an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) was started. Ageing was performed at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) for up to 2 years. For assessing properties related to the sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates. For comparison, uncompressed O-rings were aged as well. The aged materials were characterized with conventional polymer analysis methods such as hardness and tensile tests, but also with more seal-specific methods such as compression stress relaxation (CSR, reflecting the loss of sealing force of a compressed seal over time), and compression set (CS, representing the recovery behaviour of a seal after release from compression). CS is chosen as the property for lifetime prediction as it is both sensitive to degradation and related to the seal performance. CS data is extrapolated to 60 °C, which yields lifetimes of approximately 5 years for HNBR and 64 years for EPDM for a criterion of 85 % CS respectively, and approx. 40 years for FKM for a criterion of 65 % CS (the highest value measured so far). T2 - Vortrag bei der Uni der Bundeswehr CY - Munich, Germany DA - 06.10.2016 KW - Rubber KW - Ageing KW - EPDM KW - HNBR KW - FKM PY - 2016 AN - OPUS4-38007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Ageing and lifetime prediction of O-ring seals made of HNBR, EPDM and FKM N2 - BAM is the federal institute for materials research and testing in Germany. One of our tasks is to evaluate the safety of casks designed for transport and/or storage of radioactive waste. As elastomeric seals are used in the containers as safety-relevant parts, it is our goal to be able to evaluate the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. For this reason, an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) was started. Ageing was performed at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) for up to 2 years. For assessing properties related to the sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates. For comparison, uncompressed O-rings were aged as well. The aged materials were characterized with conventional polymer analysis methods such as hardness and tensile tests, but also with more seal-specific methods such as compression stress relaxation (CSR, reflecting the loss of sealing force of a compressed seal over time), and compression set (CS, representing the recovery behaviour of a seal after release from compression). CS is chosen as the property for lifetime prediction as it is both sensitive to degradation and related to the seal performance. CS data is extrapolated to 60 °C, which yields lifetimes of approximately 5 years for HNBR and 64 years for EPDM for a criterion of 85 % CS respectively, and approx. 40 years for FKM for a criterion of 65 % CS (the highest value measured so far). T2 - Kautschuk Herbst Kolloquium / Fall Rubber Colloquium 2016 CY - Hanover, Germany DA - 22.11.2016 KW - Rubber KW - Compression set KW - Extrapolation KW - Leakage PY - 2016 AN - OPUS4-38480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -