TY - CONF A1 - Ávila Calderón, Luis T1 - Creep behavior and microstructural evolution of LPBF 316L N2 - This presentation shows some experimental results of the characterization of the creep behavior of LPBF 316L, which has been poorly studied and understood to date. The presentation includes results regarding the mechanical properties, the initial microstructural state and its evolution under loading, and the damage mechanism. This work was done within the BAM focus area materials project AGIL. As a benchmark to assess the material properties of the LPBF 316L, a conventionally manufactured variant was also tested. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured alloys at BAM CY - Online Meeting DA - 19.04.2021 KW - 316L KW - Additive Manufacturing KW - Creep behavior PY - 2021 AN - OPUS4-52682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Towards the Use of Representative Specimens for the Qualification of Additively Manufactured Parts N2 - The understanding of the process-structure-property-performance relationship is the key challenge for the qualification of safety-relevant parts made of additively manufactured metallic materials. The complexity of the manufacturing process and the number of influencing parameters affect the properties of test coupons and parts even fabricated in the same batch. This poses the problem of using reliable witness specimens for part qualification. This work presents a new approach which aims at the fabrication of test coupons tailored to the specific microstructure and fatigue properties of a component. The first step consisted in the evaluation of the temperature field by means of process monitoring during the production of parts. The results were used to tailor finite element models which were then used to design witness specimens representative of the thermal history in the component. Finally, the fatigue properties of designed specimens were compared to coupons machined out of the component. T2 - TMS2024 – 153rd Annual Meeting & Exhibition CY - Orlando, FL, USA DA - 03.03.2024 KW - Additive Manufacturing KW - Process simulation KW - Thermal history KW - Structural integrity KW - Damage tolerance PY - 2024 AN - OPUS4-65072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ferrari, Bruno T1 - Microstructural evolution of PBF-LB/M Inconel 718 during solution-aging heat treatments - an in-situ x-ray diffraction study N2 - Inconel 718 (IN718) is a traditional age-hardenable nickel-based alloy that has been increasingly processed by additive manufacturing (AM) in recent years. In the as-solidified condition, IN718 exhibits chemical segregation and the undesired Laves phase, requiring a solution annealing (SA) prior to aging. The material produced by AM does not respond to the established thermal routines in the same way as conventionally produced IN718, and there is still no consensus on which routine yields optimal results. This work aims to provide a fundamental understanding of the heat treatment (HT) response by continuously monitoring the microstructural evolution during SA via time-resolved synchrotron x-ray diffraction, complemented by ex-situ scanning electron microscopy (SEM). The samples were produced by laser powder bed fusion to a geometry of 10x20x90 mm³, from which Ø1x5 mm³ cylindric specimens were extracted. Two different scanning strategies – incremental 67° rotations, Rot, and alternating 0°/67° tracks, Alt – were used, leading to two different as-built conditions. 1-hour SAs were carried out in the beamline ID22 of the ESRF at 50 KeV. Two SA temperatures, SA1 = 1020 °C, and SA2 = 1080 °C were tested for each scanning strategy. Data were processed using the software PDIndexer. In the as-built state, all samples showed typical subgrain columnar cell structures with predominant Nb/Mo segregation and Laves phase at the cell walls, as seen by SEM. The Alt scan induced higher intensity on the Laves peaks than the Rot scan, suggesting a greater content of Laves. Chemical homogenization in the SA was largely achieved during the heating ramp (Fig. 1). SA2 eliminated the Laves peaks just before reaching 1080 °C, and mitigated differences between Rot and Alt samples. On the other hand, SA1 induced the precipitation of the generally detrimental δ phase, also observed by SEM. Furthermore, the Rot scan showed higher δ peak intensities than the Alt scan, indicating a higher content of δ in the latter. No signs of recrystallization were observed in any of the investigated SAs. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Additive Manufacturing KW - X-Ray Diffraction KW - Inconel 718 KW - Heat Treatments KW - Microstructure PY - 2023 AN - OPUS4-58392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chaurasia, Prashant Kumar A1 - Cagtay, Fabry A1 - Andreas, Pittner A1 - Rethmeier, Michael T1 - Automated in situ monitoring and analysis of process signatures and build profiles during wire arc directed energy deposition N2 - Wire arc directed energy deposition (DED-Arc) is an emerging metal additive manufacturing process to build near-net shaped metallic parts in a layer-by-layer with minimal material wastage. Automated in situ monitoring and fast-responsive analyses of process signatures and deposit profiles during DED-Arc are in ever demand to print dimensionally consistent parts and reduce post-deposition machining. A comprehensive experimental investigation is presented here involving real-time synchronous measurement of arc current, voltage, and the deposit profile using a novel multi-sensor monitoring framework integrated with the DED-Arc set-up. The recorded current–voltage transients are used to estimate the time-averaged arc power, and energy input in real time for an insight of the influence of wire feed rate and printing travel speed on the deposit characteristics. A unique attempt is made to represent the geometric profiles of the single-track deposits in a generalized mathematical form corresponding to a segmented ellipse, which has exhibited the minimum root-mean-square error of 0.03 mm. The dimensional inconsistency of multi-track deposits is evaluated quantitatively in terms of waviness using build profile monitoring and automated estimation, which is found to increase with an increase in step-over ratio and energy input. For the multi-track mild steel deposits, the suitable range of step-over ratio for the minimum surface waviness is observed to lie between 0.6 and 0.65. Collectively, the proposed framework of synchronized process monitoring and real-time analysis provides a pathway to achieve dimensionally consistent and defect-free parts, and highlights the potential for closed-loop control systems for a wider industrial application of DED-Arc. T2 - IIW Annual Assembly 2025 CY - Genova, Italy DA - 23.06.2025 KW - Additive Manufacturing KW - Arc welding KW - Real-time monitoring and control KW - Dimensional inconsistency KW - DED-arc PY - 2025 AN - OPUS4-65231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A unique authenticator for additively manufactured parts derived from their microstructure N2 - Components produced using additive manufacturing can be marked for unique identification and secure authentication [1,2]. Serial numbers and machine-readable codes can be used to identify the component, and link digital product-related data (i.e., a digital product passport) to the actual components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. However, local manipulation of components may alter the properties, and external tagging features can be altered or even removed by post-processing treatments. This work therefore aims to provide a new methodology for identification, authentication, and traceability of additively manufactured (AM) components using microstructural features that are unique to each part. X-ray computed tomography (XCT) was employed to image the microstructural features of AlSi10Mg parts. Based on size and geometry, the most prominent features were selected to create a unique digital authenticator. We implemented a framework in Python using open-access modules that can successfully create a digital object authenticator using the segmented microstructure information from XCT. The authenticator is stored as a QR code, along with the 3D information of the selected features. T2 - MRS Spring Meeting Seattle CY - Seattle, WA, USA DA - 07.04.2025 KW - Additive Manufacturing KW - Fingerprint KW - Non-destructive testing PY - 2025 AN - OPUS4-65199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien T1 - The Impact of Ultrasonic-Assisted Milling and Alloying Elements on the Surface Integrity of Additively Manufactured Iron Aluminides N2 - The increasing focus on energy and resource efficiency has driven the implementation of additive manufacturing (AM) of high-performance materials, particularly in lightweight constructions with optimization of material efficiency. Iron aluminides (FeAl) hold great potential due to their low density, excellent corrosion and wear resistance, high-temperature stability, and vast availability. However, the inherent heterogeneity and anisotropy of FeAl-AM structures pose significant challenges, especially regarding hardness and brittleness. These material characteristics complicate the mostly necessary post-processing via mechanical finish machining, often resulting in elevated cutting forces, accelerated tool wear, and suboptimal surface integrity. Ultrasonic-assisted milling (USAM), a hybrid machining process, offers significant advantages over conventional milling (CM), including the reduction of cutting forces and tool wear. Notably, USAM has been demonstrated to decrease surface defect density and mitigate tensile residual stresses, while potentially inducing beneficial compressive residual stresses within the depth profile of the component’s surface. These effects can significantly enhance crack propagation resistance, improve corrosion behavior, and extend the fatigue life of components in safety-relevant applications. The present study investigates the effects of additional alloying elements such as molybdenum, nickel, titanium and Vanadium in FeAl as well as milling parameters, including cutting speed vc and feed rate fz, on the surface integrity with special regard to residual stress formations. T2 - BMDK der OvGU Magdeburg CY - Magdeburg, Germany DA - 10.12.2025 KW - Additive Manufacturing KW - Wear Protection KW - Ultrasonic-assisted Milling KW - Iron-aluminides KW - MPEA KW - Surface Integrity KW - Residual Stresses PY - 2025 AN - OPUS4-65234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quosdorf, Heike T1 - Digital object identifier for additively manufactured parts as software package N2 - A method to uniquely identify samples without printed or handwritten labels is an advantage not just for additively manufactured parts. To kickstart industry use cases, it is also important to provide a ready-made implementation kit. Following an open-science and open-source software approach Germanys Federal Institute for Materials Research and Testing (BAM) seeks to promote digital solutions of ongoing research projects. With this software package a novel method based on microstructural features as identifiers – DOI4AM (digital object identifier for additively manufactured parts) – will be explained alongside its implementation as open-source Python software package. The digital object identifier (DOI) links product data clearly and forgery-proof with real components. Its implementation helps to identify and securely authenticate additively manufactured components during its product life cycle by using characteristic microstructure features - just like a fingerprint. To calculate the DOI fingerprint, a few preprocessing steps need to be performed to detect the uniquely distributed microstructure features that occur during the 3D printing process. A go-through guide shows the preprocessing steps that include CT image capturing, feature segmentation, and data distribution with CSV files. While all steps can be followed along in a Jupyter notebook, the software package includes an application for creating and checking of previously created fingerprints, as well, as a containerized API (application programming interface) service for implementation in existing software platforms or workflows. While data visualization is crucial to understanding the methodology and an essential tool to check for data correctness, an implementation in an industry use case needs to be slim and resource efficient. Therefor the software’s API can be used as an independent service. The project's industry partner proofs its first successful implementation in their digital product passport web solution PASS-X. T2 - AI MSE 2025 CY - Bochum, Germany DA - 18.11.2025 KW - Authentication KW - Unique identification KW - Digital object identifier KW - Additive Manufacturing KW - Non-destructive testing KW - Open Source Software KW - Digital fingerprint KW - X-ray Computed Tomography KW - Open Science PY - 2025 AN - OPUS4-65293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - Comparison of in-situ OES and Thermography in the LMD process N2 - In this talk optical emission spectroscopy (OES) and thermographic measurements of the Laser Metal Deposition Process (LMD) are presented. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Additive Manufacturing KW - Infrared Thermography PY - 2019 AN - OPUS4-48054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik T1 - Eddy Current Testing for Laser Beam Melting N2 - This poster presents a new application for high-spatial resolution eddy current testing (ET) with magnetoresistive (MR) sensor arrays for additive manufacturing (AM) T2 - Workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - GMR KW - Additive Manufacturing KW - 316L KW - LBM KW - SLM KW - Eddy Current PY - 2019 AN - OPUS4-47992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - The Influence of the Temperature Gradient on the Distribution of Residual Stresses in AM AISI 316L N2 - Steep temperature gradients and solidification shrinkage are the main contributors to the formation of residual stresses in additively manufactured metallic parts produced by laser beam melting. The aim of this work was to determine the influence of the temperature gradient. Diffraction results show a similar pattern for both specimens, indicating the shrinkage to be more dominant for the distribution of residual stresses than the temperature gradient. Thermography results imply that a higher energy input result in higher compressive residual stresses in the bulk. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting KW - Neutron Diffraction PY - 2019 AN - OPUS4-48075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -