TY - CONF A1 - Chaves Spoglianti de Souza, Roberto A1 - Rosignuolo, Francesco A1 - Andreini, M. A1 - La Mendola, S. A1 - Knaust, Christian T1 - Probabilistic thermo-mechanical analysis of a concrete tunnel lining subject to fire N2 - A probabilistic finite elements analysis (FEA) of a tunnel lining subject to fire is presented. The probability distributions of the parameters related to the thermal analysis was considered in order to study the variability of the results and to carry out a reliability analysis. This assessment considered as random variables the thermo-mechanical properties of the concrete, the maximum heat release rate (HRR), the duration of the period of maximum HRR, the convective coefficient, the emissivity at the surface exposed to the fire, the air velocity within the tunnel, and the initial fire radius. The temperature-time curve was described by a correlation. An experimental design based on a Latin Hypercube Sampling algorithm was performed to define the input parameters to each analysis case. The definition of a limit state function based on the punctual strain status has permitted to carry out a reliability analysis. T2 - IFireSS 2017 – 2nd International Fire Safety Symposium CY - Naples, Italy DA - 07.06.2017 KW - Probabilistic analysis KW - Latin hypercube KW - Tunnel KW - Fire KW - Concrete PY - 2017 AN - OPUS4-40651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chaves Spoglianti de Souza, Roberto A1 - Rosignuolo, Francesco A1 - Andreini, M. A1 - La Mendola, S. A1 - Knaust, Christian T1 - Probabilistic Thermo-Mechanical Analysis of a Concrete Tunnel Lining Subject to Fire N2 - Probabilistic thermo-Mechanical analysis of a concrete tunnel lining subject to fire The probability distributions of the parameters related to the thermal analysis was considered in order to study the variability of the results and to carry out a reliability analysis. This assessment considered as random variables the thermo-mechanical properties of the concrete, the maximum heat release rate (HRR), the duration of the period of maximum HRR, the convective coefficient, the emissivity at the surface exposed to the fire, the air velocity within the tunnel, and the initial fire radius. The temperature-time curve was described by a correlation. An experimental design based on a Latin Hypercube Sampling algorithm was performed to define the input parameters to each analysis case. The definition of a limit state function based on the punctual strain status has permitted to carry out a reliability analysis. T2 - IFireSS 2017 – 2nd International Fire Safety Symposium CY - Naples, Italy DA - 07.06.2017 KW - Probabilistic Analysis KW - Latin Hypercube KW - Tunnel KW - Fire KW - Concrete PY - 2017 SN - 978-88-89972-67-0 SN - 2412-2629 SP - 997 EP - 1004 PB - Doppiavoce CY - Naples, Italy AN - OPUS4-40652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosignuolo, F. A1 - Chaves Spoglianti de Souza, Roberto A1 - Andreini, M. A1 - La Mendola, S. A1 - Knaust, Christian T1 - A comparison between empirical models and FDS simulation to predict the ceiling gas temperature distribution in a tunnel fire N2 - A comparison between the results obtained from a Computational Fluid Dynamic (CFD) simulation and from the application of an empirical formula for determining the temperature distribution inside a tunnel in case of fire is presented. The temperature is measured and calculated at different distances from the location of the fire and at different time intervals. The fire considered varies with time following a time-heat release rate curve which has a parabolic growing phase, a constant period and a linear decay. The comparison reveals differences in the results. The temperatures calculated with the empirical formula resulted higher than the temperatures obtained by means of the CFD simulation. A list of possible reasons for this limited correspondence is also presented and commented. A proposal for further studies to better define the limitations of both the procedures and to define the influence of each parameter involved is finally presented. T2 - World Tunnel Congress 2017 – Surface challenges – Underground solutions CY - Bergen, Norway DA - 09.06.2017 KW - CFD KW - Fire KW - Tunnel KW - Design Fire PY - 2017 AN - OPUS4-40655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stelzner, Ludwig A1 - Powierza, Bartosz T1 - Thermisch induzierter Feuchtetransport in HPC T1 - Thermally induced Moisture Transport in structure density High-performance Concrete N2 - Die Entwicklung von leistungsfähigen Fließmitteln in den letzten Jahrzehnten ermöglicht die Herstellung von Beton mit sehr geringem w/z-Wert, bei gleichzeitig guter Verarbeitbar-keit. Die Reduzierung des w/z-Wertes geht dabei mit einer Erhöhung der Festigkeit und einer Verdichtung der Gefü-gestruktur einher. Aufgrund der hohen Druckfestigkeit finden diese Hochleistungsbetone vermehrten Einsatz im Hoch-, Brücken-, und Tunnelbau. Unter Brandbeanspruchung neigen diese Hochleistungsbetone allerdings zu explosionsartigen Abplatzungen. Diese werden nach derzeitigem Stand auf thermomechanische und thermohydraulische Prozesse zurückgeführt. Letztere beruhen auf der Generierung hoher Wasserdampfdrücke in einseitig brandbeanspruchten Beton-bauteilen, die zum einen auf die geringe Permeabilität des Hochleistungsbetons und zum anderen auf die Bildung einer wassergesättigten Zone, der sogenannten „moisture clog“ zurückzuführen sind. Dabei spielen Verdampfungs- und Kondensationsvorgänge sowie der vorhandene Temperatur-gradient eine wichtige Rolle. Die Interaktion des Feuchtetra-nsportes mit den Gefügeveränderungen während der thermi-schen Beanspruchung soll im Rahmen weiterer Versuche eingehend untersucht werden. Zur Analyse des Feuchtetransports während der thermischen Beanspruchung wurden miniaturisierte Prüfkörper aus Hoch-leistungsbeton hergestellt, die mit Hilfe eines elektrischen Heizelements einseitig erwärmt wurden. Zur Sicherstellung eines eindimensionalen Wärme- und Feuchtetransportes ist der Betonprüfkörper mit einer speziellen Glaskeramik und einer Hochtemperaturwolle ummantelt. Simultan zur Erwär-mung werden eine Reihe röntgentomographischer Aufnah-men durchgeführt. Durch Differenzbildung aufeinanderfol-gender Aufnahmen können Dichteveränderungen lokal und zeitlich aufgelöst werden. Diese lassen Rückschlüsse auf Än-derungen der Feuchteverteilung im Prüfkörper während der Erwärmung zu. Parallel dazu werden Untersuchungen mittels NMR-Relaxometrie (nuclear magnetic resonance) vor und nach der thermischen Beanspruchung durchgeführt. Diese Prüfmethodologie ermöglicht es erstmals, die Veränderungen der Feuchteverteilung infolge thermischer Beanspruchung im Hochleistungsbeton von den Gelporen bis hin zu vorhande-nen Verdichtungsporen abzubilden. So zeigen erste Ergebnis-se, dass die gewählten Untersuchungsmethoden Veränderun-gen der Feuchteverteilung im Prüfkörper räumlich und zeitlich auflösen können. KW - Abplatzen KW - Spalling KW - Brand KW - Feuchtetransport KW - Hochleistungsbeton KW - Röntgen-3D-Computertomographie KW - NMR KW - Fire KW - Moisture clog KW - Moisture transport KW - HPC KW - HSC KW - X-ray CT PY - 2017 DO - https://doi.org/10.1002/best.201700022 SN - 0005-9900 SN - 1437-1006 VL - 112 IS - 7 SP - 486 EP - 486 PB - Ernst & Sohn CY - Berlin AN - OPUS4-41826 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -