TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Prozessregelung: MSG-Engspaltschweißen (IGF-Nr. 17.923N) N2 - Übersichtposter zu IGF-Vorhaben 17.923N "Sensorgestütztes MSG-Engspaltschweißen von Feinkornstählen mit modifizierter Prozessführung im Dickblechbereich" (DVS-Nr. 03.111) T2 - Fachbereichspräsentation 9.3 CY - Berlin, Germany DA - 01.03.2018 KW - MSG-Engspaltschweißen KW - Adaptives Schweißen KW - Lichtbogensensorik KW - Füllgradregelung PY - 2018 AN - OPUS4-44361 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Arendt, F. A1 - Sierka, M. A1 - Diegeler, A. T1 - A new robot-assisted compositional screening method N2 - The system Na2O.B2O3-SiO2 (NBS) is the basis of many industrial glass applications and therefore one of the most studied systems at all. Glass formation is possible over a wide compositional range, but the system also contains ranges of pronounced phase separation and crystallization tendency. Despite its importance, experimental data are limited to few compositional areas. The general understanding and modelling of glass formation, phase separation, and crystallization in this system would therefore be easier if small step melt series could be studied. The efficient melting of such glass series is now possible with the new robotic glass melting system at the Federal Institute for Materials Research and Testing (BAM, Division Glasses). Using three exemplary joins within this NBS system, the small step changes of glass transition temperature (Tg), crystallization behavior as well as glass density (Roh) was studied. Additionally, experimental Tg and Roh data were compared with their modeled counterparts using SciGlass and a newly developed DFT model, respectively. T2 - Annual meeting of the French Union for Science and Glass Technology (USTV) and the 96th Annual Meeting of the German Society of Glass Technology - USTV-DGG joint meeting. CY - Orléans, France DA - 22.05.2023 KW - Robot-assisted galss melting KW - Sodiumborosilicate glasses KW - Density KW - Glass transformation temperature KW - Property simulation PY - 2023 AN - OPUS4-58724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, Henk A1 - Jung, Matthias A1 - Waitelonis, Jörg A1 - Mädler, Lutz A1 - Sack, Harald T1 - PMD core ontology: Building Bridges at the Mid-Level – A Community Effort for Achieving Semantic Interoperability in Materials Science N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. This poster presents an approach to create and maintain a comprehensive and intuitive MSE-centric terminology by developing a mid-level ontology–the PMD core ontology (PMDco)–via MSE community-based curation procedures. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - TMS - Specialty Congress 2024 CY - Cleveland, Ohio, US DA - 16.06.2024 KW - Interoperability KW - Semantic Interoperability KW - Digtial Representation KW - Knowledge graph and ontologies PY - 2024 AN - OPUS4-60378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - Bustamante, Joana A1 - Mieller, Björn A1 - Stawski, Tomasz A1 - George, Janine A1 - Knoop, F. T1 - High-quality zirconium vanadate samples for negative thermal expansion (NTE) analysis N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). The linear thermal expansion coefficient of ZrV2O7 is −7.1×10-6 K-1. Therefore, it can be used to create composites with controllable expansion coefficients and prevent destruction by thermal shock. Material characterization, leading to application, requires pure, homogenous samples of high crystallinity via a reliable synthesis route. While there is a selection of described syntheses in the literature, it still needs to be addressed which synthesis route leads to truly pure and homogenous samples. Here, we study the influence of the synthesis methods (solid-state, sol-gel, solvothermal) and their parameters on the sample's purity, crystallinity, and homogeneity. The reproducibility of results and data obtained with scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetric analysis (DSC/TGA) were analyzed extensively. The sol-gel method proves superior to the solid-state method and produces higher-quality samples over varying parameters. Sample purity also plays an important role in NTE micro and macro-scale characterizations that explain the impact of porosity versus structural changes. Moreover, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation, temperature-dependent effective harmonic potentials) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. Khosrovani et al. and Korthuis et al., in a series of diffraction experiments, attributed the thermal contraction of ZrV2O7 to the transverse thermal motion of oxygen atoms in V-O-V linkages. In addition to previous explanations, we hypothesize that local disorder develops in ZrV2O7 crystals during heating. We are working on the experimental ZrV2O7 development and discuss difficulties one might face in the process as well as high-quality sample significance in further investigation. The obtained samples are currently used in the ongoing research of structure analysis and the negative thermal expansion mechanism. T2 - TDEP2023: Finite-temperature and anharmonic response properties of solids in theory and practice CY - Linköping, Sweden DA - 21.08.2023 KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - TDEP PY - 2023 AN - OPUS4-58135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Automated bonding analysis based on crystal orbital Hamilton populations N2 - We created a workflow that fully automates bonding analysis using Crystal Orbital Hamilton Populations, which are bond-weighted densities of states. This enables understanding of crystalline material properties based on chemical bonding information. To facilitate data analysis and machine-learning research, our tools include automatic plots, automated text output, and output in machine-readable format. T2 - Sommersymposium des Fördervereins Chemieolympiade CY - Online meeting DA - 25.06.2022 KW - Bonding Analysis KW - Automation KW - DFT PY - 2022 AN - OPUS4-55409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane A1 - Emmerling, Franziska T1 - Depth dependent phase identification of corrosion zones in ferritic alloys by micro-X-ray absorption near edge structure spectroscopy N2 - Ferritic steels with chromium contents up to 13 wt% are used as materials for power plant components as boiler materials (< 2 wt% Cr) and super heater tubes (> 9 wt% Cr). These materials are subject to aggressive corrosion caused by hot gases such as CO2, H2O, O2 and SO2. Especially SO2 causes fatal corrosion even as a minor component. To examine sulfurous corrosion mechanisms, experiments with pure SO2 were conducted. A proper analysis of the material changes requires phase identification and quantification with a high lateral resolution within the corrosion scale. T2 - ANAKON2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Corosion KW - Steel KW - XANES PY - 2017 AN - OPUS4-40415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Walter, P A1 - Stargardt, Patrick A1 - Höhne, Patrick A1 - Moos, R A1 - Mieller, Björn T1 - Comparison of design concepts for ceramic oxide thermoelectric multilayer generators N2 - Multilayer thermoelectric generators are a promising perspective to the conventional π-type generators. Ceramic multilayer technology is well established for production of microelectronics and piezo-stacks. Key features of ceramic multilayer technology are full-automation, cost-effectiveness, and the co-firing of all materials in one single step. This requires similar sintering temperatures of all used materials. The development of multilayer thermoelectric generators is a subject of current research due to the advantages of this technology. One of the challenges is the compatibility of the different materials with respect to the specific design. The presented study compares three different designs of multilayer generators based on a given set of material properties. Dualleg, unileg and transverse multilayer generators are compared to conventional π-type generators., the designs are evaluated regarding the expected maximum output power and power density using analytical calculations and FEM simulations. Additionally, the complexity of the production process and material requirements are assessed and design optimizations to simplify production are discussed. Besides the theoretical aspects, unileg multilayer generator prototypes were produced by tape-casting and pressure-assisted sintering. These prototypes are compared to other multilayer generators from literature regarding the power factors of the used material system and the power density. Improvements of the power output by design optimizations are discussed T2 - 18th European Conference on Thermoelectrics CY - Barcelona, Spain DA - 13.09.2022 KW - Thermoelectric oxides KW - Thermoelectric generator design PY - 2022 AN - OPUS4-55820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wurzler, Nina A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Kunte, Hans-Jörg A1 - Özcan Sandikcioglu, Özlem T1 - Investigation of the mechanisms of microbially induced corrosion on Fe/steel surfaces N2 - The role of metal reducing bacteria (MRB) in corrosion is being controversially discussed in the literature. They can utilize metals including iron, uranium and manganese as well as many organic compounds as electron acceptors. The reduction of Fe(III) compounds to soluble Fe(II) species leads to the destruction of passive films on steel, resulting in acceleration of general and local corrosion processes. Recent research shows that the secretion of electron shuttles like riboflavins also contribute to the extracellular electron transfer (EET). The aim of this project is to understand the chemical and electrochemical interaction mechanisms of MRB with steel surfaces by means of combined in situ techniques. An electrochemical XANES (x-ray absorption near edge spectroscopy) cell has been designed to study the changes of passive film chemistry in the presence of biomolecules and MRB. Electrochemical quartz crystal microbalance (eQCM) is used for studying the kinetics of bacterial cell attachment and diffusion of biomolecules in model biofilms. In situ investigations are complemented by ex situ spectroscopic and microscopic analysis to investigate the biofilm structure, composition and cell viability. Via the combination of electrochemical methods with spectroscopic techniques and QCM we are able to follow biological processes and resulting degradation of steel surfaces in a non-destructive manner. The selection of model systems and a defined biological medium allows the identification of the effects of individual surface and environmental parameters. The fundamental understanding of bacterial attachment mechanisms and initial steps of biofilm formation will contribute to the development of new antifouling strategies. T2 - Electrochemistry 2016 CY - Goslar, Germany DA - 26.09.2016 KW - MIC KW - Microbiologically influenced corrosion KW - XANES KW - Electrochemistry PY - 2016 AN - OPUS4-38199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kabelitz, Anke A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Radtke, Martin A1 - Bienert, Ralf A1 - Schulz, K. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Time-resolved studies on the formation of maghemite nanoparticles combining fast-XANES and SAXS N2 - Iron oxide nanoparticles find application in different areas like sensing, magnetic storage media, and biomedicine, due to their magnetic properties and environment-friendliness. In the present contribution, we report on the in situ investigation of an iron oxide nanoparticle synthesis by coupled X-ray absorption near-edge structure (XANES) and small-angle X-ray scattering (SAXS). The combination provides simultaneously information about the size of particles (SAXS) and on the oxidation state and the local structure of the iron atoms (XANES). The co-precipitation synthesis was exemplary studied, using a stabilization agent to decelerate the fast precipitation of the iron oxides. This allows to detect intermediates in situ. The measurements were performed using a custom-made acoustic levitator as sample holder. From the data, a mechanism was derived indicating different phases of particle Formation and oxidation state changes. T2 - The European Materials Research Society-Spring Meeting 2016 CY - Lille, France DA - 01.05.2016 KW - Iron oxide nanoparticles KW - SAXS KW - XANES KW - Time-resolved PY - 2016 AN - OPUS4-36351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bustamante, Joana A1 - Naik, Aakash Ashok A1 - Ueltzen, Katharina A1 - Ertural, Christina A1 - George, Janine T1 - Thermodynamic and Thermoelectric Properties of the Canfieldite, (Ag8SnS6 ), in the Quasi-Harmonic Approximation N2 - Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties. One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, Slade group found a new low-temperature (LT) phase transition of canfieldite at 120K. Therefore, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density-functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Lattice parameters were overestimated by 2%, and thermal properties such as the constant-pressure heat capacity Cp are very close to experimental measurements. Our simulations also reveal a possible new phase transition at around 312 K. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with some argyrodites analogues, Ag8TS6 (T = Si, Ge, Ti and Sn), finding a relationship between the anharmonicity and low thermal conductivity. T2 - TDEP Summer School 2023 (TDEP2023: Finite-temperature and anharmonic response properties of solids in theory and practice) CY - Linköping, Sweden DA - 20.08.2023 KW - Thermoelectric materials KW - DFT KW - QHA KW - Grüneisen parameter PY - 2023 AN - OPUS4-58147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -