TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwettmann, K. A1 - Stephan, D. A1 - Nytus, N. A1 - Radenberg, M. A1 - Weigel, Sandra T1 - Post carbon road - The endless cycle of bitumen reuse N2 - In Germany, the reuse of asphalt has a long tradition. Since the 1980s, the reclaimed asphalt has been recycled achieving a reuse rate of around 90% and thus a very high value in the last years. In the future, instead of the amount, the quality of the reclaimed asphalt will be more important because the recycled asphalt will be reused again and again. Thus, these asphalt mixes are in the second or even third cycle of reuse. Concerning this situation, the question arises if asphalt can be reused several times without any loss in quality. An important factor affecting the asphalt quality is the binder bitumen. During the production, construction and service life, the ageing of this binder occurs causing a hardening of the bitumen. To compensate this hardening, additives for the reclaimed asphalt in terms of rejuvenation agents (rejuvenators) gain in importance. With these rejuvenators, the physical properties of bitumen can be modified e.g. the hardness and the stiffness reduced. However, the mechanism of the rejuvenation agents and the effects of the bitumen chemistry are largely unknown because the composition of the products varies very strongly. But with growing knowledge about these mechanisms and effects of the rejuvenation agents, the chemical composition and thus the physical and ageing behavior of bitumen can be targeted modified by the use of suitable rejuvenators. In this work, the actual results of the project Postcarbone road should be presented including investigations about the chemical and physical mechanisms as well as the efficiency of different rejuvenators. Further, a model for the cyclic reuse of bitumen should be developed. Based on this model, the choice of a suitable rejuvenation agent for the considered bitumen or rather asphalt should be possible. The project Postcarbone road (392670763) is funded by the German Research Foundation (DFG). T2 - 7th Eurasphalt and Eurobitume Congress CY - Online meeting DA - 15.06.2021 KW - Bitumen KW - Multiple ageing and rejuvenation KW - Conventional testing KW - DSR KW - BBR KW - FTIR KW - Asphaltene content KW - Column chromatography PY - 2021 AN - OPUS4-53489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kathan, Michael A1 - Kovanicek, Petr A1 - Jurissek, Christoph A1 - Senf, Antti A1 - Dallmann, Andre A1 - Thünemann, Andreas A1 - Hecht, Stefan T1 - Photocontrolling imine exchange kinetics to modulate inherent characteristics of self-healing polysiloxane networks N2 - Materials that respond to the environment by changing their properties are critical for developing autonomously adaptive systems. However, to reversibly influence a material's inherent characteristics, such as its ability to self-heal, from distance without continuously expending energy, remains a challenging task. Herein, we report on the modul at ion of imine exchange kinetics by light, manifested in a remote controllable dynamic covalent polymer network. Simple mixing of a commercially available amino-functionalized polysiloxane with small amounts of a photoswitchable diarylethene cross-linker, carrying two aldehyde groups, yields a rubbery material. Its viscoelastic and self-healing properties can be reversibly tuned with everyday light sources, such as sunlight. Our two-component system offers the unique advantage that self-healing takes place continuously without any additives at ambient conditions and is neither dependent on continuous illumination nor does it require recent damage. Overall, our approach allows for the local amplification of intrinsic material properties in a permanent yet reversible fashion. The availability of the inexpensive sta1ting materials on a multi-gram scale, the easy synthesis of the polymer network, and its convenient handling paired with high versatility make our Approach highly applicable to create custom-tailored adaptive materials. T2 - POLYDAYS 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - Self-healing KW - Polymer PY - 2016 AN - OPUS4-37623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fuhrmann, A. A1 - Göstl, R. A1 - Wendt, R. A1 - Kötteritzsch, J. A1 - Hager, M. D. A1 - Schubert, U. S. A1 - Brademann-Jock, Kerstin A1 - Thünemann, Andreas A1 - Nöchel, U. A1 - Behl, M. A1 - Hecht, S. T1 - Conditional repair by locally switching the thermal healing ability of dynamic covalent polymers ON and OFF with light N2 - Healable materials are able to repair inflicted damages, herin often applied: dynamic covalent polymer networks. We have shown in this study that light of different colors shift the Diels-Alder and retro Diels-Alder crosslinking and decrosslinking equilibrium. This effect was utilized for self-healing of a polymer film. Small-angle X-ray scattering was used to quantifiy the polymeric mesh size on a nanoscale. T2 - Polydays 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - Polymer KW - Small-angle X-ray scattering KW - SAXS KW - Self-healing PY - 2016 AN - OPUS4-37570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandl, F. A1 - Lederle, F. A1 - Härter, C. A1 - Thünemann, Andreas A1 - Beuermann, S. T1 - From gaseous vinylidene fluoride to electroactive poly(vinylidene fluoride) – Inducing β-phase by formation of block copolymers and composite materials N2 - Polymeric core-shell particles were synthesized in a semi-batch emulsion polymerization process. The shell of the particles consist of PVDF with a high amount of beta-phase. Small-angle X-ray scattering (SAXS) was used to quantify the size of the cores of the particles and the thickness of the shell. T2 - Macromolecular Colloquium Freiburg CY - Freiburg, Germany DA - 20.02.2019 KW - Small-angle x-ray scattering KW - SAXS KW - Nanoparticle KW - Polymer PY - 2019 AN - OPUS4-47467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Characterization of silver nanoparticles in cell culture medium containing fetal bovine serum N2 - Nanoparticles are being increasingly used in consumer products worldwide, and their toxicological effects are currently being intensely debated. In vitro tests play a significant role in nanoparticle risk assessment, but reliable particle characterization in the cell culture medium with added fetal bovine serum (CCM) used in these tests is not available. As a step toward filling this gap, we report on silver ion release by silver nanoparticles, and changes in the particle radii and in their protein corona when incubated in CCM. Particles of a certified reference material (CRM), p1, and particles of a commercial silver nanoparticle material, p2, were investigated. The colloidal stability of p1 is provided by the surfactants polyethylene glycole-25 glyceryl trioleate and polyethylene glycole-20 sorbitan monolaurate, whereas p2 is stabilized by polyvinylpyrrolidone (PVP). Dialysis of p1 and p2 reveal that their silver ion release rates in CCM are much larger than in water. Particle characterization was performed with asymmetrical flow field-flow fractionation (FFF), small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and electron microscopy. p1 and p2 have similar hydrodynamic radii of 15 nm and 16 nm, respectively. The silver core radii are 9.2 and 10.2 nm. Gel electrophoresis and subsequent peptide identification reveal that albumin is the main corona component of p1 and p2 after incubation in CCM, which consists of Dulbeccos Modified Eagle Medium with 10% fetal bovine serum added. T2 - 6th International Colloids Conference CY - Berlin, Germany DA - 19.06.2016 KW - SAXS KW - Nanoparticle KW - Silver KW - Albumin PY - 2016 AN - OPUS4-36639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hein-Paar, Jakob A1 - Michalchuk, Adam A. L. A1 - Guilherme Buzanich, Ana T1 - Spectroscopic Insights into the Reactivity of Energetic Materials N2 - Energetic materials (explosives, propellants, pyrotechnics, and gas generators; EM) release large amounts of energy when initiated by mechanical loading and have many technological applications including in energy storage and propulsion. The accidental initiation of an EM – particularly in the wrong setting – has the potential to be catastrophic. Unfortunately, there is little understood about what determines the sensitivity of a given EM. This poses severe restrictions on our ability to design new and safer EMs. Aiming to better understand the initiation mechanisms of EMs, we here investigate the reactivity of simple, isomorphous azides (MN3 M=Li, Na). Both metal azides contain the same explosophoric azido anions, but differ significantly in their reactivity, presumably owing to different bonding interactions between the anion and the metal cation. This interaction offers a promising probe for X-ray spectroscopy and quantum chemical simulations. In noting that mechanical initiation results from mechanical impact – with high local pressures – we are particularly interested in identifying how this bonding interaction changes as a function of pressure. This interaction offers a promising probe for X-ray spectroscopy and quantum chemical simulations. In noting that mechanical initiation results from mechanical impact – with high local pressures – we are particularly interested in identifying how this bonding interaction changes as a function of pressure. Here we show results from DFT simulations that indicate a shift in electronic structure and changes in the metal-azide bond with increasing pressure, which is further investigated through experimental XAS spectra. Together, our results show promising insights into the behaviour of simple metal azide EMs. T2 - SXR2023 - Principles of Functionality From Soft X-Ray Spectroscopy CY - Berlin, Germany DA - 11.09.2023 KW - Energetic materials PY - 2023 AN - OPUS4-58824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Fähler, Sebastian A1 - Fähler, Sebastian T1 - Thermomagnetic generators with magnetocaloric materials for harvesting low grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we give an overview on our research, covering both materials and systems. We demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Though magnetocaloric materials had been the first choice also for thermomagnetic generators, they require some different properties, which we illustrate with Ashby plots for materials selection. Experimentally we compare La-Fe-Co-Si and Gd plates in the same thermomagnetic generator. Furthermore, we discuss corrosion and deterioration under cyclic use is a severe problem occurring during operation. To amend this, composite plates using polymer as a matrix have been suggested previously. T2 - Dresden Days of Magnetocalorics CY - Dresden, Germany DA - 13.11.2023 KW - Thermomagnetic material KW - Waste heat recovery KW - Generator PY - 2023 AN - OPUS4-58865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irina A1 - Rautenberg, Max A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of phosphonate-based proton conducting metal organic frameworks and hydrogen-bonded metal phosphonates N2 - Proton exchange membrane fuel cells (PEMFCs) are one of the most promising alternative green energy technologies that deliver high energy density without CO2 emissions. The proton conductivity of proton exchange membranes (PEM) contributes to the overall efficiency of a PEMFC. Materials being used as PEMs must exhibit high proton conductivity at the working conditions of the targeted PEMFC. To date, Nafion and Nafion-like polymers with acidic functionality are widely used as membrane materials due to their high proton conductivity in the range of 10-1 to 10-2 Scm-1 at higher relative humidity. However, these materials suffer from high costs, hazardous production process, and poor performance at high temperatures, limiting their versatility. In this context, crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology, owing to their tunable framework structure. However, it is still challenging bulk synthesis for real-world applications of these materials. Herein, we present mechanochemical gram-scale synthesis of series of mixed ligand metal organic frameworks (MOFs) and metal hydrogen‐bonded organic frameworks (MHOFs) using phenylene diphosphonic acid and 1-hydroxyethylidene-1,1-diphosphonic acid with different bipyridyl type of ligands, respectively. In all cases, the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, the frameworks exhibited high proton conductivity. The study demonstrates the potential of green mechanosynthesis for preparations of framework-based proton conducting materials in bulk scale for green energy generation. T2 - 4th International Conference on Phosphonate Chemistry, Science and Technology, ICOPHOS-4 CY - Crete, Greece DA - 02.10.2023 KW - Proton exchange membrane fuel cells KW - Metal organic frameworks KW - Proton conducting materials PY - 2023 AN - OPUS4-58837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Effect of heat treatment on residual stress in additively manufactured AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBFLB) allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution in as-built state (AB) and after post-process heat treatments (HT). RS in single edge notch bending (SENB) subjected to different HT are investigated (HT1: 1h at 265°C and HT2: 2h at 300°C). T2 - ESRF User Meeting 2023 CY - Grenoble, France DA - 07.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress PY - 2023 AN - OPUS4-56982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -